MANUAL FOR REDUCTION OF DATA

EIGHT-FOOT TUNNELS BRANCH

LANGLEY RESEARCH CENTER

A MANUAL FOR THE REDUCTION OF DATA FROM THE
 8-FOOT TRANSONIC PRESSURE TUUNNEL
 Prepared by
 Helen H. Willey Supervisory Mathematician

This manual is prepared in looseleaf form in order to insure its flexibility. In the event that additional items are added or present items deleted or changed, new sheets or replacement sheets will be furnished.

Items

1-13

14
15
16
17

18-23
24-29
30-35
36-41
42-47
48-53
54-59

60-66
67-80
81-84

85-87
88-96
97-101
102-106
107-111

112-129
130-140
141-149
150-171
172-185
186

1. IDENTIFICATION AND REFERENCE PRESSURES
2. DATA ACQUISTTION SYSTEM
a. Calibrate ratios
b. Code for calibrator level, mode, program
c. System full-scale voltage range
d. Power supply voltage reference
3. BALANCE INPUT
a. Initial loads on the model
(1) Uncorrected for balance interactions
(2) Corrections for balance interactions
(3) Initial loads corrected for balance interactions
b. Main loads on the model
(1) Uncorrected for balance interactions
(2) Corrected main loads and corrected initial loads
(3) Correction for total balance interactions
(4) Total loads corrected for balance interactions
4. COMPUTATION OF ANGLES
a. Angle of sideslip, BETA or β
b. Angle of attack, ALPHA or α
c. Angle of roll, PHI or \varnothing
5. BASE PRESSURES
a. Pressure coefficients from individual pressure measurements
b. Forces computed from individual pressure measurements
c. Forces computed from total pressure measurements
d. Base - force coefficients based on individual pressure measurements
e. Base - force coeffients based on total pressure measurements
6. AERODYNAMIC FORCES AND MOMENTS ABOUT THE BALANCE AXES
7. AERODYNAMIC FORCES AND MOMENTS ABOUT THE BODY AXES
8. BODY-AXES COEFFICIENTS
9. NONROLI-AXES COEFFICIENTS
10. STABILITY-AXES COEFFICIENTS
11. ADDITIONAL EQUATIONS TO BE PROGRAMED

REFERENCE PRESSURES

I. IDENTIFICATION AND REFERENCE PRESSURES

Item No. Symbol and
Description Units

1
TEST
2
RUN
3 M, nominal Mach number
4 CONFIG.

5

6

MINF, free-stream Mach number from tunnel calibration. MTC vs MINF programmed at ACD (slope intercept). List with three decimals.

$$
\begin{aligned}
\text { PINF } & =\frac{\text { PTINF }}{\left(1+\frac{\gamma-1}{2} \text { MINF }^{2}\right) \frac{\gamma}{\gamma-1}}, \text { free-stream static pressure } 1 b / \mathrm{sq} \mathrm{ft} \\
& \equiv \frac{\text { PTINF }}{\left(1+.2 M I N F^{2}\right)^{3.5}}
\end{aligned}
$$

QINF $=\frac{\gamma}{2} \operatorname{PINF}(\text { MINF })^{2}$, free-stream dynamic pressure, $\mathrm{lb} / \mathrm{sq} \mathrm{ft}$
TEMP, counts, free-stream total temperature, digital channel 61

DATA ACQUIS. SYSTEM
a. Calibrate Ratios

At this point calibrate ratios, $C R$, appear in the computations for the first time. They are calculated at ACD, for each analog channel, from fifteen data points - usually the first fifteen good calibrate points on each tape. (Points to be deleted will have been designated on load sheets.) The first five are 0 , the next.five. +8000 , the last -8000 .

Two calibrate ratios must be determined for each analog channel, one for positive readings and one for negative readings. Note that in the reduction of data, it is necessary that readings in counts including zero reading as they come from the tape, not delta readings, are to be multiplied by the calibrate ratios.

These relationships will be programmed and from input at the beginning of each tape, these two $C R$ values will be calculated at ACD and ready for use in further calculations.

It is essential that capability be provided for using either:

1. The CR as determined from counts in the fifteen points noted above.
2. $\mathrm{CR}=1.00$.

It should be automatic that if no $C R$ is taken at the beginning of a tape or if the $C R$ is erroneous (i.e. not $\cong 1.0$) \& value of 1.00 will be used in order to prevent total loss of the data.

It is requested that the values of the $C R$ as calculated and used be printed on the input for all analog channels in use.

Method of determining calibrate ratios:
For positive readings: $\frac{+8000}{\text { Avg of } 5 \text { pos. cal. rdgs - Avg } 5 \text { zero cal. rdgs }}$ For negative readings: $\frac{-8000}{\text { Avg of } 5 \text { neg. cal. rdgs - Aug } 5 \text { zero cal. rdgs }}$
b. Code for Calibrator Level, Mode, Program

Code in digital channel 35 gives general information as to how the data acquisition system is used.

Digital location	Code	Explanation
10^{4}	0	Not used
10^{3}		Calibrator level:
	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \end{aligned}$	```Calibrator off Calibrator on zero Calibrator + Calibrator -```
10^{2}		System mode:
	$\begin{aligned} & 1 \\ & 3 \\ & 5 \end{aligned}$	System calibrate Scanivalve data Averaging mode for force or force-pressure combination
10'	0	Not used
10°	1	Only Program 1 is used

For the CR points (usually calibrate points l-15) designation must be:
OllOl for points l-5, zero
021010201 for points 6-10, calibrator + . 0410101401 for points 11-15, calibrator -

For data points, typical examples are given below:
00301 for pressures from scanivalves. Will read one frame per port number
00501 for force, or force-pressure-combination. Averaging mode. Will call for program to average n number of frames (may vary from 1-48)
c. System Full-Scale Voltage Range

Programer : Please put a check in program to make sure that on all analog channels the first of the five digits is l. If it has some other value please notify 8 -Foot Computing Office.

Item No. Engineer: It is strongly advised that as consistently as possible all testing be held to the full-scale range of 12.5 MV . It is recognized that the system has the built-in capability of varying the range in groups of nine channels and coding inthis locating to indicate range ($12.5,23,50,100 \mathrm{MV}$ being represented by 1,2 , 4, 8 respectively). However, the alternative of adjusting the instrumentation instead to feed into a fixed range of 12.5 MV will forestall many foreseeable errors.

d. Power Supply Voltage Reference

8-Foot Computing Staff: Channel 33, voltage reference, normally should remain almost constant (for example $\cong 780$ counts representing 6 volts). If counts in this channel vary more than by ± 5 during one test, data will be in question and shift engineer and project engineer should be notified in order that steps be taken immediately to correct the situation.

BALANCE INPUT

a. Initial Loads on Model, $1 b$ and in-lb
(1) Uncorrected for balance interactions (input on load sheets in counts):

It is not necessary to apply calibrate ratio either at 8-Foot or ACD; however, the span-check values will have been divided by the $C R$ before being entered on load sheets.

Note for 8-Foot Computing Staff:
(a) For pitch or parameter runs:

With model tested in upright position, balance upright in model, \mathbb{V} INITIAL (when reduced to pounds) will be negative and equal in value to the weight of the model.

With model tested in an inverted position, N INITIAL will be positive and equal in value to the weight of the model.
(b) For yaw runs, right wing down:

With model in testing position, right wing down, balance upright in model, Y INITIAL when reduced to pounds will be positive and equal in value to the weight of the model.

With model rotated 180° (left wing down), Y INITIAL will be negative and equal in value to the weight of the model.

Note also that when the model is tested in an inverted position, the initial loads naturally are reversed, still following the relationship "model in testing position model rotated $180^{\circ} . "$

IV INITIAL $=\frac{\binom{N, \text { counts with model }}{\text { in testing position }} K N-\binom{\mathrm{N}, \text { counts, model }}{\text { rotated } 180^{\circ}} \mathrm{KN}}{2}$, initial
load for normal force, lb

Similarly for:

A INITIAL, axial force, lb
M INITIAL, pitching moment, in-lb
ROLL INITIAL, rolling moment, in-lb
YAW INIIIAL, yawing moment, in-lb
SIDE INTIAL, side force, lb
To correct initial loads for balance interactions: using the loads as determined in items $18-23$ as input, the interactions on each "initial load" component are computed by the following equations. The equations are to be iterated as many times as required to obtain the necessary accuracy.
(2) Correction to initial loads due to balance interactions:

EPSILON N $0=N(K 1+K 7 N+K 8 A+K 9 M+K 10$ ROLI $+K 11$ YAW $+K 12$ SIDE $)$
$+A(K 2+K 13 A+K 14 M+K 15$ ROLI $+K 16$ YAW $+K 17$ SIDE $)$
$1+M(K 3+K 18 M+K 19$ ROLL+K20 YAW+K21 SIDE)
$+\mathrm{ROLL}(\mathrm{K} 4+\mathrm{K} 22$ ROLI+K23 YAW+K24 SIDE $)$
$+\mathrm{YAW}(\mathrm{K} 5+\mathrm{K} 25$ YAW+K26 SIDE)
$+\operatorname{SIDE}(\mathrm{K} 6+\mathrm{K} 27$ SIDE $)$
Similarly for:
EPSILON A O
EPSILON M O
EPSILON ROLL 0
EPSIION YAW O
EPSILON SIDE 0
(3) Initial Loads Corrected for Balance Interactions:
$\mathrm{N} O=\mathrm{N}$ INITIAL - EPSILON N N
A $O=A$ INITIAL - EPSIION A O
MO = M INITIAL - EPSILON M O
ROLL $0=$ ROLL INITIAL - EPSILON ROLL 0

Item No.
34 YAW O = YAW INITIAL - EPSILON YAW O
35 SIDE $0=$ SIDE INITIAL - EPSILON SIDE 0
b. Main Loads on the Model
(Forces and moments for each data point input, in analog counts, from channels 1-6.)

Provision should be made in the program to use for the zero reading:

1. values from a specified data point
2. values from the average of two or more specified data points
3. a table of values furnished on load sheets to use for zero readings
4. staggered or prorated zeroes.
(1) Main loads uncorrected for balance interactions:

SIDE $1=(S I D E R D G)(C R)(K$ SIDE $)-(S I D E ~ Z E R O)(C R)(K ~ S I D E)$
(2) Main loads uncorrected for initial loads + initial loads corrected for balance interactions:

42
$\mathrm{N} 2=\mathrm{N} 1+\mathrm{N}_{0}$
$\mathrm{A} 2=\mathrm{Al}+\mathrm{A} 0$
$44 \quad \mathrm{M} 2=\mathrm{ML}+\mathrm{MO}$
45 ROLL $2=$ ROLL $1+$ ROLL 0
46 YAW $2=$ YAW $1+$ YAW 0
47 SIDE $2=\operatorname{SIDE} 1+\operatorname{SIDE} 0$
(3) Correction to total loads due to balance interactions:

Using items $42-47$ as input, the balance interactions on each component are computed by the following equations:
$48 \quad$ EPSILON $\mathbb{N}=\mathbb{N}(K 1+K 7 N+K 8 A+K 9 M+K 10$ ROLL+KIl YAW $+K 12$ SIDE $)$
 etc.

Similarly for:

49
50
51 EPSILON ROLL
52 EPSILON YAW
EPSILON SIDE
(4) Main loads corrected for balance interactions:

The corrected net forces and moments are referenced to the balance-axes system and represent the changes in the total loads from the values that existed at the time the zero readings were taken. These total loads are composed of the aerodynamic and weight tare (attitude) loads.

N $3=\mathbb{N} 1-(E P S I L O N N-E P S I L O N N O)$
A $3=\mathrm{A} 1-(E P S I L O N A-E P S I L O N A O)$
M $3=$ M 1 - (EPSILON M - EPSILON M O)
ROLL $3=$ ROLL $1-($ EPSILON ROLL - EPSILON ROLL 0$)$
YAW 3 = YAW 1 - (EPSILON YAW - EPSILON YAW O)

Since the next computations involving forces and moments require the use of functions of computed angles, the computation of angles will be considered next.

ALPHA, BETA, PHI

Ppleced
ty xemparary
eqpute datel o-1720
(Equations are based on model attitude being set with respect to the balance centerline. See explanation of DEITA for case where test is made with respect to body reference line, rather than balance centerline.)

$$
\text { a. Angle of sideslip, BETA or } \beta
$$

BETA 1 D, digital counts, channel 62

BETA 1 D, deg $=\frac{(\text { BETA RAG })(\mathrm{K} \text { BETA })}{(\text { Ch 62 })(\mathrm{K} 28)}-\frac{(\text { BETA ZERO })(\mathrm{K} \text { BETA })}{(\mathrm{Ch} 62)(\mathrm{K} 28)}{ }^{\circ}$
and/or
\int BETA 1 A, analog counts, channel 17
BETA $1 \mathrm{~A}, \mathrm{deg}=(\mathrm{BETA} \mathrm{RDG})(\mathrm{CR})(\mathrm{K}$ BETA $)-(\mathrm{BETA} \mathrm{ZERO})(\mathrm{CR})(\mathrm{K}$ BETA $)$
(Ch 17)(CR)(K 94). (Ch 17)(CR)(K 94)
64
(BETA $2 \mathrm{D}=$ angle of sideslip corrected for sting bending, used for computing WC and BETA 3

(signs of K SIDE BETA and K YAW BETA always negative)
BETA $2 \mathrm{~A} \equiv \mathrm{BETA} 1 \mathrm{~A}$
66 For parameter runs: (wings horizontal)
$B E T A \equiv \operatorname{BETA} 3=\sin ^{-1}[($ SIN BETA 2$)(\operatorname{COS}$ ALPHA 2) $]$ (includes coupling anole)
For yaw runs: (wings vertical)
$\mathrm{BETA} \equiv \mathrm{BETA} 3=\mathrm{BETA} 2+\mathrm{BETA} 0-\mathrm{BETA} \mathrm{A}$ (invertical plane)

b. Angle of attack, ALPHA, or a

Item No.
and/or

$$
6 \cdots 7-70
$$

$\{$ ALPHA 1 A, analog counts, channel 18
(ALPHA I A, deg $=(A L P H A ~ R D G)(C R)(K$ ALPHA) $-(A L P H A ~ Z E R O)(C R)(K$ ALPHA) (Ch 18)(CR) (K 27)
(Ch 18)(CR)(K 27)
Note: If model is tested in an inverted position (egg. for determining flow angularity or for other reasons) the sign of KALPHA (or KBETA as the case may be) will be reversed. However, this will be taken into account at 8 -Foot and correct sign entered on load sheets. No change is required in programming. .
$71 \quad A L P H A 2 D=A L P H A 1 D+K N A L P H A(N 3)+K M A L P H A(M 3)$, angle of (K 30) (K 3I) -
attack corrected for sting bending, used for computing WC, and ALPHA 3
(signs of KNN ALPHA and KM ALPHA always positive)
ALPHA $2 A=$ ALPHA $1 A$ (no correction necessary)
For parameter runs: (winos horizontal/, ALpha varying for fixed waters

$$
\begin{gathered}
- \text { THETA } M+\operatorname{DELTA}, \\
(\mathrm{K} 72) \\
(\mathrm{K} 75)
\end{gathered}
$$

For yaw runs: (wings vertical, BEtA verging for fixed values of ficA) ALPHA $3=$ ALPHA $2+$ ALPHA 0 - ALPHA A - ALPHA WI - THETA M + DELTA
angle which may be used for computing stability-axes coefficlients and for listing: (from this point the equations are identical and both analog and digital angles should be programmed, even if only one is requested for listing)
(This angle fully corrected when used for computing coefficients will be designated ALPHA in the standard or fixed testing; the other, if listed, as either AIPHA A or ALPHA D, as the case may be.)

$$
6-17-70
$$

Values of the following possible adjustments to ALPHA 2 and BETA 2, indicated above, will be furnished on load sheets:
$74 \quad$ ALPHA 0 , angle $\neq 0$ at which model may be set (by using a coupling) and instruments zeroed. Considered to be positive when, with model upright, nose of model is up and, with model inverted, nose of model is down.

75 BETA 0 , angle $\neq 0$ at which model may be set (by using a coupling) when rolled 90° and instruments zeroed.

76 ALPHA A; angle of angularity of flow between the relative wind and
or test reference line with model in zero testing position BETA A. (CN = 0, or in the case of yaw runs CY = 0, or some constant value of CN or CY, e.g. CN CRUISE, CY CRUISE) Considered to be positive where relative wind has a downflow to the test reference line. Values determined from results of a series of runs made during test with
(I) Model upright (Downflow is indicated if with the testing position model upright ALPHA A is positive; upflow if ALPHA A is negative.
(2) Model inverted (Downflow is indicated if with the testing position Model inverted ATPHA A is negative; upflow if AIPHA A is positive.

THETA M, angle of misalinement between balance and model reference lines $=$ ALPFA BAL - ALPHA MODEL. Considered to be positive when balance center line is at a more positive angle of attack than the model reference line. Used in changing from balance to body axis and in computing ALPHA 3

DELTA $=$ ALPHA BAL - ALPHA OTHER REF, angle of difference between balance center line and some other reference line which might have been used purposely or inadvertrently to set model for testing. Considered to be positive when balance center. line is at a more positive angle of attack than the reference line.

Possible cases:

1. $\operatorname{DELTA}=0^{\circ}$, angle set by balance center ine, preferable mode of testing.
2. $\operatorname{DELTA}=$ THETA M, angle set by model reference line, and both values must be put into computations
3. DELTA = ALPHA BAL - ALPHA OTHER REF, angle set by some other reference.

80 ALPHA 4 = ALPHA $3+$ IW, computed when it is desired that an angle other than ALPHA 3 be listed. For example, it may be desirable to plot the coefficients (which have been computed using functions of ALPHA 3) against some different angle
e.g. ALPHA 4 = ALPHA $3+$ wing incidence angle

If it is desirable to list both ALPHA 3 and ALPHA 4, special instructions should be given to programer. Otherwise ALPHA 3 will be used to compute coefficients and ALPHA 4 will be listed as ALPHA on the top or standard row.
c. Angle of roll, PHI or \emptyset

81 PHI 1, channel 64, digital counts
82
PHI $1=($ PHI RDG $)(\mathrm{KPHI})-($ PHI ZERO $)(\mathrm{K} \mathrm{PHI})$, deg and/or (Ch 64)(K 29) (Ch 64) (K 29)

83 PHI 1, channel 19, analog counts
84. \quad PHII $=($ PHI RDG $)(\mathrm{CR})(\mathrm{KPHI})=(\mathrm{PHI} \mathrm{ZERO})(\mathrm{CR})(\mathrm{KPHI})$, deg (Ch 19)(CR)(K 29) (Ch 19)(CR)(K 29)

BASE PRESSURES

If there are pressure measurements, the computations should be done at this point in the program and the values stored for use in further calculations and/or for listing. For each pressure from transducers in analog channels 9-16, or from transducers in spare channels, the following equations will apply:

DEITA $P, N=(P, N-P I N F), \operatorname{lb} / \mathrm{ft}^{2}$
a. Pressure coefficients from individual
pressure measurements
$87 \quad \mathrm{CP}, \mathrm{N}=\frac{\text { DELTA } P, N}{\text { QINF }}$
Because, in tests in the 8-foot transonic pressure tunnel, models may have model components such as the fuselage or nacelles which have base areas the normals of which are at angles of incidence to the model axis, this angle, or angles as the case may be, must be taken into account in computing the base normal force, base axial force, base lift force and base drag force and base pitching moment as indicated in the following equations:
b. Forces computed from individual pressure measurements, lb and in-lb individual pressures, lb
$89 \mathrm{~S}, \mathrm{~N}$, base or chamber area, sq ft

THETA C, the angle between a line pexpendicular to the base and the model x-axis. Values of THETA C furnished on load sheets and may differ for each nacelle and/or base. THETA here is defined as the angle between the $\&$ (or a line perpendicular to the base if they are not the same) of the nacelle or some other component on which base pressure is being measured, and the model $\&$ or reference line.

The sign convention used is that if this line with respect to the horizontal or relative wind makes a more positive angle than ALPHA, then THETA is positive. Usually this will mean that the nose of the nacelle is up from the horizontal.

By the same token, if this line is below the model reference line, or at a more negative angle than ALPHA, THETA is negative. Usually this will mean that the nose of the nacelle is down.
$A B, N=-[(D E L T A P, N) S, N]$ COS THETA C, N, base axial force, Ib $M B, N=-[(N B, N) X B A S E]+[(A B, N) Z B A S E]$
X BASE, in., distance from center of pressure of base pressure force (assumed to be at center of area of base) to moment reference point, measured parallel to model X-axis.
$I B, N=-[-(D E L T A P, N) S, N] \operatorname{SIN}(A L P H A 3+\operatorname{THETA} C, N)$, base lift,
$\mathrm{DB}, \mathrm{N}={ }_{\mathrm{Ib}}[-(\mathrm{DELTA} \mathrm{P}, \mathrm{N}) \mathrm{S}, \mathrm{N}] \operatorname{COS}(\mathrm{ALPHA} 3+$ THETA $\mathrm{C}, \mathrm{N})$, base drag,
c. Forces and moments computed from total pressure measurements Z BASE will still be needed in computations since $A B$ will have a value $\neq 0$.
$N B=\sum_{1}^{M} N B, N \quad$ (Where N varies from 1 to M)

Item No.

d. Base force and moment coefficients based on

$$
\mathrm{CNB}, \mathrm{~N}=\frac{\mathrm{NB}, \mathrm{~N}}{\operatorname{QINF}(\mathrm{~S})}
$$

individual pressure measurements
) 102
$103 \mathrm{CAB}, \mathrm{N}=\frac{\mathrm{AB}, \mathrm{N}}{\operatorname{QINF}(\mathrm{S})}$
$104 \quad \mathrm{CMB}, \mathrm{N}=\frac{\mathrm{MB}, \mathrm{N}}{\operatorname{QINF}(\mathrm{S})(\mathrm{C})}$
$105 \mathrm{CLB}, \mathrm{N}=\frac{\mathrm{LB}, \mathrm{N}}{\operatorname{QINF}(\mathrm{S})}$
$106 \quad \mathrm{CDB}, \mathrm{N}=\frac{\mathrm{DB}, \mathrm{N}}{\operatorname{QINF}(\mathrm{S})}$

Item No.
e. Base coefficients based on total pressure measurements
$107 \mathrm{CNB}=\frac{\mathrm{NB}}{\operatorname{QINF}(\mathrm{S})}$
$108 \quad \mathrm{CAB}=\frac{\mathrm{AB}}{\text { QINF(S) }}$
$109 \quad \mathrm{CMB}=\frac{\mathrm{MB}}{\mathrm{QINF}(\mathrm{S})(\mathrm{C})}$
$110 \quad \mathrm{CLB}=\frac{\mathrm{LB}}{\operatorname{QINF}(\mathrm{S})}$
$111 . \quad \mathrm{CDB}=\frac{\mathrm{DB}}{\operatorname{QINF}(\mathrm{S})}$

Note that provision should be made in the program for the following alternatives:

1. Using all the pressures measured to calculate a correction to axial force (and therefore to related components)
2. Using only specified pressures
3. Computing and listing $C A B, N$ and $C D B, N$ (individual values)
4. Computing and listing $C A B$ and CDB (total or summed values)
5. Computing and listing $C P$, pressure coefficient only, from some of the measured pressures not used as a correction to axial force.
6. Accepting a table of values of $C P$ on load sheets, from which to compute a correction to axial force.

BALANCE - AXES DATA

6. AERODYNAMIC FORCES AND MOMENYS ABOUT THE BALANCE AXES

Item No.
$112 \mathrm{WC}, \mathrm{N}=($ ALPHA 2) $(\mathrm{KW}$ ALPHA, N$)+($ BETA 2) $(\mathrm{KW} \mathrm{BETA}, \mathrm{N})$, Ib
$113 \mathrm{WC}, \mathrm{A}=(\mathrm{ALPHA} 2)(\mathrm{KW}$ ALPHA, A$)+($ BETA 2$)(\mathrm{KW}$ BETA, A$)$, Ib
114 WC, $M=(A L P H A 2)(K W$ ALPHA, $M)+(B E T A 2)(K W ~ B E T A, M)$, in-lb
115 WC, ROLE - equations similar to above.
116
WC, YAW
117 WC,SIDE
Balance upright in model

118
119
120
121 ROLL $4=$ ROLL $3-$ WC, ROLL
122 YAW 4 = YAW $3-W C$, YAW
123 SIDE 4 = SIDE $3-$ WC, SIDE
Balance inverted in model
$124 \quad$ N $4=-(\mathrm{N} 3-\mathrm{WC}, \mathrm{N})$
125 A 4 = A3 - WC,A same as for upright
$126 \quad \mathrm{M} 4=-(\mathrm{M} 3-\mathrm{WC}, \mathrm{M})$
127 ROLL 4 = ROLL 3 - WC, ROLL same as for upright
128 YAW $4=-($ YAW $3-W C$, YAW)
129 SIDE $4=-($ SIDE $3-W C, S I D E)$
Note to programer : This sign change is presently effected
in the program by reversing the signs of $N, M, Y A W$, and SIDE
immediately after interactions have been taken into account, if the balance is mounted inverted in the model.

BODY - AXES DATA

Moments corrected for longitudinal and vertical misalinement of model reference and balances axes. (X and Z are referenced to the body axes and not balance axes; that is, X distance is measured parallel to X body axis and Z distance parallel to Z body axis)
(The subscript UNC will indicate that the forces and moments are uncorrected for measured base pressure.
The subscript CORR will indicate that the forces and moments are corrected for measured base pressure. When there is an angle of misalinement, rotate first, then translate or transfer)

N BODY UNC $=\mathrm{N} 4$ (COS THETA M) - A 4 (SIN THETA M)
(This rotates the forces)
$131 \quad \mathbb{N}$ BODY CORR $=\mathbb{N}$ BODY UNC - NB
132 A BODY UNC $=A 4(\operatorname{COS}$ THETA M $)+N 4($ SIN THETA M $)$
133 A BODY CORR $=A$ BODY UNC $-A B$
134 M BODY UNC $=\mathrm{M} 4-\mathbb{N}$ BODY UNC (X) - A BODY UNC (Z) (this translates or transfers the moments)
M BODY CORR $=M$ BODY UNC $-M B$

YAW BODY, DISPLACED = YAW 4 (COS THETA M - ROLL 4 (SIV THETA M))
ROLI BODY = ROLI BODY, DISPLACED - SIDE 4(Z)
YAW BODY = YAW BODY, DISPLACED - SIDE $4(\mathrm{X})$
SIDE BODY \equiv SIDE $4 \equiv$ SIDE 3

BODY COEFFICIENTS

$141 \quad \operatorname{CNV}$ UNC $=\frac{\text { N BODY UNC }}{\text { QTNF }(S)}$
$142 \quad \mathrm{CN}=\frac{\mathbb{N} \operatorname{BODY} \operatorname{CORR}}{\operatorname{QTNF}(\mathrm{S})}$
$143 \quad \mathrm{CA}$ UNC $=\frac{\mathrm{A} \text { BODY UNC }}{\text { QINFF }(S)}$
$144 \quad \mathrm{CA}=\frac{\mathrm{A} \text { BODY CORR }}{\text { QIIFF }(\mathrm{S})}$

145 CM UNC $=\frac{\text { M BODY UNC }}{\operatorname{QINFF}(S)(C)}$
$146 \quad \mathrm{CM}=\frac{\mathrm{M} \mathrm{BODY} \mathrm{CORR}}{\operatorname{QINF}(S)(C)}$
$147 \quad C$ ROLL $B=\frac{\operatorname{ROLL} B O D Y}{\operatorname{QINF}(S)(B)}$
$148 \quad \mathrm{C}$ YAW $B=\frac{\mathrm{YAW} \text { BODY }}{\operatorname{QTNF}(\mathrm{S})(\mathrm{B})}$
$149 \quad C S I D E=\frac{S T D E ~ B O D Y}{\operatorname{QTNF}(S)}$

NON-ROLL COEFFICIENTS

Item No.

	For cases where the balance and model are both rolled as a un the following equations will resolve the coefficients to nonaxes $\left(\phi=0^{\circ}\right)$.
150	CNV NR UNC $=\operatorname{CN} \operatorname{UNC}(\operatorname{COS~PHI~3)~-~} \mathrm{C} \operatorname{SIDE}(\operatorname{SIN}$ PHI 3)
151	CN NR $=\operatorname{CN}(\mathrm{COS} \mathrm{PHI} \mathrm{3)}-\mathrm{CSDE}$ (SIN PHI 3)
152	CA NR UNC \equiv CA UNC
153	$\mathrm{CA} N \mathrm{NR} \equiv \mathrm{CA}$
154	CM NR UNVC = CM UNC($\operatorname{COS~PHI~3)-C~YAW~UNC(SIN~PHI~3)~}$
155	CM NR $=\mathrm{CM}(\mathrm{COS}$ PHI 3) - C YAW (SIN PHI 3)
156	C ROLL NR $=$ C ROLL B
157	C YAW-NR UNC $=(\mathrm{C}$ YAW B $)(\mathrm{COS} \mathrm{PHI} \mathrm{3)}+\mathrm{CM}$ UNC(SIN PHI 3)
158	C YAW NR $=(\mathrm{C}$ YAW B $)(\mathrm{COS} \mathrm{PHI} \mathrm{3)}+\mathrm{CM}(\mathrm{SIN} \mathrm{PHI} \mathrm{3)}$
159	C SIDE NR UNTC $=$ C SIDE (COS PHI $3+$ CN UNC (SIN PHI 3)
160	C SIDE NR $=\mathrm{CSIDE}(\mathrm{COS} \mathrm{PHI} \mathrm{3)}+\mathrm{CN}(\mathrm{SIN} \mathrm{PHI} \mathrm{3)}$.
	For cases where the model is rolled and the balance remains fixed, the following equations will resolve the coefficients to roll or model axes. (Note that equations are identical to preceding except for signs in CN, CM, CSIDE.)
161	CN MODEL UNC $=$ CNT UNC(COS PHI 3) $+\mathrm{CSIDE}(\mathrm{SINV}$ PHI 3)
162	

Item No.
$163 \quad \mathrm{CA}$ MODEL UNC $=\mathrm{CA}$ UNC
$164 \quad \mathrm{CA}$ MODEL $=\mathrm{CA}$
165 CM MODEL UNC $=$ CM UNC $(\operatorname{COS}$ PHI 3) +CN UNC (SIN PHI 3)
166 CM MODEL $=\mathrm{CM}(\mathrm{COS}$ PHI 3) $+\mathrm{CN}($ SIN PHI 3)
167 C ROLL MODEI $=$ C ROLI B
168 C YAW MODEI UNC $=(\mathrm{C} Y A W B \operatorname{UNC})(\mathrm{COS}$ PHI 3) +CM UNC (SIN PHI 3)
$169 C$ YAW MODEL $=(\mathrm{C}$ YAW B $)(\mathrm{COS} \mathrm{PHI} \mathrm{3)}+\mathrm{CM}($ SIN PHI 3)
$170 \quad \mathrm{C}$ SIDE MODEL UNC = $\mathrm{C} \operatorname{SIDE}(\mathrm{COS}$ PHI 3) - CN UNC (SIN PHI 3)
171 : C SIDE MODEL $=\mathrm{CSIDE}(\mathrm{COS} \operatorname{PHI} 3)-\mathrm{CN}(S I N P H I ~ 3)$

STABILITY COEFFICIENTS

$172 \quad \mathrm{CL} \operatorname{UNC}=\operatorname{CN} \operatorname{UNC}(\operatorname{COS} A L P H A 3)-\operatorname{CA} \operatorname{UNC}(\operatorname{SIN} A L P H A 3)$
$174 \quad \mathrm{CI}=\mathrm{CN}(\operatorname{COS} A L P H A 3)-\mathrm{CA}(S I N \mathrm{ALPHA} 3)$
175 CL ${ }^{2}$

176

177

182
$C D I=B 1+B 2(A L P H A 3)+B 3(A L P H A 3)^{2}+B 4(A L P H A 3)^{3}$, a third-order equation calculated from a curve fit program. Values of B will be furnished in tables in ascending order of Mach number. They will vary with Mach number and possibly with configuration

CD, buoyancy furnished as a table on 8-foot load sheets $C D \operatorname{UNC}=C A \operatorname{UNC}(\operatorname{COS} A L P H A 3)+C N \operatorname{UNC}(S I N N A L P H A 3)-C D I$ - CD, buoyancy
$C D=C A(\operatorname{COS} A L P H A 3)+C N(S I N A L P H A 3)-C D I-C D$, buoyancy
L / D UTS $=\frac{\mathrm{CL} \text { UNI }}{\mathrm{CD} \text { UTC }}$
$L / D=\frac{C L}{C D}$

CM same as for body axes

Item No. NOTE: As a usual practice, the lateral coefficients CROLL and CYAW will be computed and listed about the body axes and these lateral coefficients about the stability axis will not be presented. However, for the cases when they will be requested, the capability of computing and space for listing should be provided in the program

183

$184 \quad \mathrm{C}$ YAW $\mathrm{S}=\mathrm{C}$ YAW $\mathrm{B}(\operatorname{COS}$ ALPHA 3) +C ROLL B (SIN ALPHA 3)
185 C SIDE (same as for body axis.)

MISCELLANEOUS

Item No.

Reynolds Number, R

$$
R \times 10^{-6}=\mathrm{L}(1.798) \operatorname{QINF}\left(\frac{1+.2 \mathrm{MINF}^{2}}{\mathrm{MINF}}\right)\left[\frac{\operatorname{TTINF}+198.6\left(1+.2 \mathrm{MINF}^{2}\right)}{\mathrm{TINF}^{2}}\right]
$$

where:
T TINF, total temperature, $O_{R}=$ TEMP, $O_{F}+459.67^{\circ}$. I, reference dimension, ft, entered on load sheets (If $R / f t$ is desired, $L=1.0$)

187 Buffet Data
MWSG $=$ KWSG $\left(\frac{\text { Gain cal., cts }}{\text { Gain, cts }}\right)$ (Strain-gage cts), wing-root bending
where the following are furnished on load sheets:
KWSG, wing strain-gage sensitivity from calibration, $\frac{\text { in-1b }}{c t}$.
(KWSG 1 in loc 35, KWSG 2 in loc 78)

Gain cal., gain at which calibration was made, cts.
$\left(\begin{array}{lll}\text { Gain cal. } 1 \text { in loc } & 76 \\ \text { Gain cal. } 2 \text { in loc } & 83\end{array}\right)$
Gain, cts =(DC amplifier, cts) (Integrator, cts),
coded in channel 45
Strain-gage, cts, input in channel 31 or 32
Note that channel 45 contains not a definite value of gain (which is the inverse of attenuation) but a code by which the two factors of gain and the channel or channels in use for strain-gage counts are to be selected and the value of gain computed from them. For example: the five digits in channel 45 (the first digit, always 0 , to be ignored):

| ignore | 32 | 31 | 32 | 31 | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 2 | 0 | 9 | only channel 31 in use |
| 0 | 2 | 0 | 9 | 0 | only channel 32 in use |
| 0 | 2 | 3 | 4 | 9 | both 31 and 32 in use |

Code for the five digits in channel 45

(It is desirable that channels $31,32,45$, counts, appear on pre-edit.)
$\mathrm{CMWSG}=\frac{\text { MWSG }}{Q}$, wing-root bending-moment coefficient

Item No.
Dew Point Temperature, O_{F}
(Charts posted in control room for determining limits.)
Dew Point $=$ (counts in ch $48-500$) KDPN

```
KDPI = .214286 deg}/\textrm{ct}\mathrm{ for + cts
KDP2 = . 230769 deg/ct for - cts
```

(It is desirable that channel 48, counts, appear on pre-edit.)

189 Center of Pressure, XCP
XCP, pitch plane, in. $=A+B\left(\frac{C M}{C N}\right)$

XCP, yaw plane, in $=A+B\left(\frac{C \text { YAW }}{C \operatorname{SIDE}}\right)$
where the following are furnished on load sheets:
A, in, locates the position of the moment reference center relative to the center-of-pressure reference location (e.g. distance from base, or nose, or wing-leading or trailing edge to the moment reference center)
B. does two things:

1. Its sign determines the direction of the XCP reference locaton forward or rearward of the moment reference center. Normally + for missiles (e.g. forward of base if the base is the moment reference center)

- for aircraft (e.g. behind nose, wing-leading edge, etc.)

2. Its magnitude may relate $\frac{C M}{C N}$ to some reference other than the moment reference (e.g. model length, in which case $\left.B= \pm \frac{\text { reference dimension }}{\text { Model length }}\right)$

If XCP is based on reference dimension, $B= \pm 1$

Beta derivatives (C ROIL, BETA, C YAW BETA, C SIDE BETA) Obtained by special program at ACD.
11. ADDITIONAL EQUATIONS TO BE PROGRAMED

Item No.

