AdVECT: Additive Vehicle-Embedded Cooling Technologies

Sadaf Sobhani (PI)Cornell University

Elaine Petro (Co-I)
Cornell University

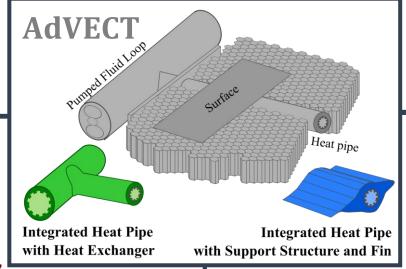
Andrew van Paridon (Co-I)
Cornell University

Approach

We will use additive manufacturing and novel materials to drastically reduce the areal density of heat rejection systems. We will use a mix of proto-typing,

experimental, and analytical tools to design and demonstrate performance.

Research StepOutcomeDevelop new ceramic resinsHigh thermal conductivity materialParametric study of printing
and sintering techniquesManufacturing technique for
robust material propertiesPerformance testingDemonstrate heat transport


Research Objectives

Goal of this research program

 Use additive manufacturing and advanced materials to develop low mass (<2 kg/m²), high temp (>300°C) heat rejection systems

Innovation and Advancement of the State-of-the-Art

- Porous ceramic radiators with embedded heat piping
- AM allows for novel form factors and topology optimization
- Iterative design enables rapid testing and refinement

TRL Levels

Initial: Additively manufactured, fullyembedded high temp heat rejection is TRL 1.

Upon Completion: Prototypes will be developed and validated (TRL 3).

Potential Impact

Benefits to...

Space Science and Exploration

- Enabling technology for nuclear power sources for lunar and orbital applications
- Embedded, single-material approach is extensible to onorbit manufacturing and thereby very large structures
- Low specific weight (kg/kW) reduces cost and enables faster transit times of critical space power infrastructure

"Spin-off" Technologies

 Extensible to other high-temperature heat rejection applications such as orbital re-entry, aerobraking, solar probes, directed energy