Note to the Teacher
Please read this before you duplicate the Student Workbook.

This Smart Skies ${ }^{\text {TM }}$ FlyBy Math ${ }^{\text {TM }}$ Student Workbook contains activities for one Air Traffic Control problem. In particular, the Workbook includes worksheets for 6 different calculation methods your students can use to solve the problem:

$$
\begin{array}{lll}
\text { —Count feet and seconds } & \text { —Draw and stack blocks } & \text { —Plot points on two vertical lines } \\
\text { —Plot points on a grid } & \text { —Use the distance-rate-time formula } & \text {-Graph two linear equations }
\end{array}
$$

You will most likely want to assign only 1 or 2 of the calculation methods. So we recommend that you follow these steps before you duplicate the Workbook.

1. Select and Keep:

Choose the calculation method(s) you want your students to use.

2. Recycle the Rest:

Remove the calculation worksheets you do not wish to assign.
To find the calculation worksheets, look for the Calculations footers at the page bottoms.

Smart
Skies ${ }^{\text {TM }}$

Other activity worksheets follow the Calculation pages. Be sure to remove the Calculation worksheets ONLY.

For more information about Smart Skies ${ }^{T M}$ workbooks, please see the Smart Skies ${ }^{\top M}$ teacher materials available online at:
https://www.nasa.gov/smartskies/flybymath
Smart
Skies ${ }^{\text {TM }}$

Problem \#2

- Aircraft are on merging routes
- Aircraft are traveling at the same speed
- Aircraft start at different distances from where the routes meet

STUDENT WORKBOOK

Investigator: \qquad
Smart
Skies ${ }^{\mathrm{TM}}$

Begin Your Challenge: Will two planes, flying on merging jet routes, meet where the routes intersect?

Flight WAL27

- WAL27 is 16 feet (5.0 meters) from where the routes come together.
- The WAL27 speed is $1 / 2$ foot per second (0.15 meters/second).

1 Write the speed of WAL27 in the box below its picture.

2
How far does WAL27 travel in 1 second?

3
How far does WAL27 travel in 10 seconds?

Flight NAL63

- NAL63 is 20 feet (6.1 meters) from where the routes come together.
- The NAL63 speed is $1 / 2$ foot per second (0.15 meters/second).

4 Write the speed of NAL63 in the box below its picture.

5 How far does NAL63 travel in 1 second?

6
How far does NAL63 travel in 10 seconds?

To meet your Challenge, you will:

- Conduct an experiment.
- Do some math calculations.
- Analyze your results

Then, you will use your results to answer this question:

- Will the planes meet at the point where the routes intersect?
- If not, how many feet apart will the planes be when the first plane reaches the point where the routes intersect?
\qquad

Begin Your Task: Experiment to see what happens when the first plane reaches the point where the routes meet.

Flight WAL27

Begin at the point where the routes meet.
Use chalk or masking tape to mark off a line 20 feet long.

- The WAL27 pilot has a 4-foot headstart.

Measure 4 feet from the route start and make a mark.

Place a "Pilot" label next to the mark.

Flight WAL27

Begin at the start of the jet route.
Place a mark (or piece of tape) every $1 / 2$ foot (6 inches) along the jet route all the way to the point where the routes meet.

Mark the speed control lines.
The routes meet here.

Flight NAL63

3 Begin at the point where the routes meet. Mark off a line 20 feet long.

At the jet route start, make a mark.
Place a "Pilot" label next to the mark.

Flight NAL63

Begin at the start of the jet route
Place a mark (or piece of tape) every $1 / 2$ foot (6 inches) along the jet route all the way to the point where the routes meet.

Fill in this table with the starting conditions.

Flight Number	Speed (ft/sec)	Distance from the point where the routes meet (ft)
WAL27		
NAL63		

8
Circle your assigned role on the route diagram on the right.

Record the starting conditions for the experiment.

9
Do you think the planes will meet at the point where the routes come together?
Yes \square No \square

\qquad
\qquad
\qquad
\qquad

Skies ${ }^{\text {TM }}$

Circle your role and the steps below it. Then, do the experiment 3 times using the steps for your role.

Record the data

Record the Halt Time measured by the Secondary Controller.
Record the Separation Distance measured by the NASA Scientist.
14
Use the results of your three experiments to choose the best answer to this question:

What is the separation distance where the routes meet?

Smart
Skies ${ }^{\text {TM }}$

Your Task: Calculate if two planes flying on merging routes will meet where the routes intersect.
Count feet and seconds along the jet route.
Flight WAL27

- Starts 4 feet from the point where the route begins (a 4-foot "headstart").
- In 1 second, it moves $1 / 2$ foot.
- In 2 seconds, it moves 1 foot-from 4 feet to 5 feet.

1
On the WAL27 jet route, find the 5 -foot mark and trace " 2 sec."

- In the next 2 seconds (4 seconds total), WAL27 moves another foot-from 5 feet to 6 feet.

2
On the WAL27 jet route, find the 6 -foot mark and trace " 4 sec."

Keep going on the WAL27 jet route, one foot at a time, until you reach the point where the routes meet.

At each foot-mark, write the total number of seconds to reach that mark.

Smart

How many seconds did it take each plane to arrive at the point where the routes intersect?

8 Did the planes meet at the point where the two routes intersect?

9 If No, which plane arrived first? WAL27 \square NAL63 \square

10 How many seconds did it take this plane to travel to the point where the two routes intersect?

At that time, how far away was the other airplane?

(Hint: At that time, how many feet had the second plane traveled? How many feet was it from the intersection?)

If you think two planes will meet, what would you tell the air traffic controller to do to avoid a collision?
\square seconds
\qquad
\qquad

13 You moved along each jet route, one foot at a time, to find the number of seconds it took each plane to travel to the point where the routes meet. Can you think of a faster way to find the number of seconds? If so, describe the faster way.
\qquad
\qquad

Your Task: Calculate if two planes flying on merging routes will meet where the routes intersect.

Use blocks to picture feet and seconds.

1 In this table, fill in the distance each plane will travel in 10 seconds.
The speed of each plane is $1 / 2$ foot per second.

Each plane takes...
to travel...

1 second
$1 / 2$ foot

4 seconds
2 feet

10 seconds

2
Fill in the number of seconds it will take each plane to travel the distance shown.

Smart

Flight WAL27

- Starts 4 feet from the point where the route begins (a 4-foot "headstart").
- In 10 seconds, it moves 5 feet.
- Now it is 9 feet along its route.

3
Circle the 9 -foot point on the WAL27 jet route.

Trace the 10-second block for WAL27.

Flight NAL63

- Starts where its route begins (at 0 feet)
- In 10 seconds, it moves 5 feet.
- Now it is 5 feet along it route.

Circle the 5 -foot point on the NAL63 jet route.

Smart

Flight WAL27 and Flight NAL63

7 On the route, draw a dot to show the position of WAL27 after 20 seconds.

Trace the block on the graph below that shows the position of WAL27 after 20 seconds.

On the route, draw a dot to show the position of NAL63 after 20 seconds.

Trace the block on the graph that shows the position of NAL63 after 20 seconds.

Connect your dots with a line marked "20 sec."

12
Connect your blocks with a line marked "20 sec."

Now it's your turn to draw and connect.

Now draw and connect at 30 seconds.
13
Draw dots and blocks at 30 seconds.

14 Connect the dots and connect blocks at 30 seconds

Keep going...

15
Keep going until the first plane reaches the point where the routes meet. You may need to use a smaller block.

Be sure to use this smaller block for BOTH planes.

16 How many feet long must the smaller block be?

How many seconds does this block represent?

Smart

Did the planes meet at the point where the two routes intersect?

20
How many seconds did it take this plane to travel to the point where the two routes intersect? \square seconds

21
At that time, how far away was the other airplane?
(Hint: At that time, how many feet had the second plane traveled? How many feet was it
 from the intersection?)

If you think two planes will meet, what would you tell the air traffic controller to do to avoid a collision?
\qquad
\qquad

Flight WAL27

- Starts 4 feet from the point where the route begins (a 4-foot "headstart").
- In 10 seconds, it moves 5 feet.
- Now it is 9 feet along its route.

Circle the \mathbf{X} at the 9 -foot point on the WAL27 jet route.

2
Circle the \mathbf{X} at the 9 -foot point on the WAL27 line graph.

Follow along with this example of how to plot points.

WAL27

Flight NAL63

- Starts where its route begins (at 0 feet).
- In 10 seconds, it moves 5 feet.
- Now it is 5 feet along its route.

3 Circle the $\mathbf{0}$ at the 5 -foot point on the NAL63 jet route.

4
Circle the $\mathbf{0}$ at the 5 -foot point on the NAL63 line graph.

Smart

Flight WAL27 and Flight NAL63

5 On the route, draw an \mathbf{X} to show the position of WAL27 after 20 seconds

6
On the line graph, draw an \mathbf{X} to show the position of WAL27 after 20 seconds

7 On the route, draw an $\mathbf{0}$ to show the position of NAL63 after 20 seconds

8
On the line graph, draw an $\mathbf{0}$ to show the position of NAL63 after 20 seconds

9 On the routes, connect your X and $\mathbf{0}$ with a line marked " 20 sec ".

10
On the line graph, connect your \mathbf{X} and $\mathbf{0}$ with a line marked " 20 sec ".

WAL27

Now draw and connect at 30 seconds.

11 On the routes, draw, connect, and label an \mathbf{X} and an $\mathbf{0}$ at 30 seconds.
12 On the graph, draw, connect, and label an \mathbf{X} and an $\mathbf{0}$ at 30 seconds.

Keep going...

13 Keep going until each plane reaches the point where the routes meet.

- At its last step, the first plane may need to fly a distance shorter than 5 feet.

14
What is that shorter distance?
\square feet

15
How many seconds does it represent? (Each plane travels 1 foot in 2 seconds.)

16 How far does the second plane travel in that many seconds?

Answer the questions.

17
Did the planes meet at the point where the two routes intersect?

18
If No, which plane arrived first? WAL27 \square NAL63

How many seconds did it take this plane to travel to the point where the two routes intersect?

At that time, how far away was the other airplane? (Hint: At that time, how many feet had the second plane traveled? How many feet was it from the intersection?)

If you think two planes will meet, what would you tell the air traffic controller to do to avoid a collision?
\qquad

End of Worksheet

Smart

\qquad

Your Task: Calculate if two planes flying on merging routes will meet where the routes intersect.

Follow along with this example of how to plot points.

Flight WAL27

- Starts 4 feet from the point where the route begins (a 4-foot "headstart").
- In 10 seconds, it moves 5 feet.
- Now it is 9 feet along its route.

1 Circle the \mathbf{X} at the 5 -foot point on the WAL27 jet route.

2
Circle the \mathbf{X} at the point $(10,9)$ on the grid.

WAL27
NAL63

Flight NAL63

- Starts where its route begins (at 0 feet).
- In 10 seconds, it moves 5 feet.
- Now it is 5 feet along its route.

3
Circle the $\mathbf{0}$ at the 5 -foot point on the NAL63 jet route.

4
Circle the $\mathbf{0}$ at the 5 -foot point $(10,5)$ on the grid.

Smart
\qquad

Now it's your turn to plot points.

Flight WAL27 and Flight NAL63

5 On the route, draw an \mathbf{X} to show the position of WAL27 after 20 seconds

6
On the line graph, draw an \mathbf{X} to show the position of WAL27 after 20 seconds

7
On the route, draw an $\mathbf{0}$ to show the position of NAL63 after 20 seconds

8
On the line graph, draw an $\mathbf{0}$ to show the position of NAL63 after 20 seconds

9
On the routes, connect your \mathbf{X} and \mathbf{O} with a line marked "20 sec".

Smart

17
Did the planes meet at the point where the two routes intersect?
Yes \square No \square

18 If No , which plane arrived first?
WAL27 \square NAL63 \square

19 How many seconds did it take this plane to travel to the point where the two routes intersect?

seconds

20 At that time, how far away was the other airplane?
(Hint: At that time, how many feet had the second plane traveled? How many feet was it from the intersection?)

If you think two planes will meet, what would you tell the air traffic controller to do to avoid a collision?
\qquad

\qquad

Your Task: Calculate if two planes flying on merging routes will meet where the routes intersect.

Find a pattern.

- The speed of each plane is 0.5 feet per second.

Use multiplication to fill in this table.

In this many seconds...	Each plane travels this many feet...				
1	0.5 feet/second x	1	second =		feet
2	0.5 feet/second x	2	second =		feet
3	0.5 feet/second x	3	second =		feet
4	feet/second x		second =		feet
5	feet/second x		second =		feet
6	feet/second x		second $=$		feet

2 How could you use multiplication to find the distance each plane travels in 14 seconds?

- The pattern in the table suggests this rule:
"To find the distance traveled, multiply the speed by the time traveled."
- In math and science, we often say "rate" instead of "speed."
- So we can write a rule like this:

$$
\text { distance }=\text { rate } \times \text { time }
$$

- This relationship is call the Distance-Rate-Time Formula.
- We often write it like this:

Distance-Rate-Time Formula

$$
d=r \bullet t
$$

3 Use the formula to answer this question:
How many feet does each plane travel in 20 seconds?

Smart

Distance-Rate-Time Formula

```
d = r • t
```

If we divide both sides of the equation by r...
...then, we get a formula for time traveled.

Use this formula to find the number of seconds for WAL27 to travel 16 feet to the point where the routes meet.

$$
\mathrm{t}=\frac{16 \text { feet }}{0.5 \text { feet per second }}=\square \text { seconds }
$$

Use the same formula to find the number of seconds for NAL63 to travel 20 feet to the point where the routes meet.
\square seconds

Will the planes meet at the point where the two routes intersect?
No \square

7
If No, which plane will arrive first? WAL27 \square NAL63 \square
8 How many seconds will it take this plane to travel to the point where the \square seconds two routes intersect?

At that time, how far away is the other airplane? (Hint: At that time, how many \square feet feet has the second plane traveled? How many feet is it from the intersection?)

If you think two planes will meet, what would you tell the air traffic controller to do to avoid a collision?
\qquad

End of Worksheet
Smart
\qquad

Your Task: Calculate if two planes flying on merging routes will meet where the routes intersect.

Find an equation that describes the distance traveled by each plane.

Flight WAL27

- We can use the Distance-Rate-Time formula

$$
d=r \bullet t
$$

to find d, the distance in feet WAL27 travels in t seconds.

- The WAL27 rate is 0.5 feet / second.
- WAL27 has a 4 -foot headstart. (When you start your stopwatch at $\mathrm{t}=0$, WAL27 has already traveled 4 feet.)

$$
\begin{aligned}
& \text { So... } \\
& d=0.5 t+4
\end{aligned}
$$

Flight NAL63

- We can use the Distance-Rate-Time formula
$d=r \bullet t$
to find d, the distance in feet NAL63 travels in t seconds.
- The NAL63 rate is 0.5 feet / second. So..

$$
d=0.5 t
$$

$\mathrm{d}=0.5 \mathrm{t}$

Fill in the table for WAL27.
$\left.\begin{array}{c}d=0.5 t+4 \\ \begin{array}{|c|c|}\hline t \\ \text { seconds }\end{array} \\ \hline 0 \\ \hline 0 \\ \hline \text { feet }\end{array}\right]$

Use an \mathbf{X} to graph each point in the WAL27 table.

Use a solid line \qquad to connect the points.

Fill in each table.

Graph each line.

4
Use an $\mathbf{0}$ to graph each point in the NAL63 table.

Use a dotted line to connect the points.

Smart

5
How many seconds did it take each plane to arrive at the point where the routes intersect?

6 Will the planes meet at the point where the two routes intersect?

7
If NO, which plane will arrive first?

8
How many seconds will it take this plane to travel
to the point where the two routes intersect?

At that time, how far away is the other plane?
(Hint: At that time, how many feet has the second plane traveled? How many feet is it from the intersection?)

Smart
Skies ${ }^{\text {TM }}$

Your Task: Analyze and explain your results. Then apply what you learned to another problem.

Compare your math results with your experimental data.

1 Use your experimental data and math results to fill in this table:

	Experiment	Mathematics
Did the planes meet		
where the routes		
meet?		
(Yes or No)		

2 Do your experimental and your math results match?
Yes \qquad
No \square

3 If No, why do you think they don't match?
\qquad
\qquad

Which is correct? Why? \qquad

8 Which is correct? Why?
\qquad
\qquad

Smart

Compare the speeds and compare the distances.

9 Are the planes' speeds the same or different?
Same \square Different \square
\square
What is the "difference in the planes' starting distances?" (That is, what is the "headstart?") feet
\square feet
11 What is the difference in the planes' final positions? (What is the separation distance where the routes meet?)

12 Are the distances the same or different?
Same \square Different \square

Consider the general problem.

13
When the first plane reaches the point where the routes meet, the separation distance will be:
the same time. \square different times. \qquad
the "difference" in the plane's starting distances (the "headstart").

Your Task: Will the two planes violate the separation standard where the routes meet?

Add a safety requirement.

- For safety reasons, the planes must be separated by at least 5 feet at the point where the routes meet.

Compare the distances.

Based upon your calculation, what is the difference in the planes' final positions? (That is, what is the planes' separation distance where the routes meet?)

Does this distance satisfy the separation requirement?

\qquad
\qquad

Smart
Skies ${ }^{\text {TM }}$

Analyze an alternate route.

- To avoid a separation violation, the air traffic controller gives WAL27 a new route.

4
How far will WAL27 travel to reach the new point where the routes meet?
\square

5
How far will NAL63 travel to reach the new point where the routes meet?

Which plane will fly a shorter distance?

NAL63

Smart Skies ${ }^{\text {TM }}$

