JSC TOXICOLOGY AND ENVIRONMENTAL CHEMISTRY GROUP

Amelia Romoser, PhD, DABT Toxicology and Environmental Chemistry NASA JSC/SK4 Houston, TX 77058

Memorandum Number TOX-AR-2018-03

Voice: (281) 483-3223 Fax: (281) 483-3058 amelia.a.romoser@nasa.gov

DATE: September 12, 2018

SUBJECT: Toxicological Assessment of ISS Air and Water Quality: December 17, 2017 – February 27, 2018 (Increment 54), Including SpX-13 Ingress

SUMMARY: Based on these data, air quality was acceptable on ISS for this period and potable water remains acceptable for crew consumption.

AIR QUALITY

Five archive air samples were scheduled to be collected in mini grab sample containers (mGSCs) on ISS during Increment 54. One sample was collected during first ingress operations in SpaceX-13 (SpX-13). The remaining four samples were part of routine monitoring; however, no representative samples were collected in February. One of the two canisters (collected in Columbus (COL)) collected on 2/27/18 contained no sample and is not reported. The other canister (collected in the LAB) contained low pressure and, although reports are presented, they are expected to be biased low. Two pairs of passive-diffusion formaldehyde badges were deployed in the Lab and Service Module (SM) on 1/2/18. With the exception of the February sample, which returned on SpX-14, all other mGSC samples were returned on SpX-13. The formaldehyde badges were returned on SpX-15. A summary of analytical results from the samples is provided in Table 1.

Return Flight	Sample Location	Sample Date	Freon 218 (mg/m ³)	Alcohols ^a (mg/m ³)	T-Value ^b (units)	Formaldehyde (µg/m ³)
SpX-13	SpX-13 Ingress	12/17/2017	107	2.7	0.2 (0.1)	
SpX-13 (GSC) and SpX-15 (FMK)	LAB	1/2/2018	354	8.5	0.3	31
SpX-13	JPM	1/2/2018	360	9.4	0.3	
SpX-15	SM	1/2/2018	-	-	-	28^{d}
SpX-14	LAB	2/27/2018	273	11	0.2	
Guideline				<5	$< l^c$	<120

Table 1. Analytical summary of ISS air analyses

Low pressure sample results are shaded gray

^aIncludes acetone

^bSum of the ratios of the measured concentration and the corresponding 180-day SMAC for each compound, excluding CO₂; parentheses indicate value based on 7-day SMACs and applicable to first ingress

°T-value <1 used to evaluate routine monthly sampling; <3 used to evaluate first ingress

^dAverage from pair of formaldehyde badges

Data tables containing measured concentrations and corresponding T-values based on appropriate Spacecraft Maximum Allowable Concentrations (SMACs) for compounds present at levels above the laboratory reporting limit are attached to this report. Complete data tables including compounds assessed but not detected are available upon request. The mean relative recoveries of the three surrogate standards from the SpX-13 return mGSC samples were as follows: ¹³C-acetone, 119±13%; fluorobenzene-d₅, 109±5%; and chlorobenzene-d₅, 123±12%. Average surrogate recoveries for the mGSC returned on SpX-14 were: ¹³C-acetone, 103±1%; fluorobenzene-d₅, 100±1%; and chlorobenzene-d₅, 97±1%. For the passive-

diffusion formaldehyde badges, positive control recoveries (1 in-flight and 1 lab control) were 110 and 108%, respectively.

Automated sampling sessions are scheduled on the Air Quality Monitors (AQMs) every 73 hours, which results in 2-3 sampling sessions per unit per week. Monthly average concentrations as well as the increment average concentrations for compounds measured on the AQMs are presented in Table 2.

	December	January	February	Increment
Compound	Average	Average	Average	Average
2-Propanol	0.3	0.2	0.1	0.2
Acetone	0.4	0.4	0.4	0.4
Acrolein	ND	ND	ND	ND
Benzene	ND	ND	ND	ND
1,2-Dichloroethane	ND	ND	ND	ND
Decamethylcyclopentasiloxane#	0.1	0.2	0.1	0.1
Hexanal	ND	ND	ND	ND
Hexane	ND	ND	ND	ND
m,p-Xylenes#	TRACE	ND	ND	TRACE
Methanol	0.3	0.2	0.3	0.3
o-Xylene#	0.1	TRACE	TRACE	TRACE
Octamethylcylcotetrasiloxane#	TRACE	TRACE	TRACE	TRACE
Toluene#	ND	ND	ND	ND
2-Butanone	ND	ND	ND	ND
Acetaldehyde	TRACE	0.2	0.3	0.2
Dichloromethane	ND	ND	ND	ND
Ethanol	4.1	4.0	2.7	3.6
Ethyl Acetate	TRACE	ND	TRACE	TRACE
Hexamethycyclotrisiloxane#	0.1	0.1	0.1	0.1
n-Butanol	0.1	0.1	TRACE	0.1
Trimethylsilanol	0.1	0.1	0.1	0.1

Table 2. Average monthly concentrations (mg/m^3) of AQM target compounds

Obtained from prime unit

ND: Not detected; <MDL (Minimum Detection Limit)

TRACE= >MDL, <MQL (Minimum Quantification Limit)

Toxicological Evaluation of ISS Air Quality

Routine air quality monitoring is performed in-flight using the AQMs. Archive air samples (mGSCs and formaldehyde badges) are collected during each increment and returned for analysis in the Toxicology and Environmental Chemistry (TEC) Air Quality Laboratory. Data from the ground analyses complement the in-flight data and provide a more complete understanding of air quality on the ISS. The routine archive samples for this increment that returned on SpX-13 confirmed air quality was acceptable during December and early January. As noted above, no representative archive samples were collected in February, but results from AQM analyses indicate that air quality was fairly consistent throughout the increment. All measured values for routine samples (mGSC and AQM) met 180-d T-value guideline criteria (T < 1), indicating no concern for crew health. The average, rounded T-value calculated from the Increment 54 mGSC samples was 0.3 (Figure 1). The sample collected in the Lab on 2/27/2018 was excluded from this calculated from AQM (Figure 2) and GSC results were in reasonable agreement given the differences between the analytical techniques and the number of target compounds used in the calculation.

Figure 1. GSC T-values

Figure 2. AQM T-values

Overall, the reported concentrations for the compounds detected during Increment 54 are similar to levels detected during recent increments. This is somewhat unexpected as the carbon filters that had been installed in Node 1 since 2015 were removed on 12/15/17. When carbon filters were first installed in May of 2015, atmospheric concentrations of most siloxanes (i.e. TMS, OMCTS, and HMCTS) were notably reduced. The carbon filters were replaced with HEPA filters on 12/15/17 after elevated fungal counts were recovered from air samples collected in Node 1. While atmospheric siloxane concentrations did increase slightly after removal of the carbon filters, the concentrations have stabilized and remain well below the levels seen

before installation of the carbon filters. The Node 1 carbon filters were originally installed as part of efforts to reduce the concentration of dimethylsilanediol (DMSD) in US condensate. Reducing the DMSD concentration in US condensate was expected to prevent DMSD from breaking through the Water Processor Assembly (WPA) and help extend the life of the Multi-Filtration (MF) beds. It was believed that reducing the concentration in condensate. Interestingly, despite the marked reduction in atmospheric siloxanes, there was no discernable change in the DMSD concentration in condensate while the carbon filters were installed. This suggests that the mechanism and dynamics of DMSD formation are more complicated than originally thought and additional investigation is warranted.

The nominal mGSC samples contained a CO₂ concentration below the increment limit documented in Chit 14468, which requests that the 24 hour average concentration not exceed 3.0 mmHg (7100 mg/m³) on the US segment. While mGSC CO₂ sampling provides a snap-shot of the CO₂ concentration, the major constituent analyzer (MCA) routinely monitors CO₂ levels in the US segment. For this reason, data from the MCA are better suited for evaluation of short and long-term trends in CO₂. Concentrations measured by the MCA fluctuate as a result of multiple factors including the number of crew on ISS, current scrubbing capability, and processes and activities that generate CO₂. CO₂ levels (24-hour average) recorded by the Node 3 MCA were below 2 mmHg during 3 crew operations in mid-December, then increased to approximately 3 mmHg throughout the remainder of the increment. Brief excursions were observed during MetOx regeneration on 1/2/2018, and 2/16/2018, and following a brief CDRA fan failure on 2/9/2018 (see Figure 3).

Figure 3. MCA CO₂ values

If crew is congregated into one location (e.g. during EVA preparation on 1/23/2018), rapid sampling of one area may occur, which can also result in temporarily elevated concentrations. Additional measures, including the use of LiOH canisters on the Russian segment and dual CDRA operations on the US segment, were taken to maintain average levels at or below 3 mmHg. Overall, CO₂ concentrations were well controlled throughout the increment.

Alcohol values in all routine archive samples continued to exceed the guideline of <5 mg/m³, which is intended to protect the water recovery system from risk of overloading. These levels are primarily due to ethanol in the ISS atmosphere. AQM results for ethanol (increment average 3.55 mg/m³) continue to decrease relative to the Increment 53 average (3.8 mg/m³) and levels measured in archive samples collected

in October 2017 (5.2 mg/m³) and November 2017 (4.5 and 4.6 mg/m³). The reason for the apparent off-set in this compound is unknown at this time, but will continue to be monitored.

Octafluoropropane (Freon 218) levels decreased to 354 and 360 mg/m³ in the Lab and JPM, respectively, following a release from the CSAT payload during Increment 53 that caused levels to spike at 865 mg/m³ in the JPM on 10/25. This concentration is still two orders of magnitude below the 180d SMAC value (85,000 mg/m³) and does not constitute a toxicological risk. Prior history of leaks resulting in similar concentrations suggests that levels will remain elevated for some time.

Formaldehyde levels in the US Lab (shown in Table 1 and Figure 4) are generally consistent with historic levels and remain below the SMAC of 120 μ g/m³. The result for one of the 1/2/18 US Lab samples was unusually low compared to the duplicate sample and historical values, and is therefore considered suspect. For this reason, the concentration (31 μ g/m³) for only one sample in the Lab pair was used in Table 1 and Figure 4. The value in Table 1 and Figure 4 for the SM represents an average for the pair.

Figure 4. Formaldehyde trending in ISS air.

SpX-13 Ingress

A first entry sample was collected upon ingress into SpX-13 on 12/17/2017, approximately three minutes after hatch opening. No background concentration of Freon 218 (octafluoropropane), a marker for ISS air dilution of first entry samples, was available near the time of first ingress sampling for comparison. Therefore the MCA carbon dioxide concentration at the time of GSC sampling (4073 mg/m³) was used to estimate dilution. The CO₂ concentration measured in the ingress sample was 2200 mg/m³, indicating that up to 54% mixing with the ISS atmosphere occurred prior to sample collection. The total T-value (excluding CO₂) was 0.1, which was well below the 7-d T-value limit of 3.0 units and similar compared to other SpaceX ingress results (SpX-11: 0.1; SpX-10: 0.1). The primary contributors were carbon monoxide (0.12 mg/m³), acetaldehyde (0.03 mg/m³), and trimethylsilanol (0.01 mg/m³). Accounting for 54% dilution, exposure to SpX-13 vehicle air would have posed no risk to crew health.

WATER QUALITY

Three archive water samples were collected from the US segment during Increment 54 and returned on SpX-13 and 52S. Two of these were potable water samples from the ambient and hot legs of the US Potable

Water Dispenser (PWD) and the third was a product water sample collected from the PWD auxiliary port. Complete data tables with results for all measured parameters can be found in reports 2018-TEC-WQ-002 and 2018-TEC-WQ-003. Samples of US condensate and wastewater were also collected during Increment 54. These samples were returned to ground for analysis on SpaceX-14 (SpX-14). Complete data tables with results from all analyses run on the condensate and wastewater samples can be found in 2018-TEC-WQ-004. A summary of select analytical results from the Increment 54 samples is provided in Table 3. Expanded summary tables containing organic carbon recoveries and results for all analytes present at concentrations above reporting limits are included as attachments to this report.

Return Mission	Sample Location	Sample Date	TOC (mg/L)	DMSD (mg/L)	Methyl Sulfone (mg/L)	Conductivity (µS/cm)	Total Iodine (mg/L)
SpX-13	PWD (Auxiliary Port)	1/9/2018	1.11	2.4	NA	NA	1.16
SpX-14	WPA Wastewater	1/29/2018	16.6	20.0	0.22	96	NA
SpX-14	US Condensate	1/29/2018	131	70.0	0.37	370	NA
52S	PWD (Ambient)	1/31/2018	1.09	2.4	0.31	2	< 0.05
52S	PWD (Hot)	2/21/2018	1.26	3.0	0.17	2	< 0.05

Table 3. Analytical Summary of ISS Water Analyses

Toxicological Evaluation of ISS Water Quality: Routine water quality monitoring is performed in-flight using the total organic carbon analyzer (TOCA). Results from these analyses provide a general indication of overall water quality. Archive water samples are collected during each increment and returned for comprehensive analysis in ground laboratories. Data from the ground analyses complement the in-flight data and provide a more complete understanding of water quality on the ISS.

Potable Water

Concentrations of all chemicals detected in the potable water samples met the requirements listed in SSP 41000, *System Specification for the International Space Station* and JSC 63414, Spacecraft Water Exposure Guidelines (SWEGs). Total organic carbon (TOC) concentrations from in-flight (PWD TOC and WPA TOC) and ground analyses (Archive TOC) performed between February 2016 and February 2018 are shown in Figure 5. The TOC concentrations was elevated in both potable samples (Ambient: 1.09 mg/L.; Hot: 1.26 mg/L) but measured concentrations were well below both the U.S. Segment Specification (3000 μ g/L) and the 100-day SWEG (5000 μ g/L). DMSD was the primary compound responsible for the TOC in both potable samples. While not a crew health risk, the increased levels of methyl sulfone in both samples could indicate that this compound is not being efficiently removed by the WPA. Additionally, the TOCA continues to under-report TOC results compared to the archival samples even though the TOCA calibration checks meet their specifications. Monitoring these water quality parameters should continue to assess whether additional maintenance is needed.

As mentioned, the source of the TOC in the potable samples was primarily DMSD (2.4 mg/L in both samples). Methyl sulfone, another minor contributor to the TOC, was significantly higher in the Ambient sample (0.31 mg/L) than during Increment 53 (101-151 μ g/L) and the historical average for both ports (59-75 μ g/L). Methyl sulfone in the Hot sample was detected at a concentration of 0.17 mg/L. Although the concentration of this compound has been trending upward over the past several increments, levels are still well below the SWEG of 1,500 mg/L. Silicon was also detected (0.76-0.91 mg/L) at levels typically seen when DMSD is present in the water. Nickel (6 μ g/L in both samples) and barium (2 μ g/L in the Hot sample) were found at concentrations consistent with previous samples.

Figure 5. Total Organic Carbon (TOC) trending in US Potable Water

Iodine is a biocide used on the US segment. It is added to the water produced by the WPA, but removed prior to crew consumption to avoid potential thyroid dysfunction. The total iodine level in the samples collected from the PWD were below the reporting limit (0.05 mg/L), indicating effective removal of iodine in water intended for consumption. For additional information regarding microbial analyses, please see the Increment 54 post-flight report issued by the JSC Environmental Microbiology Laboratory.

Product Water

The TOC concentration measured in the PWD Auxiliary Port sample was 1.11 mg/L which is slightly lower than the previous Auxiliary Port sample (1.56 mg/L) collected during Increment 50. DMSD (2.4 mg/L) was detected at a level similar to Increment 54 potable water levels (2.4-3.0 mg/L) and lower than the Increment 50 Aux Port sample (4.8 mg/L). Nickel was present at a concentration (0.164 mg/L) slightly higher than the historical average (0.119 mg/L), suggesting that stagnant water in the tubing feeding into the Aux Port may not have been adequately flushed prior to sample collection. Although this water is not meant for consumption, these compounds do not pose a toxicological risk at these concentrations.

Condensate

The condensate sample collected on 1/29/2018 contained a TOC level of 131 mg/L, which is below the historical average (162 mg/L). These results are consistent with AQM results indicating that ISS air quality was well managed for the increment. Non-metal compounds detected at levels greater than 1 mg/L included DMSD (70 mg/L), ammonium (58 mg/L), silicon (25.5 mg/L), benzoic acid (2.17 mg/L), benzyl alcohol (2.55 mg/L), diethylpthalate (1.2 mg/L), 2-(2-Butoxyethoxy)ethanol, (3.1 mg/L), 2-Phenoxyethanol, (3.2 mg/L), acetone (4.09 mg/L), ethanol (35.8 mg/L), methanol (6.16 mg/L), ethylene glycol (7.96 mg/L), propylene glycol (31.3 mg/L), acetate (2.67 mg/L), and glycolate (6.4 mg/L). Concentrations for these compounds were nominal, except for glycolate, which was detected at the highest level ever measured in an ISS sample. Zinc (3.04 mg/L), nickel (0.32 mg/L), boron (0.17 mg/L), and traces of other metals were also present in this non-potable sample. All of these compounds were effectively removed by the WRS, as evidenced by the low or undetectable levels in the potable samples.

Wastewater

The wastewater sample, collected on 1/29/2018, contained a TOC level of 16.6 mg/L, which is well below the historical average of 44.6 mg/L, but only slightly higher compared to the most recent wastewater sample

TOX-AR-2018-03

(10.6 mg/L) collected on 10/30/17. The DMSD concentration was 20 mg/L, which was similar to the previous wastewater sample (17 mg/L). Non-metal compounds detected at levels greater than 1 mg/L included ammonium (15.9 mg/L) and silicon (8.23 mg/L). Metals detected above 0.1 mg/L in the samples were zinc (0.82 mg/L), nickel (0.32 mg/L), and iron (0.13 mg/L). Traces of other metals, including manganese were also present. As with the condensate samples, all compounds of toxicological interest were effectively cleaned from the samples by the WRS.

Amelia Romoser, Ph.D., DABT KBRwyle Toxicologist

Concurrence by Valerie Ryder, Ph.D., DABT NASA Toxicologist

Sept 2018

Date

3/18

Date

Enclosures Table 1A: Analytical concentrations of compounds quantified in the mGSC returned on SpaceX-13

Table 1B: Analytical concentrations of compounds quantified in mGSCs returned on SpaceX-14

Table 2A: T-values corresponding to concentrations for the SpX-13 Ingress sample in Table 1A, based on 7-day and 180-day SMACs

Table 2B: T-values corresponding to concentrations in Table 1A, based on 180-day SMACs

Table 2C: T-values corresponding to concentrations in Table 1B, based on 180-day SMACs

Table 3: Analytical concentrations of compounds quantified in US potable and product water samples returned on Soyuz 52 and SpX-13

Table 4: Analytical concentrations of compounds quantified in wastewater and condensate samples returned on SpX-14

	CONCENTRATION (mg/M3)					
CHEMICAL CONTAMINANT	AQ180016	AQ180017	AQ180018			
	SN2079	SN2082	SN2080			
	SpaceX-13					
	Ingress	LAB	JPM			
	12/17/17 @	01/02/18 @	01/02/18 @			
	18:11 GMT	12:00 GMT	11:53 GMT			
TARGET COMPOUNDS (TO-15) **		_	-			
Propane	< 0.025	TRACE	< 0.025			
Methanol *	0.39	0.43	0.48			
Acetaldehyde	0.13	0.37	0.36			
2-Methyl-1-propene	< 0.025	TRACE	TRACE			
Ethanol *	1.3	7.3	8.1			
Acetone	0.21	0.40	0.42			
2-Propanol (Isopropanol)	0.77	0.33	0.37			
Isoprene (2-Methyl-1,3-butadiene)	< 0.025	TRACE	TRACE			
Methyl acetate	< 0.025	TRACE	TRACE			
1-Propanol	< 0.025	0.026	0.028			
Trimethylsilanol	0.05	0.082	0.11			
1-Butanol	0.029	0.043	0.045			
Pentanal	0.052	0.060	0.037			
Hexanal	0.067	0.11	0.14			
Decamethylcyclopentasiloxane	< 0.175	0.22	0.25			
Octafluoropropane (Perfluoropropane) *	107	354	360			
SPECIAL INTEREST COMPOUNDS ***						
Hexamethylcyclotrisiloxane #	< 0.20	0.22	0.24			
······································						
NON-TARGET COMPOUNDS ***						
Dodecafluoropentane	0.19	< 0.050	0.47			
Dodecandoropentale	0.19	<0.030	0.47			
	1					
TOTAL ALCOHOLS PLUS ACETONE	2.7	8.5	9.4			
TARGET COMPOUNDS (GC) **						
Methane	7.6	9.9	10			
Carbon dioxide	2200	6000	6400			
Hydrogen	1.6	4.1	4.1			
Carbon monoxide	2.1	1.3	1.3			
TOTAL CONCENTRATION	110	364	371			
(NON-METHANE HYDROCARBONS)						
TOTAL CONCENTRATION - OFP	3.2	9.6	11			
(NON-METHANE HYDROCARBONS)						

 TABLE 1A

 ANALYTICAL RESULTS OF SPACEX-13 RETURN AIR SAMPLES

* GC/FID data results are in bold

** Quantified using a multi-point calibration

*** Quantified using "B" response factor except where noted; concentrations are estimates

only.

Response factor generated from an internal study

<: Value is less than the laboratory reporting limit.

TRACE: Amount detected is sufficient for compound identification only. One-half of the reporting limit was used in the Total Concentration summation. OFP - Octafluoropropane

TABLE 1B						
ANALYTICAL RESULTS OF SPACEX-14 RETURN						

CHEMICAL CONTAMINANT TARGET COMPOUNDS (TO-15) ** Methanol Acetaldehyde Ethanol	CONCENTRATION (mg/M ³) AQ180133 SN2083 LAB 02/27/18 @ 18:36 GMT 0.89 0.44 8.9
Acetone	0.66
2-Propanol (Isopropanol)	0.00
Octafluoropropane (Perfluoropropane) *	273
	213
The Special Interest Compound was below its reporti NON-TARGET COMPOUNDS All Non-Target Compounds were below their reporting	
TOTAL ALCOHOLS PLUS ACETONE	11
TARGET COMPOUNDS (GC) ** Methane	11
Carbon dioxide	5700
Hydrogen	4.0
TOTAL CONCENTRATION (NON-METHANE HYDROCARBONS)	284
TOTAL CONCENTRATION - OFP (NON-METHANE HYDROCARBONS)	11

* GC/FID data results are in bold

** Quantified using a multi-point calibration

OFP - Octafluoropropane

	T-VA	ALUE		
	7-d SMAC	180-d SMAC AQ180016		
CHEMICAL CONTAMINANT	AQ180016			
	SN2079	SN2079		
	SpaceX-13 Ingress	SpaceX-13 Ingress		
	12/17/17 @ 18:11 GMT	12/17/17 @ 18:11 GMT		
TARGET COMPOUNDS (TO-15)				
Methanol	0.00434	0.00434		
Acetaldehyde	0.03207	0.03207		
Ethanol	0.00066	0.00066		
Acetone	0.00399	0.00399		
2-Propanol (Isopropanol)	0.00512	0.00512		
Trimethylsilanol	0.01129	0.01129		
1-Butanol	0.00036	0.00073		
Pentanal	0.00291	0.00291		
Hexanal	0.00333	0.00333		
Octafluoropropane (Perfluoropropane)	0.00126	0.00126		
SPECIAL INTEREST COMPOUNDS				
Hexamethylcyclotrisiloxane was below the repor	ting limit			
NON-TARGET COMPOUNDS				
Dodecafluoropentane	0.00064	0.00064		
TARGET COMPOUNDS (GC)				
Methane	0.00218	0.00218		
Carbon dioxide	0.16567	0.16567		
Hydrogen	0.00476	0.00476		
Carbon monoxide	0.03332	0.12348		
TOTAL T-VALUE	0.10622	0.19674		

TABLE 2A SPACEX-13 INGRESS T-VALUES

Note: Number of decimal places in T-Values do not represent significant figures of measurements.

	T-VALUE (180-d SMAC)					
CHEMICAL CONTAMINANT	AQ180017 SN2082 LAB 01/02/18 @ 12:00 GMT	AQ180018 SN2080 JPM 01/02/18 @ 11:53 GMT				
TARGET COMPOUNDS (TO-15)	01/02/10 @ 12:00 01/11					
Propane	0.00227	ND				
Methanol	0.00473	0.00536				
Acetaldehyde	0.09283	0.09006				
2-Methyl-1-propene	0.00054	0.00054				
Ethanol	0.00364	0.00405				
Acetone	0.00767	0.00808				
2-Propanol (Isopropanol)	0.00217	0.00248				
Isoprene (2-Methyl-1,3-butadiene)	0.00417	0.00417				
Methyl acetate	0.00010	0.00010				
1-Propanol	0.00027	0.00028				
Trimethylsilanol	0.02054	0.02873				
1-Butanol	0.00108	0.00114				
Pentanal	0.00334	0.00206				
Hexanal	0.00543	0.00713				
Decamethylcyclopentasiloxane	0.01495	0.01643				
Octafluoropropane (Perfluoropropane)	0.00417	0.00423				
SPECIAL INTEREST COMPOUNDS						
Hexamethylcyclotrisiloxane	0.02493	0.02627				
NON-TARGET COMPOUNDS						
Dodecafluoropentane	ND	0.00160				
TARGET COMPOUNDS (GC)						
Methane	0.00284	0.00287				
Carbon dioxide	0.45931	0.49406				
Hydrogen	0.01219	0.01214				
Carbon monoxide	0.07519	0.07505				
	1	·				
TOTAL T-VALUE	0.28307	0.29279				

TABLE 2B **T-VALUES FOR SPACEX-13 RETURN**

ND : Value is less than the laboratory reporting limit. Note: Number of decimal places in T-Values do not represent significant figures of measurements.

TABLE 2C T-VALUES FOR SPACEX-14 RETURN

	T-VALUE (180-d SMAC)
CHEMICAL CONTAMINANT	AQ180133 SN2083 LAB 02/27/18 @ 18:36 GMT
TARGET COMPOUNDS (TO-15)	
Methanol	0.00989
Acetaldehyde	0.11107
Ethanol	0.00445
Acetone	0.01277
2-Propanol (Isopropanol)	0.00286
Octafluoropropane (Perfluoropropane)	0.00321
SPECIAL INTEREST COMPOUNDS	
Hexamethylcyclotrisiloxane was below its repor	ting limit.
NON-TARGET COMPOUNDS	
All Non-Target Compounds were below their re	porting limit.
TARGET COMPOUNDS (GC) Methane	0.00322
Hydrogen	0.01186
TOTAL T-VALUE	0.15932

ND: Value is less than the laboratory reporting limit.

Note¹: Number of decimal places in T-Values do not represent significant figures of measurements.

Note²: Normal detection limits could not be obtained due to the low initial sample pressure.

 Table 3: Analytical concentrations of compounds quantified in US potable and product water samples returned on Soyuz 52 and SpX-13

Increment						54		
Mission					SpaceX-13	Soy	uz 52	
Sample Location			Potable Water		WPA PWD Aux Port	WPA PWD Ambient	WPA PWD Hot	
Sample Description		Test	Maximum Contaminant	Maximum Contaminant	WPA Product Water	Potable Water	Potable Water	
Sample Date		Conducted	Level	Level	1/9/2018	1/31/2018	2/21/2018	
Analysis/Sample ID	Units	by	(MCL)	Source	WQ180013	WQ180086	WQ180087	
Physical Characteristics								
Conductivity	µS/cm	U.S.			NA	2	2	
рН	pH units	U.S.	4.5-8.5	41000	NA	7.08	6.33	
Iodine LCV								
Iodide	mg/L	U.S.			0.71	< 0.05	< 0.05	
Iodine	mg/L	U.S.			1.16	< 0.05	< 0.05	
				41000 (tl I max/tl				
				I at pt of				
Total I	mg/L	U.S.	6/0.2	consumption)	1.88	< 0.05	< 0.05	
Minerals ICPMS								
Calcium	mg/L	U.S.	30	41000	< 0.05	0.01	0.01	
Potassium	mg/L	U.S.	340	41000	< 0.05	0.02	< 0.01	
Trace Metals ICPMS								
Barium	μg/L	U.S.	10,000	SWEG&41000	< 5	< 1	2	
Nickel	μg/L	U.S.	300	SWEG&41000	164	6	6	
Silicon ICPMS								
Silicon	μg/L	U.S.			666	756	908	
Total Organic Carbon-Sievers & Total Organic Carbon-OI								
Total Inorganic Carbon (TIC)	mg/L	U.S.			0.50	0.91	0.90	
Total Organic Carbon (TOC)	mg/L	U.S.		SWEG / 41000	1.11	1.09	1.26	
Semi-volatile Organics-Targets								
				interim SWEG				
Methyl sulfone	μg/L	U.S.	1,500,000	(06-2017)	NA	307	168	
Silanols LCRI (Semi-Quantitative-NIST traceable standard not available)								
Dimethylsilanediol (DMSD)	μg/L	U.S.	35,000	SWEG	2,400	2,400	3,000	
Organic Carbon Recovery	percent	U.S.			N/A	64.50	65.40	
Unaccounted Organic Carbon	mg/L	U.S.			N/A	0.39	0.44	

Comments: WQ180013: Sample labeled as potable water, but sample schedule indicates product water. Data Qualifiers: None.

Incremen	+			1		54
Mission						ceX-14
					WPA	WPA
Sample Location	1		Potable Water		Wastewater ORU	Condensate Sample Port
Sample Description			Maximum	Maximum	WPA	US Condensate
Sample Description		Test Conducted	Contaminant Level	Contaminant Level	Wastewater 1/29/2018	1/29/2018
Analysis/Sample II		by	(MCL)	Source	WQ180291	WQ180292
Physical Characteristics	Class	U.S.			96	370
Conductivity pH	μS/cm pH units	U.S. U.S.	4.5-8.5	41000	7.49	7.72
AnionsIC						
Fluoride Cations IC	mg/L	U.S.			0.3	0.6
Ammonium (as N)	mg/L	U.S.	1	SWEG&41000	15.9	58.0
Minerals I CPMS Calcium	mg/L	U.S.	30	41000	0.07	0.14
Potassium	mg/L	U.S.	340	41000	0.08	0.02
Sodium Trace Metals I CPMS	mg/L	U.S.			0.08	< 0.02
Aluminum	μg/L	U.S.			7	9
Boron Chromium	μg/L μg/L	U.S. U.S.	230	41000	<u>45</u> 17	172 3
Copper	μg/L	U.S.	1,000	41000	2	< 2
Iron Manganese	μg/L	U.S. U.S.	300 300	41000 SWEG&41000	134 79	< 10 13
Manganese Nickel	μg/L μg/L	U.S. U.S.	300	SWEG&41000	79 320	323
Silver	μg/L	U.S.	400	SWEG&41000	9	5
Zinc Silicon ICPMS	μg/L	U.S.	2,000	SWEG&41000	823	3,040
Silicon	μg/L	U.S.			8,230	25,500
Total Organic Carbon-Sievers & Total Organic Carbon-Ol Total Inorganic Carbon (TIC)	mg/L	U.S.			10.5	32.6
Total Organic Carbon (TOC)	mg/L	U.S.		SWEG / 41000	16.6	131
Volatile Organics-Special Interest Compounds (Semi-quantitative) Trimethylsilanol	μg/L	U.S.			110	260
Volatile Organics-Non-Targets (estimated conc.)						
Dimethyl sulfide Semi-volatile Organics-Targets	μg/L	U.S.			not found	93
Benzothiazole	μg/L	U.S.			57	78
Decamethylcyclopentasiloxane (DMCPS) Dodecamethylcyclohexasiloxane	μg/L μg/L	U.S. U.S.			144 107	164 90
	µg/L	0.3.		interim SWEG (06-	107	90
Methyl sulfone N-n-Butylbenzenesulfonamide	μg/L	U.S.	1,500,000	2017)	<u>222</u> 95	369
Tris(2-Chloroethyl)phosphate	μg/L μg/L	U.S. U.S.			95 < 40	134 137
Acid Extractables-EPA 625 List GCMS						0.470
Benzoic acid Phenol	μg/L μg/L	U.S. U.S.	4,000	SWEG	< 200 < 40	2,170 409
Base and Neutral Extractables-EPA 625 List GCMS					10	0.550
Benzyl alcohol Di-n-butylphthalate	μg/L μg/L	U.S. U.S.	40,000	SWEG	< 40 < 40	2,550 105
Diethylphthalate	μg/L	U.S.			449	1,200
Semi-volatile Organics-Special Interest Compounds (Semi-quantitative) 1,3,5-Triallyl-1,3,5-triazine-2,4,6(1H,3H,5H)-trione	μg/L	U.S.			49	130
1-Methyl-2-pyrrolidinone	μg/L	U.S.			not found	840
2-(2-Butoxyethoxy)ethanol 2-Butoxyethanol	μg/L μg/L	U.S. U.S.			not found not found	3,100 160
2-Ethoxyethanol	μg/L	U.S.			not found	360
2-Ethyl-1-hexanol 2-Methyl-2,4-pentanediol	μg/L μg/L	U.S. U.S.			not found not found	200 130
2-Phenoxyethanol	μg/L	U.S.			not found	3,200
2-Phenyl-2-propanol	µg/L	U.S.			99 not found	210
Acetophenone Benzaldehyde	μg/L μg/L	U.S. U.S.			not found not found	24 68
Butylated hydroxyanisole (BHA)	μg/L	U.S.			150	220
Diethylene glycol monoethyl ether Dipropylene glycol methyl ether	μg/L μg/L	U.S. U.S.			140 230	220 840
Monomethyl phthalate	μg/L	U.S.			67	260
N,N-Diethylformamide N,N-Dimethyl acetamide	μg/L μg/L	U.S. U.S.			not found 220	65 940
N,N-Dimethylformamide	μg/L	U.S.			300	680
Neomenthol Phenethyl alcohol	μg/L μg/L	U.S. U.S.			not found not found	64 36
Tetramethyl thiourea	µg/L	U.S.			not found	30
Tributyl phosphate Alcohols & Acetone GCMS	μg/L	U.S.			53	69
2-Propanol (Isopropanol)	μg/L	U.S.			< 400	668
Acetone Ethanol	μg/L μg/L	U.S. U.S.	15000	SWEG	< 50 < 400	4,090 35,800
Methanol	μg/L μg/L	U.S.	40,000	SWEG	< 400	6,160
Glycols GCMS 1,2-Ethanediol (Ethylene glycol)	ua/l	U.S.	4000	SWEG	< 1000	7,960
1,2-Propanediol (Propylene glycol)	μg/L μg/L	U.S. U.S.	4000	SWEG	< 1000 < 1000	7,960
Silanols LCRI (Semi-Quantitative-NIST traceable standard not available) Dimethylsilanediol (DMSD) Carboxylates IC	μg/L	U.S.	35,000	SWEG	20,000	70,000
Acetate	μg/L	U.S.			< 500	2,670
Glycolate	μg/L	U.S.			< 1000	6,400
Aldehydes GCMS Formaldehyde	μg/L	U.S.	12,000	SWEG	< 10	15
Organic Carbon Recovery	percent	U.S.			39.34	57.71
Unaccounted Organic Carbon	mg/L	U.S.	1		10.07	55.40

 Table 4: Analytical concentrations of compounds quantified in wastewater and condensate samples returned on SpX-14

Comments: None

Data Qualifiers: WQ180291& WQ180292: Fluoride possible low bias (MS Rec. 65%).