

Liquid Lenses for Free Space Optical Communications (FSOC)

Shreeyam Kacker, Kerri Cahoy MIT STAR Lab

2022-08-16

mosaic-nasa@mit.edu

Agenda

- Liquid Lens Technology Review
- MOSAIC Overview
- Environmental Testing
- Optical Performance
- Transceiver Prototyping
- Conclusions
- Future Work
- Publications & Research Products

Liquid Lens Technology Overview

Liquid Lenses

Corning Varioptic A-39N0

- 3.9 mm aperture
- Electrowetting driven type
- +15 to -5 diopter focal range
- -20 °C to 65 °C operating range

- Optotune EL-16-40-TC-VIS-20D
 - 16 mm aperture
 - Pressure driven type
 - ±10 diopter focal range
 - -20 °C to 60 °C operating range

Liquid Lens Types

5

The shape of the drop then changes as voltage increases

MOSAIC Overview Miniature Optical Steered Antenna for Intersatellite Communication

Statement of Innovation

MOSAIC will investigate the use of *liquid lenses* as a potential steering method by which to develop a hemispherical multi point-to-point small satellite laser "antenna"

Motivation

- Higher data rates needed for CubeSat payloads
 - RF spectrum crowded and regulated
 - Laser communications (lasercom)
 - Power efficient, currently unregulated spectrum
- Need multiple-access or multicast solutions
 - Satellite swarms and distributed sensing
 - Lasercom typically point-to-point
- Pointing Acquisition & Tracking (PAT)
 - Mechanical solutions are large, power-hungry
 - More efficient Fast Steering Mirrors (FSMs) have small apertures
 - Desire independence from spacecraft body pointing

There is a need for a compact beam steering device with large angular throw

STAR Lab

Prior Work

- Zohrabi et al. 2016
 - University of Colorado, Boulder
- Refract laser through off-axis tunable lens
 - Lens on-axis to control beam divergence
- 3 lenses for 2D steering
 - 1 on-axis for divergence control
 - 2 offset in x and y for steering

M. Zohrabi, R. H. Cormack, and J. T. Gopinath "Wide-angle nonmechanical beam steering using liquid lenses," Optics Express, Vol. 24, No. 21, Oct. 2016.

Prior Work

- Diffuser and fisheye increases steering
- Liquid lenses steer focused "dot" on diffuser
- Point source at focal length of fisheye lens
 - Fisheye lens creates collimated light with wide angle (154°) steering

M. Zohrabi, R. H. Cormack, and J. T. Gopinath "Wide-angle nonmechanical beam steering using liquid lenses," Optics Express, Vol. 24, No. 21, Oct. 2016. 10

Beam Steering Technologies

increasing SWaP, aperture, power handling MEMS Liquid FSMs Lenses

Environmental Testing

Environmental Testing Campaign

- TVAC
- Radiation
- Power Handling
- Zero G

Initial Survivability Test

- 72 hours of soft vacuum exposure in inexpensive chamber
 - Soft vacuum of 0.04 Torr (5Pa)
- Corning lens had no visually apparent changes
- Bubbles in Optotune lens aperture
 - Formed immediately on pump-down
 - Diffused from lens membrane after two weeks of soft vacuum exposure
 - Repeated with 3 separate lenses
 - No bubble formation on newer lenses

Optotune

Thermal Vacuum (TVAC) Testing - Ongoing

• Purpose

- Analyze liquid lens operation in vacuum & thermal extremes
- See how thermal impacts predictable performance of the lens
- Steering transfer functions over temperature range
- Overview
 - Initial testing from -20 C to 60 C (specified operating range)
 - Stress testing from -40 C to 85 C (specified storage range)
 - Cooled in liquid nitrogen shroud, heater adhered to lens mounts
 - RTDs to monitor temperature
 - \circ 635 nm (red) used for testing

Thermal Vacuum Testing

• Stress testing from -40°C to 85°C (specified storage range)

- Thermal drift found to be mostly linear with some change around high steering current or voltage
 - 0.24 mrad/°C (Corning), 0.19 mrad/°C (Optotune) [2]

Optotune Vacuum Self-Heating

- Heat management concern for Optotune lens in vacuum
 - Supplied current up to 293 mA
 - Operational range during steering between -100 and +100 mA
 - Corning, however, has negligible power draw
- Optotune current set to maximum, temperature was recorded over time
 - 40 C rise over 1.5 hours of max current operation

Optotune Self-Heating in Vacuum (293 mA)

Power Handling (1/2)

- Experiment to determine laser induced damage threshold (LIDT) and transmission at 1550 nm
- NIR and 1550 nm optimized lenses tested
- Lenses placed in TVAC with fiber feedthrough
- Exposed to power levels up to 2.25
 W and profiled in between runs
- Thanks to Tim for the EDFA :)

Optotune lens mounted in TVAC chamber

Power Handling (2/2)

Optotune (left) and Corning Varioptic (right) temperature rise during experiment Corning Varioptic: 89% transmission, Optotune: 96% transmission at 1550 nm

Radiation Testing (1/6)

- Radiation can cause yellowing and darkening of all optics in space
- Optical fluids are proprietary and not characterized in the radiation environment
- Lenses placed in Co-60 Gammacell at MIT and profiled in between irradiator runs to understand transmission loss

Selected images taken from XI-IV CubeSat taken over 15 years, showing yellowing of conventional glass optics due to radiation exposure

Radiation Testing (2/6)

Radiation Testing (3/6)

1550 nm NIR VIS Before After

Corning Varioptic lenses before and after 70 krad of radiation exposure

22

8

Red Green

Blue

Intensity

Radiation Testing (4/6)

10

Radiation Testing (5/6)

Optotune contrast ratio after LEO equivalent radiation exposure

Radiation Testing (6/6)

Optotune VIS lenses before and after 70 krad of radiation exposure

Zero G Testing (1/2)

- Liquid lenses flown zero-gravity flight to assess performance difference in space environments
- Liquid can potentially sag in presence of gravity, creating coma aberration
- Single liquid lens with 633 nm collimated beam used to focus spots on a detector (intensity only)
- Data of liquid lenses in 0g, 1g, and 1.5+g obtained

Zero G Testing (2/2)

Microgravity experiment optical train

Zero G Results (Corning Varioptic)

Zero G Results (Optotune)

Optical Performance

Analytic Formulation (1/2)

Liquid lens optical system with labeled properties

Analytic Formulation (2/4)

Reference constraint space showing relative locations of all six constraints on focal plane. Units omitted since this is a reference and is not meant to represent any specific system.

Analytic Formulation (3/4)

Image plane limits with varying lens offsets showing skew in image plane caused by lens separation.

5

Analytic Formulation (4/4)

15 10 Image Plane y [mm] 5 Image plane limits with varying lens offsets showing skew in image plane d = 0 mmcaused by lens separation. 0 d = 10 mmd = 30 mm -5 -10 -15 -10 -5 5 10 -15 0 15 Image Plane x [mm]

Zemax Modeling - Hemispherical Steering

- Full Zemax simulations for hemispherical beam steering
- Constructed to understand effect of beam quality and divergence
- Physical optics propagation allows for high fidelity simulations of beam quality

2D Steering Map (Zemax Simulations)

- Mapping focused spot locations on diffuser surface
 - Area grows with distance between fisheye and focusing liquid lens
 - More distance = less required optical power
- Asymmetric
 - Steering lenses expand/contract beam too
- Angular fisheye output determined by spot location (x,y) on diffuser
- Actual output steering angle dependent on fisheye geometry

Factors Impacting Beam Quality

- Aberrations: spherical, surface error, off-axis decenter
- The liquid lenses act as a tiny beam expander (Galilean telescope)
 - If first lens is negative, beam is expanded by a small amount causing divergence to shrink
 - If **first lens** is positive, beam is reduced and divergence gets worse (higher beam divergence)
 - Divergence is a function of wavelength and beam diameter

Transmit gain maps (1/2)

Transmit gain maps (2/2)

Corning gain map (left) and axial projection (right)

Link ranges

Optotune range map (left) and Corning Varioptic range map (right) (4 W Tx power)

Liquid lens beam profile (1/2)

Optotune simulated beam profile (left) and experimental (right) (2 deg steering)

41

42

Liquid lens beam profile (2/2)

Corning simulated beam profile (left) and experimental (right) (0.7 deg steering, LL only)

Transceiver Prototyping

Lab Prototype (Hemispherical 2D Steer)

Transceiver Design (1/3)

Baseline transceiver design, showing the required peripherals and receive and transmit paths separated by the beam splitter

Transceiver Design (2/3)

(a) Transmitter (Tx).

(b) Receiver (Rx).

Diagram of how polarizing beam splitters and quarter-wave plates can be used as to separate transmit and receive paths, similar to three-port optical circulators (Shreeyam Kacker, MIT)

Transceiver Design (3/3)

One-to-one imaging system allowing diffuser in transmit path without affecting receive path (Shreeyam Kacker, MIT)

Multicast (1/2)

- Four beam multicast with four sets of three Corning lenses.
 - In this design, Corning lenses are selected for compactness
 - Three lens optical train not able to focus multiple laser spots to independently controlled locations
 - Attempted with differing wavelengths and more lenses in the optical train

Multicast (2/2)

(a) Symmetric steering.

(b) Asymmetric steering.

Multicast simulation steering two beams with four lenses, with symmetric and asymmetric steering cases shown.

1550 nm prototype lenses

STAR Lab

Conclusions

- Liquid lenses shown to be a promising technology for space applications, particularly nonmechanical beam steering
- Power handling capabilities much better than expected at 2.25 W
- Potential for multicast using a single optical train (paper in prep.)
- Beacon divergence is a limiting factor on crosslinks, control with liquid lenses can improve this capability
- Lens components brought up to TRL 5-6 during project

Future Work

- Evaluate potential of integrated beaconing using divergence control with nutation
- Finalize mathematical formulation for multi-beam steering through a single train of liquid lenses

Publications and Research Products

[1] F. Fogle, O. Cierny, P. do Vale Pereira, W. Kammerer, and K. Cahoy, *"Miniature Optical Steerable Antenna for Intersatellite Communications Liquid Lens Characterization,"* IEEE Aerospace Conference, 2020.

[2] F. Fogle, SM Thesis (2020) *Liquid lens beam steering and environmental testing for the miniature optical steered antenna for inter-satellite communication.*

[3] US Patent No. 10,826,609 B2. Liquid-lens based optical steering system for free-space laser communication.

[4] S. Kacker, O. Cierny, J. Boyer, and K. Cahoy, *Link Analysis for a Liquid Lens Beam Steering System, the Miniature Optical Steered Antenna for Intersatellite Communication (MOSAIC)*, SPIE Photonics West (2021).

[5] S. Kacker, SM Thesis (2022), *Optical Performance and Prototyping of a Liquid Lens Laser Communications Transceiver.* Available: starlab.mit.edu

[6] S. Kacker, K. Cahoy, *Optical Performance of Commercial Liquid Lens Assemblies in Microgravity*, pending submission.

Thank you!

Questions?

mosaic-nasa@mit.edu