
Liquid Lenses for Free Space Optical 
Communications (FSOC)

Shreeyam Kacker, Kerri Cahoy
MIT STAR Lab

2022-08-16

mosaic-nasa@mit.edu
1



Agenda
● Liquid Lens Technology Review
● MOSAIC Overview
● Environmental Testing
● Optical Performance
● Transceiver Prototyping
● Conclusions
● Future Work
● Publications & Research Products

2



Liquid Lens
Technology Overview
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rning Varioptic A-39N0

Liquid Lenses

Co
● 3.9 mm aperture
● Electrowetting driven type
● +15 to -5 diopter focal range
● -20 °C to 65 °C operating range

Optotune EL-16-40-TC-VIS-20D
● 16 mm aperture
● Pressure driven type
● ±10 diopter focal range
● -20 °C to 60 °C operating range
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 Corning [1]
Liquid Lens Types

Image From: Corning Varioptic Lenses Dev Kit Documentation (PDF),
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Image From: Modelling of Optotune’s tunable lenses in Zemax (PDF), Optotune [2]

Pressure 
Driven Liquid 

Lenses (Optotune)

Electrowetting 
Driven Liquid 

Lenses (Corning)



MOSAIC Overview
Miniature Optical Steered Antenna for 

Intersatellite Communication
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Statement of Innovation

MOSAIC will investigate the use of 
liquid lenses as a potential steering method by which to develop a 

hemispherical multi point-to-point small satellite laser “antenna” 
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Motivation
● Higher data rates needed for CubeSat payloads

○ RF spectrum crowded and regulated
○ Laser communications (lasercom) 

■ Power efficient, currently unregulated spectrum

● Need multiple-access or multicast solutions
○ Satellite swarms and distributed sensing
○ Lasercom typically point-to-point

● Pointing Acquisition & Tracking (PAT)
○ Mechanical solutions are large, power-hungry
○ More efficient Fast Steering Mirrors (FSMs) have small 

apertures
○ Desire independence from spacecraft body pointing
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There is a need for a compact beam steering device with large angular throw 



Prior Work
● Zohrabi et al. 2016

○ University of Colorado,
Boulder

● Refract laser through
off-axis tunable lens
○ Lens on-axis to control

beam divergence

● 3 lenses for 2D steering
○ 1 on-axis for divergence

control
○ 2 offset in x and y for

steering
M. Zohrabi, R. H. Cormack, and J. T. Gopinath “Wide-angle nonmechanical beam
steering using liquid lenses,” Optics Express, Vol. 24, No. 21, Oct. 2016.
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Prior Work

M. Zohrabi, R. H. Cormack, and J. T. Gopinath “Wide-angle nonmechanical beam steering 
using liquid lenses,” Optics Express, Vol. 24, No. 21, Oct. 2016. 10

Liquid Lens Array

● Diffuser and fisheye 
increases steering

● Liquid lenses steer 
focused “dot” on diffuser

● Point source at focal 
length of fisheye lens

○ Fisheye lens creates 
collimated light with 
wide angle (154°) 
steering



Beam Steering Technologies
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Environmental Testing
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Environmental Testing Campaign

● TVAC
● Radiation
● Power Handling
● Zero G



orningInitial Survivability Test

● 72 hours of soft vacuum exposure in inexpensive 
chamber
○ Soft vacuum of 0.04 Torr (5Pa)

● Corning lens had no visually apparent changes

● Bubbles in Optotune lens aperture
○ Formed immediately on pump-down

○ Diffused from lens membrane after two weeks of soft 
vacuum exposure

○ Repeated with 3 separate lenses

○ No bubble formation on newer lenses

C

Optotune

PASS

PASSPASS
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Thermal Vacuum (TVAC) Testing - Ongoing
● Purpose

○ Analyze liquid lens operation in vacuum & thermal extremes
○ See how thermal impacts predictable performance of the lens
○ Steering transfer functions over temperature range

● Overview
○ Initial testing from -20°C to 60°C (specified operating range)
○ Stress testing from -40°C to 85°C (specified storage range)
○ Cooled in liquid nitrogen shroud, heater adhered to lens mounts
○ RTDs to monitor temperature
○ 635 nm (red) used for testing
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Thermal Vacuum Testing
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● Thermal drift found to be mostly linear with some change around high steering current or voltage
○ 0.24 mrad/°C (Corning), 0.19 mrad/°C (Optotune) [2]

● Stress testing from -40°C to 85°C (specified storage range)



Optotune Vacuum Self-Heating
● Heat management concern for 

Optotune lens in vacuum
○ Supplied current up to 293 mA
○ Operational range during steering 

between -100 and +100 mA

○ Corning, however, has negligible 
power draw

● Optotune current set to 
maximum, temperature was 
recorded over time
○ 40°C rise over 1.5 hours of max 

current operation
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Power Handling (1/2)
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● Experiment to determine laser 
induced damage threshold (LIDT) 
and transmission at 1550 nm

● NIR and 1550 nm optimized lenses 
testedtested

● Lenses placed in TVAC with fiber 
feedthrough

● Exposed to power levels up to 2.25 
W and profiled in between runs

● Thanks to Tim for the EDFA :)
Optotune lens mounted in TVAC chamber



Power Handling (2/2)
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2 min power cycles

Optotune (left) and Corning Varioptic (right) temperature rise during experiment
Corning Varioptic: 89% transmission, Optotune: 96% transmission at 1550 nm



Radiation Testing (1/6)

● Radiation can cause yellowing and 
darkening of all optics in space

● Optical fluids are proprietary and 
not characterized in the radiation 
environment

● Lenses placed in Co-60 
Gammacell at MIT and profiled in 
between irradiator runs to 
understand transmission loss Selected images taken from XI-IV CubeSat taken over 

15 years, showing yellowing of conventional glass 
optics due to radiation exposure 20



Radiation Testing (2/6)
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Corning Varioptic test chart images after LEO 

equivalent radiation exposure

Corning Varioptic transmission after LEO 
equivalent radiation exposure



Radiation Testing (3/6)
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After

Before

1550 nm NIR VIS

Corning Varioptic lenses before and after 70 krad of radiation exposure



Radiation Testing (4/6)
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Optotune test chart images after LEO equivalent 

radiation exposure

Optotune transmission after LEO equivalent 
radiation exposure



Radiation Testing (5/6)
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Optotune NIR lens focal spots after LEO 

equivalent radiation exposure

Optotune contrast ratio after LEO equivalent 
radiation exposure



Radiation Testing (6/6)

25Optotune VIS lenses before and after 70 krad of radiation exposure



Zero G Testing (1/2)
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● Liquid lenses flown zero-gravity flight to assess 
performance difference in space environments

● Liquid can potentially sag in presence of gravity, 
creating coma aberration

● Single liquid lens with 633 nm collimated beam 
used to focus spots on a detector (intensity only)

● Data of liquid lenses in 0g, 1g, and 1.5+g obtained



Zero G Testing (2/2)
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Microgravity experiment optical train
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Zero G Results (Corning Varioptic)
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Small (0.74 mrad) tip/tilt adjustment needed in 0g. No visible change in coma.



Zero G Results (Optotune)
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4.05 mrad tip/tilt adjustment needed in 0g. Large amounts of coma present in 1.5+g.



Optical Performance
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Analytic Formulation (1/2)

31

Liquid lens optical system with labeled properties



Analytic Formulation (2/4)
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Reference constraint space showing 
relative locations of all six constraints 

on focal plane. Units omitted since 
this is a reference and is not meant to 

represent any specific system.
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Analytic Formulation (3/4)

Image plane limits with varying lens
offsets showing skew in image plan

caused by lens separation.
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Analytic Formulation (4/4)

Image plane limits with varying len
offsets showing skew in image pla

caused by lens separation.



Zemax Modeling -  Hemispherical Steering

● Full Zemax simulations for 
hemispherical beam steering

● Constructed to understand effect 
of beam quality and divergence

● Physical optics propagation 
allows for high fidelity simulations 
of beam quality
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2D Steering Map (Zemax Simulations)
● Mapping focused spot locations on 

diffuser surface 
○ Area grows with distance between fisheye 

and focusing liquid lens
■ More distance = less required optical 

power
● Asymmetric

○ Steering lenses expand/contract beam too
● Angular fisheye output determined by 

spot location (x,y) on diffuser  
● Actual output steering angle 

dependent on fisheye geometry
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 (Galilean telescope)
mount 

ce 
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Factors Impacting Beam Quality
● Aberrations: spherical, surface error, off-axis decenter

● The liquid lenses act as a tiny beam expander
○ If first lens is negative, beam is expanded by a small a

causing divergence to shrink
○ If first lens is positive, beam is reduced and divergen

gets worse (higher beam divergence)
○ Divergence is a function of wavelength and 

beam diameter
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Optotune gain map (left) and axial projection (right)

Transmit gain maps (1/2)



Transmit gain maps (2/2)
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Corning gain map (left) and axial projection (right)



Link ranges
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Optotune range map (left) and Corning Varioptic range map (right) (4 W Tx power)



Liquid lens beam profile (1/2)
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Optotune simulated beam profile (left) and experimental (right) (2 deg steering)



Liquid lens beam profile (2/2)
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Corning simulated beam profile (left) and experimental (right) (0.7 deg steering, 

LL only)



Transceiver Prototyping
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Lab Prototype (Hemispherical 2D Steer)
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http://drive.google.com/file/d/1nmD7iwFfxL7_7tcGH9Na5_4IKfDobaXb/view


Transceiver Design (1/3)
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 Baseline transceiver design, showing the required peripherals and receive and 

transmit paths separated by the beam splitter



Transceiver Design (2/3)
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 Diagram of how polarizing beam splitters and quarter-wave plates can be
used as to separate transmit and receive paths, similar to three-port optical circulators

(Shreeyam Kacker, MIT)



Transceiver Design (3/3)
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 One-to-one imaging system allowing diffuser in transmit path without affecting receive path
(Shreeyam Kacker, MIT)



Multicast (1/2)

● Four beam multicast with four sets of three Corning lenses.
○ In this design, Corning lenses are selected for compactness
○ Three lens optical train not able to focus multiple laser spots to independently controlled 

locations
■ Attempted with differing wavelengths and more lenses in the optical train
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Multicast (2/2)
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x 
[m

m
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Multicast simulation steering two beams with four lenses, with symmetric
and asymmetric steering cases shown.



1550 nm prototype lenses
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Conclusions

● Liquid lenses shown to be a promising technology for space 
applications, particularly nonmechanical beam steering

● Power handling capabilities much better than expected at 2.25 W
● Potential for multicast using a single optical train (paper in prep.)
● Beacon divergence is a limiting factor on crosslinks, control with 

liquid lenses can improve this capability
● Lens components brought up to TRL 5-6 during project
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Future Work

● Evaluate potential of integrated beaconing using divergence 
control with nutation

● Finalize mathematical formulation for multi-beam steering 
through a single train of liquid lenses
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Thank you!

Questions?
mosaic-nasa@mit.edu
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