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One consequence of the NASA tissue ratio (TR) model is that calcu-
lated probability of decompression sickness [P(DCs)] is constant in tests
at different ambient pressures so long as the ratio of PN, to P2 is the
same in each test; PIN, is N, pressure in the 360 minute half-time
compartment, and P2 is ambient pressure after decompression. We test
the hypothesis that constant P(DCs) is better described by TRs that de-
crease as P2 decreases. Data were from 66 NASA and USAF hypobaric
chamber tests resulting in 211 cases of DCS in 1075 exposures. The
response variable was presence or absence of DCS while at P2. Explana-
tory variables were P1N,, P2, exercise at P2, (yes or no), time to DCS
(failure time), and time to end of test in those without DCS (censored
time). Probability models were fitted using techniques from survival
analysis. The log likelihood for the two parameter log logistic survival
model was —846 with only failure and censored times, —801 when TR
[P1N,/P2] plus exercise were added, and —663 when modified TR
[(P1n, + c1)/P2) — 1)7] plus exercise were added, where c1 and c2
are fitted parameters in the five parameter model. Constant P(Dcs) was
better described by TRs that decrease as P2 decreases; a conclusion
supported by additional empirical observations, and bubble growth
models that are independent of DCS data. Exercise increased the P(Dcs)
at P2. As a description of decompression ““dose”, the modified TR was
superior to TR over a wider range of experimental conditions.

STRONAUTS OR COSMONAUTS who perform ex-

travehicular activities (EVA’s), also called space
walks, from the U.S. Shuttle, Russian Mir, and any future
space station are at risk of getting decompression sick-
ness (DCS). The decrease in ambient pressure from P1,
the 14.7 pounds per square inch absolute (psia) shuttle
cabin pressure, to P2, the 4.3 psia space suit pressure,
may cause signs and symptoms of DCS if: a) tissue nitro-
gen (N,) partial pressure is not reduced through ade-
quate denitrogenation before the decompression (17); b)
the EVA is of long duration; and c) the astronaut works
vigorously during the EVA.

This report documents an approach to estimate the risk
or probability of DCS [P(Dcs)] in future EVA'’s given in-
formation about: a) the denitrogenation prior to the de-
compression; b) magnitude of the decompression; c) exer-
cise after the decompression; and d) length of the EVA.
The analysis is based on results from previous hypobaric
chamber tests, and accounts for failure and censored
times. Failure time is defined as the elapsed time from
the beginning of a test after the decompression to the first
report of a DCS symptom. Censored time is the elapsed
time from the beginning of a test after the decompression
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to the scheduled end of the test, also called right censored
time (1,7,9,10). A model that includes failure and cen-
sored times improves on previous efforts to estimate the
probability of hypobaric DCS (6,11).

Other approaches to estimate the P(DCs) have been
explored (4,6,89,11,16). An initial effort at the Johnson
Space Center was to define a decompression dose as
[(P1N,/P2) — 0.78], where P1N; is N, partial pressure in
a theoretical 360 min half-time compartment. The dose
was optimized to 927 dichotomous DCS responses by
estimating the two parameters of the Hill equation using
the maximum likelihood method (4) to provide a proba-
bility model. One consequence of the NASA model is that
calculated P(DCS) is constant in tests at different altitudes
(P2’s) so long as the ratio of PIN, to P2, the tissue ratio
(TR), is the same in each test. We define constant P(DCS)
as any combination of variables that produce the same
cumulative risk will always produce the same P(DCS).
We suggest that constant P(DCS) over a wider range of P2
is better described by TR’s that decrease as P2 decreases,
which is supported by additional data (3,5), and simula-
tions of bubble growth from models that were not statis-
tically optimized to data (2,8,13,14). In other words, a
better calculation of decompression dose than TR will
show that the same dose at two different P2’s yields a
lower TR at the lower P2.

We use techniques from survival analysis similar to
those described by investigators in the U.S. Navy (15,18).
However, we chose to integrate the hazard function from
the beginning of the test at altitude to the first complaint
of a symptom, without accounting for an interval of time
over which the subject is defined to be free of a symptom.
By definition in this application, there is no uncertainty
as to when a symptom occurs since the subject is moni-
tored in a hypobaric chamber for the duration of the test,
and is instructed to report any symptom during the test.
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We define a hazard function in terms of four variables:
P1IN,, P2, the presence or absence of exercise at P2, and
time at P2; and use the notation: h(t; z) = f(time, P2,
P1N,, exercise) to denote the hazard function for a de-
compression dose model, where (t; z) represents various
combinations of the four variables and any constants.
The hazard function describes the instantaneous failure
rate, or the probability of failure in a small interval of
time given that an individual has survived to the begin-
ning of the interval (10).

Our approach uses an a priori definition of h(t; z) based
on empirical observations of failure times and symptom
intensity. In general, the onset of a symptom is not in-
stantaneous, and the risk of having a symptom increases
with time. However, it is unlikely that a person will de-
velop a symptom if he survives past some critical time,
since breathing 100% oxygen (O,) will ultimately reduce
the N, pressure in the tissues. Also, some people with
Type I (pain only) symptoms report that the intensity of
pain reaches a peak, then subsides, and in some cases is
completely gone before the end of a test. Given a simple
mechanical view of DCS, it is easy to envision the change
in volume or deformation pressure of a gas phase in a
tissue through time as the cause of the temporal onset
of symptoms, intensity of symptoms, and resolution of
symptoms as the person continues to denitrogenate after
the decompression. In hypobaric decompressions, the in-
stantaneous risk of DCS may increase with time, but only
to a certain point in time. The observed pattern of failure
time and intensity of symptoms leads us to speculate
that the incidence of DCS from hypobaric decompres-
sions might be well-described with a hazard function
that rises to a peak and then decreases with time.

METHOD

The probabilistic approach to DCS modeling requires
four items: a) data that consist of a dichotomous response
variable and one or more explanatory variables; b) a
probability function (i.e., Hill, logistic, or hazard function
(6,11,18), which structures the model so that the outcome
is a probability between zero and one); c¢) a model that
calculates dose; and d) a parameter estimation routine on
a computer that uses maximum likelihood. The survival
analysis approach combines both probability and dose
models into a single function, the survival function, with-
out using additional parameters just for the probability
transform. The aims are to: a) estimate unknown parame-
ters in a family of models that maximize the agreement
between the observed DCS incidence obtained from hy-
pobaric chamber tests and the predicted DCS incidence
from the models; and b) assess the goodness of fit of the
one probability model that best fits the data.

Data and Isoprobability Isopleths

The data for this analysis are taken from 66 recent
NASA and USAF research tests from about 1975 to 1990,
and are available through the Hypobaric Decompression
Sickness Databank (HDSD) (5). The chamber tests are
not all the same in that denitrogenation periods varied,
some tests used a staged decompression as part of the
denitrogenation process, the breathing gas after the final

decompression was not always 100% O,, and the type
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Fig. 1. The DCS and VGE failure distributions for data used in this
analysis. Notice that each curve is “S” shaped, which helps to define
an appropriate hazard function.

and intensity of exercise between some tests were differ-
ent. In all cases, the calculation of cumulative risk began
on reaching the final test altitude, and accounting for the
change in tissue N, pressure during the final altitude
exposure is not part of this modeling approach.

Of the 1075 total exposures, 863 involved repetitive,
moderate exercise at P2 that is characterized predomi-
nately as upper body exercise (544 exposures). The aver-
age TR (PIN,/P2) was 1.62 with a range from 0.94 to
3.46, an average P2 of 5.8 psia, and an average time at
P2 of 4.75 h. There were 211 cases of DCS in 1075 expo-
sures (20%) and 405 cases of detectable venous gas em-
boli (VGE) in 1026 exposures (39%), measured with a
Doppler bubble detector at the precordial position. The
average failure time for VGE detection was 1.5 h, and 2.0
h for volunteering DCS symptoms. Data about hypobaric
decompressions in females are available in the HDSD,
but were excluded from this analysis to eliminate gender
as a possible source of variability in the DCS outcome.

Fig. 1 shows the failure distribution, F(t), in 211 males
with DCS and 405 males with VGE. The failure distribu-
tion is the cumulative distribution of failure time divided
by the total number of records in the tests (15). The failure
distribution for DCS and VGE is the result of 66 unique
tests done under various experimental conditions. Even
though the time at altitude was as long as 13 h in one
test, the last report of DCS symptoms occurred at about
6 h, and about 7 h for VGE detection. Notice the “S”
shaped curves of the DCS and VGE failure distributions,
which give an important clue that the mathematical form
of the hazard function should provide a single maximum.

Fig. 2 is used to help describe an isoprobability iso-
pleth. Given y = f(x), and all combinations of “x” and
“y" provide the same P(DCS), then the function would
define an isoprobability isopleth. The figure shows a ver-
tical and horizontal array of 66 circles on a P2 vs. PIN;
plot. The area of a circle represents the incidence of any
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Fig. 2. The dashed line is a qualitative estimate of the zero isoproba-
bility isopleth for data on a P2 vs. P1n, plot used in this analysis. The
area of a circle is proportional to the incidence of DCS in a group.
Notice that the origin (intercept) for the isopleth is on the positive P2
axis, or on the negative PN, axis. .

DCS symptom, except paresthesia, in a group of men
during their stay at P2. The largest circle is 78% incidence
and the smallest is a 0% incidence. Consider the vertical
array of circles located between about 10.0 and 11.6 psia
on the P1Ny-axis. Each circle represents a result from an
ascent to P2 without the benefit of significant denitrogen-
ation. Notice the area of the circles generally increase
as P2 decreases at a constant PIN,. Consider also the
horizontal array of circles at about 4.3 psia on the P2-
axis. Each of these circles represent a result from a group
that ascended to about 4.3 psia, but experienced substan-
tial denitrogenation in most cases. Notice the area of the
circles also increases as PIN;, increases with P2 constant
at about 4.3 psia.

The dashed line on Fig. 2, the zero isoprobability iso-
pleth, includes the approximate point in both the hori-
zontal and vertical array of circles where the incidence
of DCS just starts to increase and extrapolates to a posi-
tive P2 or negative PIN; intercept. Both horizontal and
vertical arrays of data are needed to provide the mini-
mum of 2 points required to construct the zero isoproba-
bility line. One goal is to estimate the isoprobability iso-
pleths for these data using an expression for decompres-
sion dose that accounts for PIN,, P2, exercise, and time
at P2; all structured into a probability model. Decompres-
sion dose appears as one unique slope, with all other
slopes sharing a common intercept on a P2 vs. PIN, plot.
Therefore, the model for dose should contain an intercept
term that is estimated along with other parameters in
the model. The intercept might be in one of the four
quadrants, or at the origin of a P2 vs. PIN, plot, de-
pending on the data. Finally, the horizontal solid line
defines the beginning of the hypoxia zone, a region be-
low about 2.5 psia (41,500 ft) where hypoxia is present
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even when 100% oxygen is delivered under positive
pressure breathing. Few tests were done below 2.5 psia.

The final model received an external validation in or-
der to assess how well the model predicts what is ob-
served in a second, independent set of data that are sub-
stantially different from the data set used to fit the model.
Data for the external validation come from 52 groups of
men in the USAF who were tested from 1940 to about
1975. Of the 1009 total exposures, 575 involved repetitive
exercise at P2 that is characterized predominately as
lower body exercise (457 exposures). The average TR was
1.92 with a range from 0.90 to 2.98, an average P2 of 5.8
psia, and an average time at P2 of 4.66 h. There were 326
cases of DCS in 1009 exposures (32%). The average fail-
ure time was 1 h for volunteering DCS symptoms, but
there were no VGE data since the instrument to detect
moving gas bubbles in the blood had not yet been in-
vented.

Denitrogenation and the 360 Min Half-Time Compartment

Prebreathing 100% O or O,-enriched mixtures prior
to a hypobaric decompression is an effective and often
used technique to prevent DCS (17). Therefore, it is nec-
essary to account for the use of O-enriched mixtures
prior to decompression in order to use the majority of
information in the HDSD. The N, partial pressure in a
tissue is an important variable in any mechanistic model
about DCS. Eq. 1 defines how PIN; is calculated; it ap-
proximates a more complex process of dissolved N; ki-
netics in living tissue. Following a step-change in N
partial pressure in the breathing medium, such as during
a switch from ambient air to a mask connected to 100%
Q,, the N, partial pressure that is reached in a designated
tissue compartment after a specific time is:

PIN; = Po + (Pa — Po) * (1 — exp™), Eq.1
where PIN, = the N, partial pressure in the tissue after
“¢* minutes, Po = initial N, partial pressure in the com-
partment, P» = ambient N, partial pressure in breathing

_ medium, exp = base of natural logarithm, and t = time

at the new Pa in minutes. The tissue rate constant “k” is
related to the tissue N, half-time (t1/2) for N, pressure in
a compartment, and is equal to 0.693/t1/2, where ti2 is
the 360 min tissue N, partial pressure half-time, and 0.693
is the natural log of two. The initial, equilibrium N, pres-
sure (Po) in the tissue at sea level is taken as 11.6 psia
instead of an average alveolar N, pressure of 11.0 psia.
The use of dry-gas, ambient N, pressure as equilibrium
tissue N, pressure (Po), and as the N, pressure in the
breathing mixture (P.) makes the application of Eq. 1
simple. )

We use an iterative approach to select an acceptable
half-time compartment. A spectrum of half-times from
300-540 min are evaluated at about 10-min intervals
once a promising probability model is developed. The
log likelihood (LL) for the best model in this report only
improved by 0.23 units on going from a 360- to a 400-
min compartment with the five parameters allowed to
vary, and was much worse with faster or slower com-
partments. The operational relevance of the 360-min
compartment is established at the Johnson Space Center,
so we decided to use this compartment since there is
minimal effect on the final model.

Aviation, Space, and Environmental Medicine « Vol. 67, No. 2 + February 1996
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Probability Function: The Log Logistic Survival Model

A bell shape for h(t) is suspected based on the “5”
shape of the DCS or VGE failure distributions in Fig. 1
because of the mathematical relationships between h(t),
f(t), F(t), and S(t) (7,10). The survival function is defined
as: S(t) = 1 — F(t), and since the probability density func-
tion, f(t) = dF(t)/dt, is related to the hazard function,
h(t) = £(t)/S(t), the functional form of h(t) is expected to
have a single maximum given F(t) from the plots of data
in Fig. 1. The log logistic survival model has a h(t) with
a maximum (7), and serves as the basis to subsequently
define h(t; z). The Appendix contains a development of
the log logistic survival model, and an example where
the functional form of h(t) is retained but expanded to
include a combination of variables that influence the out-
come of a decompression.

Parameter Estimation by Maximum Likelihood

Maximum likelihood is the preferred method to opti-
mize unknown parameters in a probability model where
the response variable is dichotomous and the predicted
value is a probability. The maximum likelihood method
provides the probability that y = 1 given a value for “x”,
and has been clearly explained by others (11,15,18,19).
The likelihood function (L) for a set of data (d + n) with
some right censored times has two components, one for
the failure times (set d) and the other for the censored
times (set n). Denoting the failure times by t, i = 1, 2,
..., d, and the censored times by t,i =d + 1,d + 2,

.., n, the likelihood function is (1):

d n
L=+ I sw Eq.2
i=1 i=d+1
A person with DCS contributes a term f(t) to the likeli-
hood, the density of failure at ti. The contribution from
a person whose survival time is censored at ti is S(t:), the
probability of survival beyond t.
The log likelihood is:
d n
LL= 3 Inft) + X InS(t), Eq.3
i=1 i=d+1
where In is natural logarithm. Given the functional form
of h(t; z), both £(t; z) and S(t; z) are derived (1,7,10) and
used to define the LL function (see Appendix). The SYS-
TAT (ver. 5.03) Nonlin module was used to estimate
unknown parameters in the models, with the summed
LL minimized using the Quasi-Newton algorithm (20).

RESULTS

Table I lists the family of hazard models tested, the
LL number for each, and number of fitted parameters in
each model. The two parameter log logistic survival
model with only failure and censored times returned a
LL of —846. The ability to describe the response variable
improved when h(t) was modified to h(t; z) by including
1/P2 as evident by the magnitude of the decrease in the
absolute value of the LL number for the first h(t; z) model
compared to the log logistic model. By accounting for
denitrogenation procedures in the PIN; variable, the LL
number improved, and each subsequent h(t; z) model;
combinations of PIN,, P2, exercise, and constants, im-
proved the LL number.
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TABLE I. LOG LIKELIHOOD OF SEVERAL MODELS

Model LL Parameters
log logistic survival model:

h(t) = N * (1) * pM/[1 + (t* p)*]

846 2 (A, p)

log logistic survival model with additional variables and constants:

h(t; 2) = A * (equation) * (t*") * p*/[1 + (equation) * (t * p)"]

(equation)
1/P2 -814 2
PIN,/P2 —8012
(PIN2/P2) — ¢ —746 3 (c = 0.97)
{PIN,/(P2 + c1)] — 1.0 ~-7423
[(PIN, + ¢1)/P2] — 1.0 -743 3
{l(PIN; + c1)/P2] — 1.0} * [1 + (c3 * exercise)] ~738 4
{[PIN,/(P2 + cD} — 1012 * {1

+ (cB * exercise)] —667 5
{H(PIN; + ¢1)/P2] — 1.0} * {1

+ (c3 * exercise)] —6635 Eq.4

LL = log likelihood number.
N\, p, ¢, €1, €2, and c3 are fitted constants.

Parameter cl, the intercept point for all isoprobability
isopleths on a P2 vs. PIN; plot, improved the model
equally whether it was in the numerator or denominator
of the modified TR expression. However, raising the
modified TR term to a power (c2) and including the in-
fluence of exercise (c3) returned the lowest absolute
value for the LL number when the intercept term was in
the numerator. A positive value for c1 in the numerator
results in an intercept on the negative PIN,-axis of a P2
vs. PIN; plot. The change in LL from —738 to —663, an
improvement of 75 LL units, from the addition of a
power term to the modified TR with exercise was impres-
sive, and warrants a brief comment. The link between
the expansion of a gas volume in an elastic tissue and
the report of a pain sensation may not be direct, or sim-
ple, and the addition of the power term provided a de-
gree of freedom to explore this notion. However, it is
also likely that the improvement in LL was due to a
fortunate empirical adjustment in the hazard function
and not related to our notion about gas expansion in
elastic tissue.

Table II A and B lists information about the five pa-
rameters in the last h(t; z) model in Table I (Eq. 4); the
model with the best fit to the data. The unitless index
parameter (A) has a value greater than 1.0, which means
a plot of h(t; z) vs. time will always show a maximum,
regardless of the values for PIN,, P2, exercise, or time at
P2. The asymptotic standard error for “\” was small
relative to the parameter estimate, therefore the ratio of
the parameter estimate to the standard error was high at
17.2. The asymptotic correlation matrix (Table IIB) shows
that “\”” was not highly correlated, either positively or
negatively, with the other four parameters; therefore,
keeping “\” in the model was justified (20).

Fig. 3 shows various plots from Eq. 5 where “Dose’”
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TABLE IIA. PARAMETER ESTIMATES FOR EQUATION 4.

Parameter Estimate Asymptotic SE Units Estimate/SE
\ (index) 1.521 0.0884 dimensionless 17.20
p (scale) 0.063 0.0212 reciprocal of time (h™") 295
¢l (threshold) 1.563 0.4335 pressure (psia) 3.60
c2 (power) 4.366 0.4068 dimensionless 10.73
c3 (weight factor) 1.578 0.7079 dimensionless 223

SE = standard error: for maximum likelihood estimation the mean square error is rescaled to one at
the end of the iterations to get the correct standard errors of the parameters.

TABLE IIB. ASYMPTOTIC CORRELATION MATRIX.

1N P cl 2 c3
A 1.000
P 0.276 1.000
cl —0.070 —0.833 1.000
2 0.222 —0.554 0.621 1.000
c3 0.092 —-0.556 0.133 0.187 1.000

is from Egq. 6, the cumulative hazard [H(t; z)] form of Eq.
4 (see Appendix). The P(DCs) at time “t” becomes:
P(Dcsy) = 1 — exp™ 2, Eq.5
where ‘“Dose” is:

H(t; z) = Dose = In {1 + [(PIN; + c¢1)/P2) — 1]?
X [1 + (c3 * exercise)l * (t * p)'} Eq.6
Fig. 3 shows the increase in P(Dcs) with an increase in
time at 3.5, 4.3, and 6.0 psia with TR = 1.65 in all cases,
when exercise is (solid curves) or is not part of the test

(dashed curves). The curves are examples where given
the same TR, the P(Dcs) at any time is always greater at

exercise ————

05
no exercise - - - - -

P(DCS)
o
©

0.1
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Fig. 3. The P(bcs) at either 3.5, 4.3, or 6.0 psia with (solid line) or
without (dashed line) exercise at a particular time after decompression.
The ratio of PIN, to P2 (TR) in Eq. 5 was 1.65 for each curve, but
notice the P(DCs) increases as P2 decreases at any particular time after
decompression. The 95% confidence interval is provided for the curve
specific to the 4.3 psia exposure that included exercise.
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a lower P2, regardless of the exercise at P2. The 95%
confidence interval for one probability curve is included,
and was calculated based on a propagation of errors for-
mula (6,11). The interval provides a defined range for
the estimate, but does not establish the accuracy of the
estimate. In other words, it would be wrong to conclude
that Eq. 6 has a superior goodness of fit based exclusively
on a narrow confidence interval, since a model with a
poor goodness of fit can have a narrow confidence inter-
val if the sample size was very large (6). In this extreme
case, one is very confident in the estimate of P(DCs), but
the estimate is poor.

A consequence of isoprobability isopleths that inter-
cept on the negative PINy-axis of a P2 vs. PIN, plot is
that constant P(Dcs) is described by TR's that decrease as
P2 decreases. Fig. 4 shows 3 such isoprobability isopleths
(5%, 10%, and 20%) on a TR vs. P2 plot specific to a 6-h
test that included modest physical activity at P2. Notice
that as P2 decreases the TR decreases to maintain the
same calculated probability of DCS along a curve. For
example, a 5% probability of DCS is estimated with a TR
of 1.313 at a P2 pressure of 6.0 psia, and a TR of 1.210
at a P2 pressure of 4.3 psia. The calculated dose at each
point along the 5% isopleth is 0.051 using Eq. 6 plus the
conditions of this example.

The dark circle on Fig. 4 is the approximate location of
two tests done at the Johnson Space Center (4). The ob-
served incidence of DCS was 21% (n = 28), and 23% (n
= 35) in these tests. The circle is on the 38% isopleth,
and the difference between the observed DCS and the
predicted DCS based on Eq. 6 is covered next. Eq. 6 is the
decompression dose expression and was the best fit of
the models in Table I regardless of the strength of the
relationship between the dependent and independent
variables. Goodness of fit, after obtaining the model with
the best fit, is a measure or impression of agreement be-
tween the predicted outcome and the observed outcome.
Without an assessment of goodness of fit it is possible to
be unjustifiably confident in a calculation of P(DCS).

DISCUSSION
Goodness of Fit

Statistical confidence in an estimate of P(DCS) is based
on the goodness of fit, and Fig. 5 graphically shows the
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Fig. 4. Three isoprobability isopleths on a TR vs. P2 plot that are
specific to a 6-h test that included exercise. Notice that as P2 decreases,
TR decreases to maintain a constant P(Dcs) on each curve. The dark
circle on the 38% isopleth is the location of specific NASA testing that
resulted in about a 22% incidence of decompression sickness.

goodness of fit of Eq. 5. The observed DCS incidence in
66 groups is compared to the predicted DCS incidence
from Eq. 5, which was based on the 1075 exposures in
the 66 tests. The area of a circle is proportional to the
number of people in a test. The smallest area indicates
one person in a test, and the largest area indicates 82
people in a test. Data from tests with large number of
people contribute more to the model, so larger circles
are located nearer to the identity line in Fig. 5.

The position of all the circles on Fig. 5 gives an impres-
sion of a reasonable fit of Eq. 5, given the simple formula-
tion of the model, the realization that random variability
in the outcome will never be completely managed, and
the limitation of Fig. 5 to provide an assessment of good-
ness of fit. Goodness of fit based on group incidence is
limited because the precision of group incidence is greatly
influenced by the number of people in a group. The pre-
dicted incidence of DCS in 36 of the 66 groups (55%) was
within 0.05 above or below the observed incidence, while
47 groups (71%) had a predicted incidence within 0.10
above or below the observed incidence. Three NASA
tests, seen as dark circles on Fig. 5, are included in the 19
groups (29%) that had a predicted incidence greater than
0.10 above or below the observed incidence. Two of these
tests are discussed to show how conflicting data or an
incomplete model can decrease the goodness of fit of the
model to the data. Both tests included a 30-min decom-
pression to 4.3 psia for 6 h with a TR of 1.60. The first,
the smaller of the two dark circles above the identity line
on Fig. 5, included exercise after the decompression and
had a 21% incidence of DCS (6 cases in 28 exposures).
The second, the dark circle below the identity line, did
not include exercise after the decompression and had a
41% incidence of DCS (7 cases in 17 exposures). These
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results conflict, since a greater incidence of DCS under
sedentary conditions in otherwise similar tests is not the
observed trend in the entire data set. Eq. 5 calculates a
P(Dcs) for the group with exercise as 0.33 and as 0.16 for
the group without exercise, and even though the trend in
the entire data set is reflected in the P(DCs) calculations,
the two probabilities are different by more than 0.10 of
the observed incidence, thus reducing the goodness of fit.

Another approach to assess goodness of fit is to com-
pare the LL numbers for 3 models: the 1 variable-2 pa-
rameter log logistic model (LL. = —846), the 4 variable-
5 parameter continuous model (Eq. 5 with a LL = —663),
and the 66 parameter discontinuous model (LL = —342).
The log logistic model with just time as a variable has a
poor LL, and the discontinuous model has the best LL
based on the definition that the observed P(Dcs) for the
66 tests is the true P(Dcs) (19). The continuous model
would not necessarily predict in all cases the observed
P(Dcs) in the 66 tests, so the LL for the continuous model
would always exceed that of the discontinuous model.
There was a 36% improvement [100 * (846 — 663)/(846
— 342)] in Eq. 5 over the log logistic model using this
approach; a substantial improvement but a better model
might be developed.

To improve the goodness of fit, the data might be fur-
ther screened to control for additional experimental vari-
ables, such as time of ascent, which is about 10 min for
the entire data set but about 30 min for the three tests
seen as dark circles on Fig. 5. The slow rate of ascent in
the two tests seen as dark circles above the identity line
could have contributed to fewer cases of DCS than pre-
dicted by Eq. 5, and Eq. 5 would be more complete by
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Fig. 5. Predicted vs. observed DCS incidence in 66 groups used to
fit Eq. 5. The area of a circle is proportional to the number of people
in a group. The three dark circles are results from NASA tests at 4.3 psia
with TRs between 1.60 and 1.65 where exercise is (2 circles above
identity line) and is not (circle below identity line) part of the test (4).
The model neither over or under estimates the entire data set, but did
over estimate the incidence of DCS in several small groups that reported
no symptoms.
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Fig. 6. Validation of Eq. 5 by using it to predict the DCS incidence
in 52 groups not used to fit Eq. 5. The plot shows a comparison of the
predicted to the observed DCS incidence in the groups. The three dark
circles are tests where the predicted incidence is much more than the
observed incidence, and are used to discuss bias in reporting DCS symp-
toms (see Discussion).

including time or rate of ascent. Finally, tests might be
eliminated where bias in over- or under-reporting mild
symptoms is suspected, which is always a concern.

External Validation

External validation of the model was done by compar-
ing the predictions of Eq. 5 to the observed outcomes in
a second, independent set of data (see Methods). Fig. 6
shows how well the model predicted the observed DCS
from a second data set. Except for three cases identified
as dark circles on Fig. 6, the predictions from the model
generally agree with the observations in the validation
data set, or at least as well as in the model data set. There
are two notable differences between the two data sets
that could reduce the goodness of fit of the model to
the validation data set: a) lower body exercise was the
dominant type of activity in the validation data set while
upper body exercise was the dominant activity in the
model data set; and b) the validation data set included
results collected prior to and during World War II, while
the model data set is more contemporary. The “histori-
cal” validation data might be biased in that mild symp-
toms of DCS may not have been volunteered in all cases.
For example, the three dark circles in Fig. 6 are tests
where the observed incidence of DCS is substantially less
than the predicted incidence from the model. These were
tests to about 3.0 psia for 2-4 h. There were 54 total
exposures, and 12 cases of DCS of which 11 cases were
severe enough to cause the test to be stopped before the
scheduled end of the test. The three chamber tests are
described in reports from 194245 where O, prebreathing
procedures were being evaluated as to their effectiveness
in preventing DCS during high-altitude bombing mis-
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sions. These tests had a very high abort rate (11 /12,92%),
and it is likely that the incidence of less severe symptoms
in the remaining subjects would be higher. A bias in not
reporting mild symptoms seems evident in these tests,
and is understandable since the requirement was to de-
velop an operational high-altitude bombing program.

Metabolic Gases and Hypobaric Decompression Sickness

The best fit to the data was with an intercept for all
isoprobability isopleths on the negative PIN;-axis of a P2
vs. PN, plot. The intercept has no particular physiologi-
cal or mechanistic meaning; it is just the origin of the
extrapolated isopleths. However, it could be a conse-
quence of the combined contributions of: a) the limiting
boundaries of the decompression test envelope (i.e., the
hypoxia zone); b) an artifact established by the PIN; cal-
culation since the horizontal position on Fig. 2 of a group
test after O, prebreathing is determined by the half-time
compartment; c) the influence of exercise in the genesis
and growth of bubbles; and d) the contribution of meta-
bolic gases to hypobaric DCS (13,14), which can only be
inferred from a P2 vs. PIN; plot. Isopleths that have a
negative PIN, intercept all cross at unique positive P2
values on the P2 axis when P1N, is zero, indicating that
there is risk of DCS even though N is not available in
the 360-min compartment. The positive P2 intercepts for
the isopleths may be an indication that metabolic gases
have a significant role in hypobaric DCS. Even in a tissue
devoid of all dissolved N, the dissolved metabolic gases
and water in the tissue would come out of solution (ebul-
ism) as ambient pressure approaches a vacuum.

In conclusion, Eq. 5 serves as a guide to quantify how
manipulation of four variables before and after the de-
compression can change the P(DCS) so that an acceptable
level of risk is achieved. The acceptable level of risk is
debatable; it depends on many factors such as the impor-
tance of success for a particular mission, or the availabil-
ity of DCS treatment. A model based only on four vari-
ables and fitted to a limited amount of similar research
data will not adequately predict the risk of DCS for all
possibilities of hypobaric decompressions. For example,
this model would not be useful with very slow or rapid
ascents, or if the partial pressure of N, in the breathing
mixture was changing slowly in time. However, combin-
ing a few important variables into an abstraction of the
true decompression dose that is then statistically opti-
mized to a DCS response is a practical means to model
hypobaric DCS. As more and better-described data be-
come available, this approach will continue to provide a
powerful tool to assess the risk of hypobaric DCS.

APPENDIX: MODIFIED LOG LOGISTIC SURVIVAL MODEL

The hazard function [h(t)] for the log logistic survival model is:
ht) = A* (@7") * p*/[1 + (t* p)] Eq. 1A

where \ and p are index (unitless) and scale (hr™') parameters to be
estimated, respectively, and “t” is time in hours in this application.
When \ > 1.0, the h(t) has a maximum, and resembles a bell shape (7).

The cumulative hazard function, [H(®), follows from the integration
of h(x) over a specific time “t”, the time at P2 in this application:

t
H® = J' h(x) dx Eq.2A
0
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where “x”” can be time. Note that h(t) may not vary with time, as with
the exponential model (7), but the integral of h(t) will give H(t) in terms
of the starting and ending time at P2. A combination of Eq. 1A and Eq.
2A yields:

H(t) =

where In is natural logarithm, and since the survival function [S(t)] is
also defined as:

In 1+ (t*p Eq. 3A

S(t) = exp™™® Eq. 4A
the S(t) from Eq. 3A and Eq. 4A for the log logistic model becomes:
‘ S = 1/ + @+ o] Eq.5A
and since the probability density function [f(D)] is:
() = h(t) exp™™® Eq. 6A
the f(t) from Eq. 1A and Eq. 3A for the log logistic model is:
() = N * (") % pM/[1 + (t* p)P Eq.7A

The P(Dcs) at time “t” based only on failure and censored times
becomes:

P(bcs) = 1 — exp™® Eq.8A

The functional form of h(t) is retained but is expanded to include
combinations of three variables besides time that influence the outcome
of the decompression: PIN,, P2, and exercise. The gas phase contribu-
tion to h(t) could be as simple as 1/P2, or as complex as [(PIN; + ¢1)/

P2) — 1]% but the exercise contribution is always in the form [1 +
(c3 * exercise)], where exercise at P2 is one or zero, and ¢1, ¢2, and ¢3
are estimated parameters.

The h(t; 2) for a sxmple modification of the log log]stlc model that
includes P2 and exercise becomes:

ht; z) = N * (1/P2)? * [1 + (c3 * exercise)] * (') » p*/
{1+ (1/P2)? * [1 + (c3 * exercise)] * (t * p)*} Eq.9A

The H(t; z) from Eq. 2A and Eq. 9A becomes an expression of decom-
pression dose as a function of 3 variables associated with DCS plus
the fitted parameters that maximize the agreement between dose and
response:

Ht 2z) =
=1In{l + (1/P)? * [1 + (c3 * exercise)] * (t * p)"}, Eq.10A

and the P(Dcs) at time “t” based on P2, exercise, and time at P2; both
failure and censored times, becomes:

P(Dcsy = 1 — exp™ Eq. 11A
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