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This year, we celebrate the 20th anniversary of 

continuous human presence on board the International 

Space Station (ISS), a momentous milestone for the 

low-Earth orbiting laboratory. 

The ISS has been a reliable testbed for microgravity 

research that cannot be accomplished on Earth.  

This lab is where some of the most innovative concepts 

are tested in the fields of technology development 

and demonstration, educational activities, biology 

and biotechnology, Earth and space science, human 

research, and physical science. 

With the accomplishment of 20 uninterrupted years 

of humans living and working in space, we also 

commemorate the successful cooperation among 

member nations to understand and address the 

challenges in our quest for long-term exploration and  

to sustain human life on the Moon and Mars in the 

coming decades. 

Far more than simply preparing us for life in in 

the extreme environment of space¹, microgravity 

research on board the ISS also has served to provide 

breakthrough discoveries for improving the quality of 

human lives here on Earth. Disciplines as varied as 

health care (e.g., pharmaceuticals, imaging, medical) 

and physical sciences are represented, while the space 

station itself serves as an observation platform that 

captures environmental changes and weather events.

In this year’s Annual Research Highlights, we report 

ISS science results from a wide range of fields, from 

investigating ways to sustain human life in space, 

such as plant seedling growth and early detection of 

osteoporosis in space, to better understanding the 

electrostatic levitation processes and Bose-Einstein 

Condensate (BEC) Bubble Dynamics. The ISS Program 

Science Office (PSO) collected 312 scientific publications 

between October 1, 2019, and October 1, 2020.  

Of these, 286 were articles published in peer-reviewed 

journals, 20 were conference papers, and 4 were 

gray literature publications such as technical reports 

or books. Out of the 312 items collected, 29 were 

published prior to October 1, 2019, but they were not 

identified until after October 1, 2019. 

These results represent research activities sponsored 

by the National Aeronautics and Space Administration 

(NASA), the State Space Corporation Roscosmos 

(Roscosmos), the Japan Aerospace Exploration 

Agency (JAXA), the European Space Agency (ESA), the 

Canadian Space Agency (CSA), and the Italian Space 

Agency (ASI). This report includes highlights of collected 

ISS results as well as a complete listing of the year’s 

ISS results that benefit humanity, contribute to scientific 

knowledge, and advance the goals of space exploration 

for the world. 

Introduction

Figure 1.  A total of 2850 publications (through October 1, 2020) 
represent scientists worldwide. This chart illustrates the percentages 
for each research discipline by publication type.
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¹ Diallo, O. N., Ruttley, T. M., Costello, K., Hasbrook, P., Cohen, L., Marcil, I., ... & Karabadzhak, G. (2019). Impact of the International Space  
Station Research Results. The 70th International Astronautical Congress. 2019
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As of October 1, 2020, the ISS PSO has identified 

a total of 2850 results publications since 1999, with 

sources in peer-reviewed journals, conferences, and 

gray literature representing the work of more than 5000 

scientists worldwide (Figure 1). Overall, this number of 

results publications represents a 17% increase from a 

year ago. 

The ISS PSO has a team of professionals dedicated to 

continuously collecting and archiving research results 

from all utilization activities across the ISS partnership. 

The archive can be accessed at www.nasa.gov/iss-

science. This database captures ISS investigations 

summaries and results, providing citations to the 

publications and patents as they become available at 

www.nasa.gov/stationresults.

MEASURING SPACE STATION IMPACTS 

Because of the unique microgravity environment of the 

ISS laboratory, the multidisciplinary and international 

nature of the research, and the significance of the 

investment in its development, analyzing ISS scientific 

impacts is an exceptional challenge. As a result, the ISS 

PSO uses different methods to describe the impacts of 

ISS research activities. 

One method used to evaluate the significance of 

scientific output from the ISS is to track article citations 

and the journal’s Eigenfactor ranking across the ISS 

partnership. Since different disciplines have different 

standards for citations and different time spans across 

which citations occur, Eigenfactor applies an algorithm 

that uses the entire Web of Science citation network 

from Clarivate Analytics® spanning the previous 5 

years.² This algorithm creates a metric that reflects the 

relative importance of each journal. Eigenfactor counts 

citations to journals in both the sciences and social 

sciences, eliminates self-citations of journals, and is 

intended to reflect the amount of time researchers 

spend reading the journal. From October 1, 2019, to 

October 1, 2020, 56 ISS articles were published in the 

top 100 journals based on Eigenfactor. Ten of those ISS 

articles were in the top 10 journals based on Eigenfactor, 

as reported by Clarivate Analytics® (Table 1). 

A stacked area chart in Figure 2 has been included in 

this year’s edition of the Annual Highlights of Results 

(2020) to depict the growth of ISS publications over  

the years and its augmentation through citations.  

These data may imply that the dissemination of ISS 

science is now influencing other areas of investigation 

and contributing to the generation of new ideas.  
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1 PLOS ONE (3)

3 Scientific Reports (4)

4 Nature (1)

5 Science (1)

6
Proceedings of the National 

Academy of Sciences of the United 
States of America (1)

11 Physical Review Letters (3)

22 The Astrophysical Journal (19)

28
Monthly Notices of the Royal  

Astronomical Society (10)

37 Circulation (1)

46 Astronomy and Astrophysics (2)

49 Science Advances (2)

58 Frontiers in Microbiology (3)

67
Journal of Alloys and Compounds 

(1)

95 Frontiers in Plant Science (5)

Table 1: 2019-2020 ISS Publications collected in the Top 100 Global 
Journals, by Eigenfactor. From October 1, 2019, to October 1, 2020, 
as reported by 2019 Journal Citation Reports, Clarivate Analytics®.

² West JD, Bergstrom TC, Bergstrom CT. The Eigenfactor Metrics™: A Network approach to assessing scholarly journals. College and Research 
Libraries. 2010;71(3). DOI: 10.5860/0710236.

http://www.nasa.gov/iss-science
http://www.nasa.gov/iss-science
http://www.nasa.gov/stationresults
https://crl.acrl.org/index.php/crl/article/view/16080
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ISS science continues to flourish even more rapidly 

today than 10 years ago, consequently affecting  

formal and public education, generating a new 

workforce of responsible and creative scientists, and 

inspiring young minds.

The ISS PSO has implemented the use of bibliometrics 

as an additional method to measure the impact of space 

station research. Bibliometrics is the quantitative analysis 

of written documents. It is frequently used to analyze 

scientific and scholarly publications. Researchers may 

use bibliometrics to get an overview of their research 

field and its connections with other areas of research. 

Bibliometrics can be used to address a broad range of 

challenges in research management and research 

evaluation. For instance, bibliometrics can be applied to 

support strategic decision making by the management 

of a research institution and to support the evaluation of 

research institutes and research groups.³

Bibliometric visualizations offer a powerful way to 

present detailed information in a way that improves 

understanding of the data. Visualizations can provide a 

network perspective; e.g., a representation of networks 

of research disciplines, co-authorship, or citations. 

When dealing with large numbers of publications, 

an overview of the publications’ global reach can be 

obtained by presenting a visualization of the authors.

Figure 2. Stacked area chart depicts growth of publications and citations since the inception of the ISS. 

3 Van Eck NJ, Waltman L. Software survey:VOSviewer, a computer program for bibliometric mapping. Scientometrics. 2010;84(2):523-538. 
DOI: 10.1007/s11192-009-0146-3.

https://doi.org/10.1007/s11192-009-0146-3
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INTERNATIONAL SPACE STATION RESEARCH GROWTH

Figure 3. A) Network analysis of research topic keywords identified in ISS publications during the first decade (2000 – 2010) of the ISS.  
B) Network analysis of research topic keywords identified in ISS publications during the second decade (2011 – 2020) of the ISS.

A) 2000 – 2010

B) 2011 – 2020
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Using all ISS research results articles collected through 

October 1, 2020, Figure 3 presents two VOSviewer 

network analyses of research topic keywords collected 

during the first half (2000 – 2010) and second half 

(2011 – 2020) of the 20 years of ISS operations to 

illustrate how research has grown and diversified since 

the inception of space station. The sizes of the nodes 

indicate the number of publications associated with 

the research topic labeled. As shown, for example, the 

topic of microgravity has grown and strengthened over 

the years. Additionally, the number of links within each 

colored category represent the variety of specific topics 

roughly captured by a research area on the ISS. 

 

EVOLUTION OF SPACE STATION COLLABORATION

A) 2000 – 2007 B)  2008 - 2013

Figure 4. VOSviewer visualization of co-authorship by country. Growth of co-authorship is observed across the panels A, B, and C. A)  
Co-authorship data from 2000 – 2007. B) Co-authorship data from 2008 – 2013. C) Co-authorship data from 2014 – 2020.  The sizes of the 
nodes indicate the number of publications of the country labeled. Links indicate co-authorship between countries. 

C) 2014 -2020
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For instance, in the realm of physics, research topics 

expanded and diversified from 9 nodes in panel A (in 

yellow) to more than 60 nodes in panel B (in green). 

Another example involves the topics “gene” or “genetic 

expression”. The network in panel A shows a small 

node connected to other topics associated with Human 

Research as well as the Biology and Biotechnology 

areas of ISS research.  

The network in panel B shows a large node that is highly 

interconnected, primarily with other Human Research 

topics. This interconnectivity tells us that genetic 

research on the space station has qualitatively changed 

from a topic typically associated with plants in the early 

days to a topic typically associated with humans and 

animal models today.

Figure 4 presents another VOSviewer analysis showing 

the network of co-authorship by country broken down 

by three time periods. The sizes of the nodes indicate 

the number of publications of the country labeled, and 

the links indicate co-authorship between countries.  

In panel A, the beginning years of ISS, the graph shows 

that the United States was the epicenter that drove 

collaboration with other countries (i.e., Germany, Russia, 

Italy, France, Japan, and Canada). In panel B, the graph 

shows that the United States remained an important 

participant in collaborative research, yet Japan, Russia, 

and Germany also demonstrated their outstanding 

efforts in collaborating with other countries such as 

Spain and the Netherlands. In panel C, the current 

ISS activity, the graph shows that the United States 

continues to be fundamental to the development of new 

research collaborations, yet countries such as England, 

Denmark, Germany, and Russia keep pace, establishing 

collaborations with other countries.  Overall, the graph 

demonstrates that the United States and other countries 

such as Germany, Japan, Russia, France, and Italy have 

multiplied their collaborative ties with other countries 

over the last 20 years to make breakthrough discoveries.

EVOLUTION OF SPACE STATION RESULTS 

The archive of ISS investigations went online in 2004.  

Since that time, the PSO team has implemented many 

changes to how it tracks investigations. The team has 

separated research disciplines and added new research 

disciplines as more investigations have become active. 

The team has added or redefined many fields since the 

rollout of the archive. Initially, the PSO Research Results 

team collected only publications that were either related 

to an investigation or presented direct results from an 

investigation via a publication or patent. More recently, 

the Program Science Database (PSDB) included the 

following publication types: 

•  ISS Results – publications that provide information 

about the performance and results of the investigation, 

facility, or project as a direct implementation on the ISS 

or on a vehicle to the ISS

•  Patents – applications filed based on the performance 

and results of the investigation, facility, or project on 

the ISS or on a vehicle to the ISS

•  Related – publications that lead to the development of 

the investigation, facility, or project.  

Through continual analysis of the database, the  

team has determined it is time for another change.  

We have implemented two new types of results 

publications to track: ISS Flight Preparation Results  

and Derived Results.  

ISS Flight Preparation Results are articles about the 

development work performed for the investigation, 

facility, or project prior to operation on the ISS. Derived 

Results are articles that use data from an investigation 

that operated on the ISS; however, the authors of the 

article are not members of the original investigation 

team. Derived Results articles have emerged as a 

direct outcome of the open data initiative, which 

provides access to raw data to researchers from 

outside the investigation, enabling them to analyze and 

publish results, providing wider scientific benefits, and 

expanding global knowledge. As of October 1, 2020,  

the PSO Research Results team identified 78 

publications as ISS Flight Preparation Results and 107 

publications as Derived Results. Although the Annual 

Highlights of Results spotlights ISS Results publications, 

recognition of these additional publication types in 

the database will contribute to the spread of scientific 

knowledge from the ISS.
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LINKING SPACE STATION BENEFITS

ISS research results lead to benefits for human 

exploration of space, benefits to humanity, and the 

advancement of scientific discovery. This year’s Annual 

Highlights of Results from the ISS includes descriptions 

of just a few of the results that were published from 

across the ISS partnership during the past year. 

ISS investigation results have yielded 

updated insights into how to live and work 

more effectively in space by addressing 

such topics as understanding radiation 

effects on crew health, combating bone and 

muscle loss, improving designs of systems 

that handle fluids in microgravity, and 

determining how to maintain environmental 

control efficiently. 

Results from the ISS provide new 

contributions to the body of scientific 

knowledge in the physical sciences, life 

sciences, and Earth and space sciences 

to advance scientific discoveries in 

multidisciplinary ways. 

ISS science results have Earth-based 

applications, including understanding our 

climate, contributing to the treatment of 

disease, improving existing materials, and 

inspiring the future generation of scientists, 

clinicians, technologists, engineers, 

mathematicians, artists, and explorers.

BENEFITS
FOR HUMANITY

DISCOVERY

EXPLORATION
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NASA astronaut Nick Hague works inside the Japanese Kibo laboratory module, supporting research activities with the Life Sciences Glovebox. 
Hague is conducting science operations for the Cell Science-02 bone healing and tissue regeneration experiment. (iss060e019982).

8
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PUBLICATION HIGHLIGHTS: 

BIOLOGY AND BIOTECHNOLOGY
The ISS laboratory provides a platform for investigations in the biological sciences that 
explores the complex responses of living organisms to the microgravity environment.  
Lab facilities support the exploration of biological systems, from microorganisms and 
cellular biology to the integrated functions of multicellular plants and animals. 

Plants can generate breathable air and  

be a source of food for crew members.  

ESA’s investigation, Seedling Growth-1, 

sought to understand the effects of gravity 

and light on plant development. Gravity  

is thought to be the primary factor, followed by light,  

that drives plant root and stem growth orientation.  

The investigation used the European Module Cultivation 

System aboard the ISS to examine the adaptation of 

Arabidopsis thaliana seedlings grown under different 

gravity conditions, including microgravity, Moon, Mars, 

Earth, and reduced-Earth. Seedlings were then exposed 

to white light for 96 hours followed by blue light for  

48 hours before they were frozen for further analyses  

on Earth. Seedling RNA was extracted and sequenced 

to identify all differentially expressed genes (DEGs). 

Analyses revealed that only one gene was differentially 

expressed across all gravity conditions (Figure 5).  

In addition, the same 14 genes appeared to be 

expressed differentially in microgravity, Moon gravity,  

and reduced-Earth gravity. These DEGs were associated 

with light and photosynthesis, chemical and hormone 

responses, and cell membrane structure and function. 

Overall, the number of DEGs was reduced as the 

difference from Earth gravity decreased. Even though 

a blue light was provided, genes associated with 

photosynthesis were still reduced at fractional gravities, 

suggesting that shared pathways exist between gravity 

and light perception responses.  

These results guide the current use and future 

implementation of bioregenerative plant support 

systems in space. 

Herranz R, Vandenbrink JP, Villacampa A, Manzano A, Poehlman WL, 
Feltus FA, Kiss JZ, Medina F. RNAseq Analysis of the Response of 
Arabidopsis thaliana to Fractional Gravity Under Blue-Light Stimulation 
During Spaceflight. Frontiers in Plant Science. 2019 November 26; 10: 
11 pp. DOI: 10.3389/fpls.2019.01529.

DISCOVERY

Figure 5. DEGs across the different gravity levels. Panels A and B 
show uncorrected and adjusted results. Panels C, D, and E show  
the most significant gene ontologies under different gravity levels. 
(Image courtesy of Herranz R, et al, Frontiers in Plant Science, 2019.)

9

https://www.frontiersin.org/articles/10.3389/fpls.2019.01529/full
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JAXA’s Characterization of Amyloid 

Formation Under Microgravity 

Environment: Toward Understanding the 

Mechanisms of Neurodegenerative 

Diseases (Amyloid) investigated the 

mechanisms behind amyloid fibril formation for the 

development of new treatments for diseases such as 

Parkinson’s and Alzheimer’s. Amyloid β (Aβ) fibrils are 

protein aggregates involved in the processes of 

neurodegenerative disorders. In a new study, 

researchers compared the growth of Aβ fibrils (i.e., 

nucleation and elongation) between microgravity and 

Earth conditions.  Four samples of Aβ (1-40) solution 

were flown to the ISS. Samples were thawed and 

incubated at 37°C to allow the growth of the fibrils. 

Growth was stopped at 6 hours and 1, 3 and 9 days, 

and the samples were transferred to cold stowage. 

Control samples were independently processed under 

the same conditions on the ground. 

Once the ISS samples were returned to Earth, the fibrils 

were analyzed using cryogenic electron microscopy, 

which allowed three-dimensional reconstruction of the 

different morphologies of Aβ fibrils grown in space 

(Figure 6). Overall, the results revealed two morphologies 

of Aβ fibrils that were more twisted and with a higher 

pitch than ground control samples. The two 

morphologies observed in microgravity were practically 

indistinguishable from one another. Space-grown Aβ 

fibrils also grew much more slowly than on Earth, similar 

to observations of crystal growth experiments. 

Reduced convection effects may explain the slow 

growth of Aβ fibrils in space, and kinetic differences  

(i.e., lack of sedimentation) may explain the new fibril 

structure observed in microgravity. 

The experimental environment of the ISS enables the 

search for the molecular mechanisms underlying 

amyloid formation and, more generally, the self-

organization of biological macromolecules on Earth.

These promising findings could assist the development 

of new pharmaceuticals aimed at inhibiting amyloid fibril 

formation to prevent or treat neurodegenerative 

conditions.  

Yagi-Utsumi M, Yanaka S, Song C, Satoh T, Yamazaki C, Kasahara 
H, Shimazu T, Murata K, Kato K. Characterization of amyloid ß fibril 
formation under microgravity conditions. npj Microgravity. 2020 June 
12; 6(1): 17. DOI: 10.1038/s41526-020-0107-y. 

NASA’s Assessment of Myostatin 

Inhibition to Prevent Skeletal Muscle 

Atrophy and Weakness in Mice Exposed 

to Long-Duration Spaceflight (Rodent 

Research-3-Eli Lilly), sponsored by 

pharmaceutical company Eli Lilly and Co. and ISS 

National Lab, studied molecular and physical changes 

in the musculoskeletal system of rodents in space. 

Mice exposed to spaceflight can be a valuable model 

to understand, target, and treat causes of muscle 

disuse atrophy and bone loss, including modeling grave 

muscle and bone diseases such as muscular dystrophy, 

osteoporosis, and musculoskeletal frailty with aging.

In a recent publication, researchers described results 

of their study of whether the inhibition of myostatin 

through the delivery of an antibody, YN41, could prevent 

the expected loss of skeletal muscle mass in a space 

environment. Mice were treated with YN41 one day 

before launching to the ISS, and at 2 and 4 weeks in 

space. Grip strength and body composition of the  

mice were measured at different time points during  

the 6-week experiment. At termination, mice were 

sacrificed and frozen in space, with the exception of  

the right hind leg, which was dissected and stored at 

room temperature.Figure 6. Aβ fibrils grown aboard the ISS (type-1 and type-2) and Aβ 
control fibrils grown on the ground (type-G). (Image courtesy of 
Yagi-Utsumi, M, et al, npj microgravity, 2020.)

EXPLORATION

BENEFITS
FOR HUMANITY

https://www.nature.com/articles/s41526-020-0107-y
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On Earth, further hind leg dissections of the 

gastrocnemius, soleus, and plantaris were bisected and 

imaged to measure the area of the cross sections of the 

muscle fibers. Bones were stained and analyzed using 

quantitative microcomputed tomography.  

Findings showed that the treatment with myostatin 

prevented all losses in lean mass, grip strength, and 

muscle weights (with the exception of the soleus) induced 

by microgravity (Figure 7). Mice treated with YN41 also 

prevented heart weight loss. Finally, myostatin inhibition 

did not have a detrimental effect on bone mineral density; 

however, it also did not prevent bone loss. 

This research demonstrates that myostatin inhibition 

is an effective countermeasure to prevent muscle loss 

produced by the harsh environment of space.

Smith RC, Cramer MS, Mitchell PJ, Lucchesi J, Ortega AM, Livingston 
EW, Ballard D, Zhang L, Hanson J, Barton K, Berens S, Credille KM, 
Bateman TA, Ferguson VL, Ma YL, Stodieck LS. Inhibition of myostatin 
prevents microgravity-induced loss of skeletal muscle mass and 
strength. PLOS ONE. 2020 April 21; 15(4): e0230818. DOI: 10.1371/

journal.pone.0230818.

Roscosmos’ investigation, Studying the 

Features of the Growth and Development 

of Plants, and Technology for their 

Culturing in Spaceflight on the ISS RS 

(Rastenia-Pshenitsa (Plants-Wheat), 

aimed to optimize the way plants are cultivated aboard 

the ISS. The main objective was to study the impact of 

spaceflight on plant development, particularly examining 

the effect on phenology and genetic expression after 

long-term microgravity exposure.

In a new study, researchers flew seeds of a super 

dwarf form of wheat and grew them in the Lada space 

greenhouse aboard the Russian segment of the ISS. 

The plants grew for a span of 90 days to encompass 

a full cycle of the wheat plant. The dried wheat plants 

were returned to Earth, and the bran of the kernels 

underwent morphological analysis with a scanning 

electron microscope.

Space-grown wheat seeds were significantly larger and 

heavier than ground controls (Figure 8). There was also 

a significant decrease in the length of the hairs and their 

angle of inclination. The side surfaces of the seeds – or 

cheeks – had large and small creases, and there was 

a significant decrease in the distance between cross 

cells, which are cells that elongate transversely that are 

only found in grasses. There was also a decrease in the 

width of tube cells, which grow in the inner epidermis of 

the seed wall.

These results suggest that although a space 

environment causes various disturbances to the 

structural organization of cells on the kernel surface, 

these differences do not appear to affect the proper 

development of wheat plants in space.

Baranova EN, Levinskikh MA, Gulevich AA. Wheat Space Odyssey: 
“From Seed to Seed”. Kernel Morphology. Life. 2019 October 25;  
9(4): 81. DOI: 10.3390/life9040081. 

Figure 7. Baseline, ground, and flight micro-computed tomography 
images obtained from the distal femur of mice treated with either 
IgG or YN41. Relative to the IgG ground group, the flight group 
showed that the microarchitecture of both trabecular and cortical 
compartments were significantly reduced with microgravity 
exposure, but were unchanged by myostatin inhibition.  
(Image courtesy of Smith RC., et al, PLOS ONE, 2020.)

11

EXPLORATION

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0230818
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0230818
https://www.mdpi.com/2075-1729/9/4/81
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Figure 8. The surface of the kernels and brush hairs of the grains 
obtained:  when cultivated aboard the ISS in the greenhouse “Lada” 
in a) ground conditions, b) in orbit, and c) parental seeds harvested. 
Histograms show d) brush hair length, e) the angle of the tip of the 
hair, and f) the angle of inclination of transverse brush hair lines. 
(Image courtesy of Baranova, EN et al., Life 2019.)



1313

Expedition 27 flight engineer and cosmonaut Andrey Borisenko during his fourth session of the Russian MBI-21 Pnevmokard (Pneumocard) 
experiment. Image was taken in the Zvezda Service Module (iss027e015221).
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Space anemia was identified from the first 

human presence in space. The suspected 

cause was a large-scale destruction of 

red blood cells (i.e., hemolysis) that rapidly 

adapts to fluid shifts. Recent long-duration 

mission data showed that astronauts were not anemic 

while on the ISS. The CSA investigation MARROW 

sought to characterize the problem of space anemia 

and develop methods to find its cause.

With more than 5 decades of astronaut data, MARROW 

revealed that space anemia occurs after landing after 

the reverse fluid shift is completed.  

The study’s statistically powerful epidemiologic approach 

demonstrated that red blood cell loss is proportional to 

the time spent in space, and the recovery from space 

anemia takes between 1 and 3 months, depending on 

mission duration (Figure 9).

An additional publication described methods to measure 

markers of human hemolysis in extreme environments. 

The elimination of endogenously produced carbon 

monoxide measured with a parts-per-billion precision 

constitutes a reliable marker of red blood cell destruction. 

MARROW successfully tested methods to collect  

and transfer astronaut air samples to examine carbon 

monoxide and identify causes of space anemia.  

These novel results illuminate the problem of space 

anemia and prepare for more knowledge acquisition  

on its causes to guide countermeasures and monitoring 

post-landing.

Trudel G, Shafer J, Laneuville O, Ramsay T. Characterizing the effect of 
exposure to microgravity on anemia: more space is worse. American 
Journal of Hematology. 2019 December 2; 95(3): 267-273. DOI: 
10.1002/ajh.25699. -- Shahin, N., Louati, H. & Trudel, G. Measuring 
Human Hemolysis Clinically and in Extreme Environments Using 
Endogenous Carbon Monoxide Elimination. Ann Biomed Eng 48, 
1540–1550 (2020). https://doi.org/10.1007/s10439-020-02473-5 

Previous research suggests that 

microgravity leads to activation of sodium- 

retaining hormones, even at normal  

sodium intake levels, causing positive 

sodium balances. An average- or high-sodium diet in 

microgravity may exacerbate bone resorption in space.

PUBLICATION HIGHLIGHTS: 

HUMAN RESEARCH
ISS research includes the study of risks to human health that are inherent in space 
exploration. Many research investigations address the mechanisms of these risks, 
such as the relationship to the microgravity and radiation environments as well as other 
aspects of living in space, including nutrition, sleep, and interpersonal relationships. Other 
investigations are designed to develop and test countermeasures to reduce these risks. 
Results from this body of research are critical to enabling missions to the lunar surface 
and future Mars exploration missions.

Figure 9. Changes in hemoglobin (Hb) concentration after return to 
Earth by mission duration. All astronauts showed reduced Hb levels 
after spaceflight,; however, astronauts participating in long-duration 
missions experienced the most pronounced drops. (Image courtesy of 
Trudel, G. et al., American Journal of Hematology, 2019.)

EXPLORATION

14

EXPLORATION

https://pubmed.ncbi.nlm.nih.gov/31816115/
https://pubmed.ncbi.nlm.nih.gov/31816115/
https://link.springer.com/article/10.1007/s10439-020-02473-5
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Microgravity may affect osmotically inactive sodium 

storage, a mechanism involved in volume regulation in 

the human body.  This reaction can result in the retention 

of salt and fluid during spaceflight. ESA’s investigation, 

SOdium LOading in Microgravity (SOLO), examined 

astronauts’ central blood volume in relation to their 

dietary sodium intake levels in space and on Earth 

(Figure 10). Astronauts were assigned to either a low-

sodium or high-sodium diet group for 5 days. Water 

and other nutrients were the same for both diet groups. 

Blood samples were collected from the astronauts on 

the last day of the diet. Sodium, creatine, midregional 

proatrial natriuretic peptide, N-terminal Pro-B type 

natriuretic peptide, and aldosterone were analyzed.

Regardless of diet group, results revealed that 

astronauts tended to retain more sodium in space and 

excrete more sodium on Earth. Thoracic fluid content 

was reduced in space, and aldosterone regulation was 

practically identical in space and on Earth.

These results suggest that cardiac natriuretic peptide 

concentrations responsive to sodium changes, which 

facilitate pressure/volume homeostasis, are reset 

to lower levels in space. Researchers recommend 

further investigation into the role of sodium in blood 

volume regulation to determine whether the effects are 

temporary or permanent.

The exploratory nature of this study encourages the 

development of new investigations in the areas of fluid 

regulation and homeostasis, essential topics to the 

health of astronauts in space. 

Frings-Meuthen P, Luchitskaya ES, Jordan J, Tank J, Lichtinghagen 
R, Smith SM, Heer MA. Natriuretic peptide resetting in astronauts. 
Circulation. 2020 May 12; 141(19): 1593-1595. DOI: 10.1161/
CIRCULATIONAHA.119.044203.

Figure 10. In the Columbus laboratory of the ISS, NASA astronaut Dan Burbank, Expedition 30 commander, enters data for the High Salt 
Diet protocol of the Sodium Loading in Microgravity (SOLO) experiment (iss030e117431).

https://www.ahajournals.org/doi/10.1161/CIRCULATIONAHA.119.044203
https://www.ahajournals.org/doi/10.1161/CIRCULATIONAHA.119.044203
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Skeletal muscles atrophy and weaken 

during spaceflight. Many crew members 

experience orthostatic intolerance 

immediately after returning to Earth.  

JAXA’s investigation, The Elucidation of 

the Re-adaptation on the Attitude Control After 

Return from Long Term Spaceflight (Synergy), 

measured crew members’ blood flow in the legs, 

centers of gravity, and electrical activity in skeletal 

muscle to determine how the ability to stand upright  

can be recovered.

In a recent study, the blood flow of astronauts was 

examined before and after flight using a laser blood flow 

meter. The noninvasive blood flow monitoring technique 

uses near-infrared light and measures blood flow in the 

capillaries and small blood vessels close to the skin 

surface. Changes in wavelength and strength of the 

light were used to analyze blood flow. This powerful 

technique determines blood flow changes over time or 

over an area of the skin. Astronauts were asked to step 

five times on the same spot to take the measurements. 

A probe that measured blood flow was attached to the 

skin surface on the central region of the right calf muscle 

while the astronauts were tested.

Results showed reduced blood flow in the lower limbs, 

induced by long-duration spaceflight (3 – 6 months). 

This result was observed postflight on days 1 and 7.  

At postflight month 1, blood flow had recovered to 

preflight levels (Figure 11). Physical activities after 

return to Earth are known to improve muscle mass and 

pumping, which consequently increases blood flow in 

the lower limbs. 

These results suggest that physical rehabilitation is 

fundamental for the improvement of blood flow  

during the first month postflight. Researchers hope 

to examine countermeasures using mild hyperbaric 

oxygen known to recover reduced blood flow due to 

injury, disease, old age, or weightlessness. Increased 

understanding of recovery duration is expected to  

assist rehabilitation schedules.

Ishihara A, Terada M, Hagio S, Higashibata A, Yamada S, Furukawa S, 
Mukai C, Ishioka N. Blood flow in astronauts on Earth after long space 
stay. Acta Astronautica. 2020 May 16; epub: 16 pp. DOI: 10.1016/j.
actaastro.2020.05.017.

Metabolic changes associated with microgravity that 

produce calcium loss and are associated 

with microgravity can result in bone density 

reductions during spaceflight. The ASI 

investigation, Nanoparticles-based 

countermeasures for Treatment of 

Microgravity-induced Osteoporosis (Nanoparticles 

and Osteoporosis), examines the role of nanoparticles 

in the development of bone loss countermeasures. 

Results from this investigation are expected to protect 

the health of astronauts and that of individuals on Earth 

who have bone conditions such as osteoporosis.

A groundbreaking study examined the effect of a new 

nanoparticle drug, with suspensions of calcium  

(nCa-HAP) and strontium (nSr-HAP), on human bone 

marrow stem cell differentiation across three conditions: 

Earth gravity, simulated gravity using a Random 

Positioning Machine, and microgravity on the ISS.

The human bone marrow mesenchymal stem cell 

(hBM-MSC) samples were isolated and phenotypically 

analyzed to assess their properties. The hBM-MSCs 

were cultured at 37°C in a humidified incubator with 5% 

CO2 in a medium maintenance, low-glucose osteogenic 

medium to induce osteogenesis. The treatment lasted 

no more than 28 days and the medium was changed 

every 3 days. Immunofluorescent dyes identified cell 

death, cell structure changes, and bone extracellular 

matrix deposits.

Figure 11. Bar chart depicting results of blood flow in the right  
lower limbs of astronauts at the first and fifth steps on the same 
spot at preflight, postflight day 1, postflight day 7, postflight month 
1, and postflight month 3. (Image courtesy of Ishihara, A. Acta 
Astronautica, 2020.)

EXPLORATION

DISCOVERY
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Results showed positive effects of the drug on new 

bone regeneration. Depending on the condition, 

strontium-containing nanoparticles accelerated stem  

cell differentiation into osteoblasts, counteracted 

microgravity-induced osteoporosis, or improved the 

deposition of the nanoparticles (Figure 12). 

Researchers believe that delivery of the drug for the 

promotion of bone remodeling can be implemented 

through pharmaceuticals or food supplements.

Cristofaro F, Pani G, Pascucci B, Mariani A, Balsamo M, Donati A, 
Mascetti G, Rizzo AM, Visai L, Rea G. The NATO project: nanoparticle 
based countermeasures for microgravity-induced osteoporosis. 
Scientific Reports. 2019 November 20; 9(1): 1-15. DOI: 10.1038/
s41598-019-53481-y.

The Roscosmos’ investigation, Early 

Detection of Osteoporosis in Space 

(EDOS), examines bone loss using a 

high-resolution three-dimensional peripheral 

quantitative computed tomography 

(3DpQCT) technique for the early detection of bone 

impairment and bone microarchitectural changes to 

provide information about the biomechanics of bone. 

The goal is to demonstrate the viability and feasibility of 

3DpQCT to provide accurate measurements of bone 

tissue following missions in microgravity.

A new study conducted an in-depth bone mineral 

analysis of the lower back before and after spaceflight 

using surveys to estimate bone density. 

Results revealed that there were no significant 

differences in pre- and postflight values of projection 

area of the lumbar spine (Figure 13). This outcome 

indicates that no anatomical changes occurred.  

The known increase in height of the lumbar segment 

was not observed in this study.

Further analyses indicated that the lumbar vertebrae are 

marked by a negative pattern of bone mineral content 

changes. Additionally, mineral content examined for the 

first time showed that the reduced mineralization 

observed in the upper region of the lower back results 

from the significant functional load carried under Earth 

gravity in the region of the lower back. Researchers point 

out that this is exactly the opposite of how osteoporosis 

develops on Earth, where less-loaded vertebrae are 

more likely to deteriorate.

Since crew members exhibit bone loss characteristics 

similar to osteoporosis on Earth, this research could 

contribute to the development of medical devices that 

enable the early detection of osteoporosis. Improved 

early-stage diagnostics are expected to assist the 

conceptualization of future treatments to combat the 

effects of osteoporosis on Earth.

Gordienko KV, Novikov V, Servuli E, Nosovsky AM, Vasilieva GY. 
Detailed Analysis of the Central Osteodensitometry Data from 
Cosmonauts Participating in the Mir and ISS Programs. Human 
Physiology. 2019 December 1; 45(7): 764-767. DOI: 10.1134/
S0362119719070065.

Figure 12. Effect of nanoparticles on alkaline phosphatase (ALP) activity and protein immunolocalization in gravity conditions. Panel a) 
ALP-specific activity of untreated, calcium- or strontium-treated cells for 8 and 28 days in an osteogenic medium. Panels b) – d) are  
representative images of ALP immunostaining of b) untreated, c) calcium-treated, or d) strontium-treated cells cultured for 28 days in  
an osteogenic medium. (Image courtesy of Cristofaro, F. Scientific Reports, 2019.)

BENEFITS
FOR HUMANITY

Figure 13. Bone mineral content at various locations of the lumbar 
spine before and after flight. Image courtesy of Gordienko, KV 2019.

https://www.nature.com/articles/s41598-019-53481-y
https://www.nature.com/articles/s41598-019-53481-y
https://link.springer.com/article/10.1134/S0362119719070065
https://link.springer.com/article/10.1134/S0362119719070065
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A view of the Zero Boil-Off Tank (ZBOT) experiment Vacuum Jacket Camera Window Cover hardware. ZBOT uses an experimental fluid to test 
active heat removal and forced jet mixing as an alternative means for controlling tank pressure for volatile fluids. Results from the investigation 
improve models used to design tanks for long-term cryogenic liquid storage, which are essential in biotechnology, medicine, industrial, and 
many other applications on Earth. (iss051e028301)
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ESA’s EML Batch 1 - THERMOLAB 

Experiment measures the thermophysical 

properties of industrial alloys to improve 

solidification processes. A recent study 

reports on a series of investigations 

that were performed using the Electro-Magnetic 

Levitator (EML) on board the ISS. In particular, the 

study documents the results gained regarding three 

commercial high-temperature alloys (nickel-based 

superalloys) that are widely used in turbines and 

other energy applications. These results include high-

accuracy thermophysical property data (liquid surface 

tension, viscosity, mass density, specific heat capacity) 

that cannot be obtained on Earth and are essential for 

advancing manufacturing efficiency and product quality.

Results showed that the surface tension of the three 

superalloys was lower, the viscosity in the stable  

liquid phase was higher, and the overall density  

was dominated by the quantity of heavy elements 

(Figure 14). There were also no apparent signs of 

oxide formation on returned samples. Higher accuracy 

of specific heat capacities was obtained using the 

containerless processing method.

PUBLICATION HIGHLIGHTS: 

PHYSICAL SCIENCE
The presence of gravity greatly influences our understanding of physics and the 
development of fundamental mathematical models that reflect how matter behaves.  
The ISS provides the only laboratory where scientists can study long-term physical effects 
in the absence of gravity without the complications of gravity-related processes such 
as convection and sedimentation. This unique microgravity environment allows different 
physical properties to dominate systems, and scientists are harnessing these properties 
for a wide variety of investigations in the physical sciences.

Figure 14. Panels a-c show surface tension of LEK94, MC2, and CMSX-10 in response to temperature. Panels d-f show viscosity of of LEK94, 
MC2, and CMSX-10 in response to temperature. (Image courtesy of Mohr, M. Advanced Engineering Materials, 2020.)

BENEFITS
FOR HUMANITY
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This study brings together longtime efforts on the 

ISS EML facility, the development of experimental 

techniques for high-accuracy measurement of melt 

properties, and the application of these techniques to a 

set of industrially relevant alloys. Of scientific as well as 

engineering significance, the manuscript is anticipated  

to become a reference work on the topic.

Mohr M., Wunderlich R., Dong Y., Furrer D., Fecht H.-J.; 
"Thermophysical properties of advanced Ni-based superalloys in 
the liquid state measured on board the International Space Station"; 
Advanced Engineering Materials 22/4 (2020): 1901228 (DOI 10.1002/
adem.201901228)

The JAXA facility Electrostatic Levitation 

Furnace (ELF) uses containerless 

processing techniques to levitate, melt, and 

solidify materials. Researchers use this 

facility to measure the thermophysical 

properties of materials in high-temperature melts and  

to solidify materials from deeply undercooled melts. 

Using semiconductor lasers, ELF can heat samples 

above 2000 degrees Celsius and measure the density, 

surface tension, and viscosity of high-temperature 

materials. It is challenging to measure these properties 

on the ground. Other research objectives, such as the 

synthesis of new materials, can be accomplished using 

the ELF. The most typical materials used in the ELF are 

oxides and insulators that cannot be handled in other 

levitation furnaces on the ISS. 

A new ELF experiment discovered an unusual structure 

of liquid Erbium Oxide (Er2O3), combined with ground 

experiments using synchtron X-rays and supercomputer 

simulations. Researchers observed the formation of 

distorted tetraclusters and a very sharp principal peak 

in the diffraction pattern. Tetraclusters appeared to be 

coordinated in intermediate-range, thus hindering glass 

transition and leading to crystallization (Figure 15). 

Notably, the arrangement of the tetraclusters was  

not observed in other oxide liquids. In addition, 

computer simulations determined that Er2O3 is a  

highly fragile liquid. 

Taken together, these results suggest that a very sharp 

principal peak is a specific signature for the formation  

of a tetracluster network with long-range periodicity.  

This finding is a paradigm shift for condensed matter 

physics – in particular, for glass transition and the 

development of new materials.

Koyama C, Tahara S, Kohara S, Onodera Y, Smabraten DR,  
Selbach SM, Akola J, Ishikawa T, Masuno A, Mizuno A, Okada JT, 
Watanabe Y, Nakata Y, Ohara K, Tamaru H, Oda H, Obayashi I, 
Hiraoka Y, Sakata O. Very sharp diffraction peak in nonglass-forming 
liquid with the formation of distorted tetraclusters. NPG Asia Materials. 
2020 June 2; 12(1): 1-11. DOI: 10.1038/s41427-020-0220-0.

NASA’s Cold Atom Lab - Bose-Einstein 

Condensate Bubble Dynamics 

investigation examines ultracold states of 

matter by creating a quantum gas known as 

a BEC, which is kept in a bubble-like 

structure, to answer questions about quantum 

mechanics. Understanding the behavior of quantum gas 

bubbles will enhance next-generation quantum sensors 

and simulators. The study of the ultracold is a new 

frontier that has grown exponentially in the last 20 years 

since the first observation of Bose-Einstein condensation. 

Studying a quantum gas with a new confinement 

geometry enables the exploration of new areas of BEC 

physics and elucidates the nature of ultracold systems.

In a groundbreaking study, researchers examined the 

cooling and trapping of atomic gases to form a BEC, 

allowing quantum behavior to be inspected at a 

macroscopic scale for long durations in microgravity. 

Figure 15. a) Calculated atom resolved of density and inverse 
participation rations for l-Er2O3. b) Calculated density of c-Er2O3 for 
comparison. c) Visualization of the highest occupied molecular band. 
d) Visualization of the lowest unoccupied molecular band. Er and O 
atoms are shown in green and red, respectively. Yellow and cyan 
correspond to different signs of the wavefunction. (Image courtesy of 
Koyama, C. NPG Asia Materials, 2020.)

DISCOVERY

DISCOVERY

https://onlinelibrary.wiley.com/doi/full/10.1002/adem.201901228
https://onlinelibrary.wiley.com/doi/full/10.1002/adem.201901228
https://www.nature.com/articles/s41427-020-0220-0
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Microgravity allowed the atoms to be manipulated by  

weaker magnetic fields, speeding cooling and allowing 

clearer imaging of BECs before diffusing (Figure 16). 

Scientists observed the fifth state of matter in microgravity 

for the first time, offering unprecedented insight into 

Einstein’s theory of relativity.

Studying BECs in microgravity opens additional research 

arenas in gravitational waves, spacecraft navigation, and 

prospecting for subsurface minerals on the Moon and 

other planetary bodies.

The opportunity to study BEC’s new geometry in space 

reinforces the need for the space station, as a facility, to 

conduct research in the field of ultracold atomic physics. 

Daily life applications on Earth include the development 

of quantum computers. Additionally, with routine BEC 

production, continued operations on the ISS will support 

new investigations of unique trap topologies, atom-laser 

sources, few-body systems, and trailblazing techniques 

for atom-wave interferometry.

Aveline DC, Williams JR, Elliott ER, Dutenhoffer CA, Kellogg JR,  
Kohel JM, Lay NE, Oudrhiri K, Shotwell RF, Yu N, Thompson RJ. 
Observation of Bose–Einstein condensates in an Earth-orbiting 
research lab. Nature. 2020 June 11; 582(7811): 193-197. DOI: 
10.1038/s41586-020-2346-1.

Figure 16. A false-color absorption image shows a BEC produced in the Cold Atom Lab on the ground. (Image courtesy of Aveline DC,  
Nature, 2020.)

https://www.nature.com/articles/s41586-020-2346-1
https://www.nature.com/articles/s41586-020-2346-1
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NASA astronaut Serena Auñón-Chancellor works to insert a Microgravity Investigation of Cement Solidification (MICS) Module into the 
Multi-use Variable-g Platform (MVP) facility (iss057e106261).
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NASA’s Biomolecule Sequencer 

investigation tests the functionality of a 

permanent molecular biology capability that 

allows scientists to sequence DNA in  

space in real time. This new resource 

enables prompt genetic expression examinations of 

microorganisms, thereby rendering crew members more 

independent in their decision-making and problem-

solving strategies.

A new study developed and tested an end-to-end 

sample-to-sequencer process that could be conducted 

entirely aboard the ISS (Figure 17). The identifications 

obtained by the unit on board the ISS — Staphylococcus 

hominis and Staphylococcus capitis — matched those 

determined on the ground down to the species level. 

This marks the first-ever identification of microbes entirely 

off Earth. This validated process could be used for 

in-flight microbial identification, diagnosis of infectious 

PUBLICATION HIGHLIGHTS: 

TECHNOLOGY DEVELOPMENT 
AND DEMONSTRATION
Future exploration — the return to the Moon and human exploration of Mars — 
presents many technological challenges. Studies on the ISS can test a variety of 
technologies, systems, and materials that are needed for future exploration missions. 
Some technology development investigations have been so successful that the 
test hardware has been transitioned to operational status. Other results feed new 
technology development.
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Figure 17. Workflow of the first on-orbit sequencing library preparation and in situ sequencing of bacterial colonies cultured from the ISS. 
(Image courtesy of Burton, A. Genes, 2020.)

DISCOVERY
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disease in a crew member, and as a research platform 

for investigators around the world.

The sequencer could greatly improve and accelerate 

scientific research on the ISS by permitting microbe 

identification, disease diagnostics, and collection of 

real-time genomic data. This technology would also 

allow astronauts to examine and identify life based on 

DNA and DNA-like molecules during future missions  

to Mars. 

Burton AS, Stahl SE, John KK, Jain M, Juul S, Turner DJ,  
Harrington ED, Stoddart D, Paten B, Akeson M, Castro-Wallace 
SL. Off Earth Identification of Bacterial Populations Using 16S rDNA 
Nanopore Sequencing. Genes. 2020 January 9; 76(11): 76. DOI: 
10.3390/genes11010076.

The Roscomos’ investigation, Studying the 

Hydrodynamics and Heat Transfer of 

Monodisperse Droplet Streams in 

Microgravity (Kaplya-2), tests and 

validates the operation of droplet generators in 

microgravity and high-vaccum conditions by verifying 

the main parameters of monodisperse droplet streams. 

The investigation additionally confirms the continuous 

operation of a closed hydraulic circuit.

A new study provides a comprehensive analysis of 

possible designs of radiator coolers used to reject 

low-potential heat from spacecraft (Figure 18). As a result 

of conducting the set of computational and experimental 

investigations, droplet radiant cooler (DRC) units have 

been created and tested under ground conditions.  

The newly developed units were tested with a closed 

cycle of the operating process implemented during the 

ground investigations and tests. The conclusion of the 

ground tests indicates that DRCs substantially 

outperform all the existing designs of heat exchangers 

with regard to heat-rejection efficiency and weight-size 

characteristics, with the following confirmations: 

•  Stable droplet flow of the working medium in parallel 

jet flows at the outlets of the single-row and multi-row 

generators once the pressure reaches a stationary 

regime inside the droplet generators.

•  Working capacity of elements of the passive collector.

•  Fundamental possibility of creating an active droplet 

collector that ensures full collection of the working 

medium.

The scientific and technical results obtained during this 

investigation validate the workflow of droplet refrigerator 

radiators to assist the design and development of droplet 

radiator equipment for power units used in space. 

Minimal thermal resistance between the coolant and the 

radiating surface, protection to meteor breakdown, and 

low mass render these radiators beneficial in spacecraft.

Konyukhov GV, Bukharov AV, Konyukhov VG. On the problem of 
rejection of low-potential heat from high-power space systems. 
Journal of Engineering Physics and Thermophysics. 2020 February 27; 
93: 16-27. DOI: 10.1007/s10891-020-02086-8.

The Roscosmos’ investigation 

Development of a System of Supervisory 

Control Over the Internet of the Robotic 

Manipulator in the Russian Segment of 

ISS (Kontur) examined time delays in the 

development of visual control systems to operate the ISS 

robotic arm remotely via the internet.

An alternative to sending humans to Mars to build 

habitats is to use robots to build such habitats through 

Figure 18. Russian cosmonaut Oleg Kotov, Expedition 38  
commander, sets up the Particle Cooler/Generator Module for  
the Kaplya-2 experiment in the Rassvet Mini-Research Module 1 
(MRM1) of the ISS (iss038e029764).

EXPLORATION
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remote operations from space. A new feasibility study 

used the ISS as the orbiter and Earth as the location  

of the teleoperated robot to investigate whether  

the provision of force feedback at the joystick is as 

beneficial in microgravity as under terrestrial conditions 

(Figure 19). Using two tasks — a free motion task 

requiring rapid aimed robot motions and a contact task 

requiring minimal surface contact when moving the 

robot along a curved structure — researchers set out to 

determine whether touch and motion technology needs 

to be adjusted to the altered environmental conditions in 

space to support humans operating in weightlessness. 

Results indicated that microgravity had an impact on 

motion control after 6 weeks. Motor control strategy 

shifted from speed to accuracy during aiming to avoid 

highly reactive forces on the human body and limbs, 

which are difficult to compensate for in a state of 

weightlessness. Adding touch and motion technology 

impaired performance in microgravity. Future studies 

could investigate how certain parameters hinder or 

facilitate performance during spaceflight. 

Study results emphasize that force feedback is 

indispensable for space teleoperation missions. 

Researchers recommend the continued examination  

of teleoperations from space using larger samples, in 

different mission phases, and with a more extensive 

variety of tasks.

Weber B, Balachandran R, Riecke C, Stulp F, Stelzer M. Teleoperating 
robots from the International Space Station: Microgravity effects on 
performance with force feedback. IEEE International Conference on 
Intelligent Robots and Systems, IROS 2019, Macau, China; 2019 
November 4. 8138-8144. Webpage

Figure 19. Roscosmos cosmonaut Oleg Novitsky during the Kontur-2 experiment. Image taken in the Zvezda Service Module (iss050e075473).

https://elib.dlr.de/130734/
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View of the External Payload Facility attached to the Columbus European Laboratory. The Atmosphere-Space Interactions Monitor and High 
Definition Earth Viewing payloads are in view. Photo was taken by the ground-controlled External High Definition Camera 3 (iss057e080463).
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The ESA investigation, Atmosphere-Space 

Interactions Monitor (ASIM), is an Earth 

observation facility designed to study severe 

thunderstorms, atmosphere, and climate. 

ASIM studies high-altitude electrical 

discharges such as transient luminous events (TLEs) 

and terrestrial gamma-ray flashes (TGFs) from the 

external payload platform on the Columbus module  

of the ISS. 

In a new study, researchers used data obtained by 

ASIM’s three photometers to determine whether  

TLEs and TGFs are independent or somewhat  

related phenomena.

ASIM identified a TGF produced in the initial stage of a 

lightning flash. The TGF was observed close to the 

island of Sulawesi in Indonesia. Multiple parameters 

used in the optical and X-ray measurements consistently 

identified the convective cloud as the source of lightning 

associated with the TGF (Figure 20). A TLE (i.e., an elve) 

was also detected, but with a delay corresponding to 

the travel times of the electromagnetic pulse. TLE optical 

pulses were bright and rose out of pre-activity, 

suggesting that a delay resulted from the limitations of 

the sensor sensitivities; however, the optical pulses start 

at approximately the same time as the TGF.

These observations show the temporal sequence of 

emissions using various optical, ultraviolet, X-ray, and 

gamma-ray bands of a TGF, and demonstrate that TLEs 

and TGFs are related. 

The ASIM investigation improves our knowledge of 

thunderstorms in relation to ionosphere and radiation 

belts, as well as meteor distribution that affects the 

Earth’s atmosphere. 

Neubert T, Ostgaard N, Reglero V, Chanrion O, Heumesser M, 
Dimitriadou K, Christiansen F, Budtz-Jorgensen C, Kuvvetli I, 
Rasmussen IL, Mezentsev A, Marisaldi M, Ullaland K, Genov G,  
Yang S, Kochkin P, Navarro-Gonzalez J, Connell PH, Eyles CJ. A 
terrestrial gamma-ray flash and ionospheric ultraviolet emissions 
powered by lightning. Science. 2019 December 10; epub: 8 pp.  
DOI: 10.1126/science.aax3872.

PUBLICATION HIGHLIGHTS: 

EARTH AND SPACE SCIENCE
The position of the space station in low-Earth orbit provides a unique vantage point for 
collecting Earth and space science data. From an average altitude of about 400 km, 
details in such features as glaciers, agricultural fields, cities, and coral reefs that can be 
seen in images taken from the ISS can be combined with data from orbiting satellites and 
other sources to compile the most comprehensive information available. Even with the 
many satellites now orbiting in space, the ISS continues to provide unique views of our 
planet and the universe.

Figure 20. A lightning flash analysis. (Image courtesy of Neubert, T. 
Science, 2019.)

DISCOVERY
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Three JAXA external payloads installed on 

the same module on the ISS — Space 

Environment Data Acquisition Equipment 

- Attached Payload (SEDA), CALorimetric 

Electron Telescope (CALET), and Monitor 

of All-sky X-ray Image (MAXI) — were used collectively 

to estimate and quantify radiation dosage during 

relativistic electron precipitation (REP) events (Figure 21). 

The assessment of radiation dose rate during such events 

will allow researchers to determine whether the level of 

radiation poses a significant health risk to astronauts.

For more than 50 years, researchers have identified 

REP events using radio waves. These REPs are 

unusually enhanced ionization of the mesosphere, 

known to play a role in space weather forecasts and 

the Earth's atmosphere. In a new study, researchers 

quantified radiation dose data from the three 

instruments while considering the impact to astronauts 

who are sporadically exposed when participating in 

extravehicular activities.

During a 2.5-year period of overlapping operations of 

the three instruments, 762 REP events were detected 

on board the ISS, with 34 relatively strong REP events 

exceeding 1 mSv per event, including the largest event 

of 3 mSv (ionizing radiation dose). These radiation 

exposure dose rates were then evaluated through an 

astronaut helmet visor hypothetically encountering a 

REP event during an extravehicular activity. Researchers 

found that the electrons with larger energy have a larger 

effect on the lens of the eyes. However, the overall 

finding indicated that REP exposure dose to the lens of 

eye is lower than the recommended limit.

These data indicate that such low radiation rates are 

unlikely to affect astronauts’ health, though cumulative 

radiation exposure over several months could produce a 

different outcome. 

This study demonstrates the enhanced power of 

research and discovery when multiple resources are 

used together, as well as performance of the ISS to 

accommodate various payloads.

Ueno H, Nakahira S, Kataoka R, Asaoka Y, Torii S, Ozawa S, 
Matsumoto H, Bruno A, de Nolfo G, Collazuol G, Ricciarini SB. 
Radiation dose during relativistic electron precipitation events at the 
International Space Station. Space Weather. 2020 July; 18(7): 7 pp. 
DOI: 10.1029/2019SW002280.

The NASA investigation, Arcsecond 

Space Telescope Enabling Research In 

Astrophysics (ASTERIA), is a six-unit small 

satellite deployed from the ISS. ASTERIA 

is designed to probe new technologies for 

astrophysical observations and complex measurements, 

including the detection of planets outside our solar 

system and the brightness of stars over time (Figure 

22). The goal of this investigation is to use cutting-

edge technologies such as arcsecond-level line of sight 

pointing error and focal plane temperature control to 

make precision photometry possible.  Space-based 

photometric measurements are a powerful tool for 

astrophysics. Since the variable of time on existing large 

space telescopes is scarce, small satellite platforms are 

the logical alternative.

Figure 21. CEO images of Chicago, IL, USA at night on (A) January 
19, 2008, (B) January 31, 2012 and (C) October 9, 2013 
(ISS16E024220, ISS30E061820, ISSE037E008303).

Figure 22. A view of the ASTERIA satellite moments after deployment 
from the ISS. ASTERIA is a six-unit CubeSat, deployed from the ISS, 
that tests new technologies for astronomical observation  such as 
the detection of planets outside our solar system (iss053e470644).

DISCOVERY

EXPLORATION

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019SW002280
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ASTERIA was used for opportunistic observations and 

photometric data of an exoplanetary system called 55 

Cancri. Researchers implemented a routine workflow 

with advanced mathematical calculations to adjust the 

data and obtain reliable results. The analyses revealed 

the exoplanet 55 Cancri e — a known transiting super-

Earth orbiting a Sun-like star.

The resulting data of the transit search demonstrated 

that a signal can be seen in ASTERIA data; however, not 

at a level that is significant enough to claim independent 

detection without prior knowledge of the planet orbit 

and transit. However, ASTERIA demonstrated the 

capability of sub-Arcsecond pointing and thermal control 

using passive cooling and active heating.

This is the first time an exoplanet transit has been 

detected by a small satellite. The successful identification 

of 55 Cancri e demonstrates that an inexpensive 

spacecraft designed with an adaptable model of science 

in mind can deliver groundbreaking results.

Ueno H, Nakahira S, Kataoka R, Asaoka Y, Torii S, Ozawa S, Knapp 
M, Seager S, Demory B, Krishnamurthy A, Smith MW, Pong CM, 
Bailey VP, Donner A, Di Pasquale P, Campuzano B, Smith C, Luu 
J, Babuscia A, Bocchino, Jr. RL, Loveland J, Colley C, Gedenk T, 
Kulkarni T, Hughes K, White M, Krajewski J, Fesq L. Demonstrating 
high-precision photometry with a CubeSat: ASTERIA observations  
of 55 Cancri e. The Astrophysical Journal. 2020 June; 160(1): 23.  
DOI: 10.3847/1538-3881/ab8bcc.

The NASA investigation, Neutron star 

Interior Composition Explorer (NICER), 

analyzes neutron stars, which are bright  

star residues that remain after the  

explosion of massive stars, thus providing 

new insights into their nature and behavior (Figure 23). 

The Station Explorer for X-ray Timing and Navigation 

Technology (SEXTANT) is included in this investigation. 

SEXTANT aims to demonstrate a GPS-like capability by 

detecting millisecond pulsars that enable autonomous 

navigation throughout the solar system and beyond.

A recent study analyzed a sample of NICER data 

to understand the periodicity of quiescent periods 

and flare-ups of black hole and X-ray binary MAXI 

J1535−571. Low mass X-ray binaries (LMXBs) spend 

most of their time in a calm and quiet state; however, 

they occasionally exhibit outbursts. To date, there is 

no explanation to these reflares. The brightness of the 

reflares is very faint and only highly sensitive instruments 

can detect the necessary information. Processing of 

NICER data included the calculation of energy spectra, 

light curve and intensity, and timing analysis. Results 

showed that the brightness of the binary declined slowly 

for approximately 106 days before showing a slight 

increase. A sequence of four reflares was observed, with 

flares occurring approximately every 31 to 32 days.  

Researchers noticed that the reflares fluctuated between 

the hard area and a softer area of their analysis, 

demonstrating hysteresis. Additionally, researchers 

identified that temperature correlated with the light curve.

In conclusion, researchers found that reflares underwent 

state transitions, reaching softer states at the peak of 

the first flare and returning to the hard state during the 

valleys. These state transitions display a hysteresis loop 

that resembles the hysteresis of other LMXBs with both 

black hole and neutron star accretors. These results  

suggest that the same physical processes drive 

outbursts and reflares, even when the X-ray luminosity  

is different by two orders of magnitude.

Cuneo VA, Alabarta K, Zhang L, Altamirano D, Mendez M, Padilla 
MA, Remillard RA, Homan J, Steiner JF, Combi JA, Munoz-Darias T, 
Gendreau KC, Arzoumanian Z, Stevens AL, Loewenstein M, Tombesi 
F, Bult PM, Fabian AC, Buisson DJ, Neilsen J, Basak A. A NICER look 
at the state transitions of the black hole candidate MAXI J1535-571 
during its reflares. Monthly Notices of the Royal Astronomical Society. 
2020 June 9; epub: 12 pp. DOI: 10.1093/mnras/staa1606.
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Figure 23. View of the Neutron Star Interior Composition ExploreR 
(NICER) payload, attached to Expedite the Processing of Experiments 
to Space Station (ExPRESS) Logistics Carrier-2 (ELC-2) on the  
S3 Truss. (iss057e055436)

EXPLORATION

https://iopscience.iop.org/article/10.3847/1538-3881/ab8bcc/meta
https://academic.oup.com/mnras/article/496/2/1001/5855052
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ISS Research Results Publications  
October 1, 2019 – October 1, 2020
(Listed by category and alphabetically by investigation.)

BIOLOGY AND BIOTECHNOLOGY

Advanced Plant Habitat (Plant Habitat) — Monje OA, 

Richards JT, Carver JA, Dimapilis DI, Levine HG, et al. 

Hardware validation of the Advanced Plant Habitat  

on ISS: Canopy photosynthesis in reduced gravity.  

Frontiers in Plant Science. 2020; 11: 15 pp.  

DOI: 10.3389/fpls.2020.00673. 

Amyloid Aggregation (Amyloid Aggregation) — 

Berrone E, Cardone F, Corona C, Sbriccoli M, Favole A,  

et al. The Amyloid Aggregation study on board the 

International Space Station, an update. Aerotecnica 

Missili & Spazio. 2020 June 1; 99(2): 141-148.  

DOI: 10.1007/s42496-020-00049-z. 

ARC ISS Drosophila Experiment (Fruit Fly Lab-

01 (FFL-01)) — Gilbert R, Torres ML, Clemens R, 

Hateley S, Hosamani R, et al. Spaceflight and simulated 

microgravity conditions increase virulence of Serratia 

marcescens in the Drosophila melanogaster infection 

model. npj Microgravity. 2020 February 4; 6(1): 1-9. 

DOI: 10.1038/s41526-019-0091-2. 

Arthrospira sp. Gene Expression and Mathematical 

Modelling on Cultures Grown in the International 

Space Station (Arthrospira B) — Poughon L,  

Laroche C, Creuly C, Dussap C, Paille C, et al. 

Limnospira indica PCC8005 growth in photobioreactor: 

model and simulation of the ISS and ground experiments. 

Life Sciences in Space Research. 2020 May; 25: 53-65. 

DOI: 10.1016/j.lssr.2020.03.002. 

Assessment of myostatin inhibition to prevent 

skeletal muscle atrophy and weakness in mice 

exposed to long-duration spaceflight (Rodent 

Research-3-Eli Lilly) — Smith RC, Cramer MS, 

Mitchell PJ, Lucchesi J, Ortega AM, et al. Inhibition of 

myostatin prevents microgravity-induced loss of skeletal 

muscle mass and strength. PLOS ONE. 2020 April 21; 

15(4): e0230818. DOI: 10.1371/journal.pone.0230818. 

Biological Research in Canisters-20 (BRIC-20) — 

Kruse CP, Meyers AD, Basu P, Hutchinson S,  

Luesse D, et al. Spaceflight induces novel regulatory 

responses in Arabidopsis seedling as revealed by 

combined proteomic and transcriptomic analyses.  

BMC Plant Biology. 2020 May 27; 20(1): 237.  

DOI: 10.1186/s12870-020-02392-6. 

BioScience-4 (STaARS BioScience-4) — Cepeda C,  

Vergnes L, Carpo N, Schibler MJ, Bentolila LA, et al. 

Human neural stem cells flown into space proliferate 

and generate young neurons. Applied Sciences. 2019 

January; 9(19): 4042. DOI: 10.3390/app9194042. 

BRIC - Natural Product under Microgravity (BRIC-

NP) — Blachowicz A, Raffa N, Bok JW, Choera T, Knox 

BP, et al. Contributions of spore secondary metabolites to 

UV-C protection and virulence vary in different Aspergillus 

fumigatus strains. mBio. 2020 February 8; 11(1): e03415-

19. DOI: 10.1128/mBio.03415-19. 

Characterization of Amyloid Formation Under 

Microgravity Environment: Toward Understanding 

the Mechanisms of Neurodegenerative Diseases 

(Amyloid) — Yagi-Utsumi M, Yanaka S, Song C,  

Satoh T, Yamazaki C, Kasahara H, et al. Characterization 

of amyloid ß fibril formation under microgravity 

conditions. npj Microgravity. 2020 June 12; 6(1): 17. 

DOI: 10.1038/s41526-020-0107-y. 

E. coli AntiMicrobial Satellite (EcAMSat) — Padgen 

MR, Chinn T, Friedericks CR, Lera MP, Chin M, et al.  

The EcAMSat fluidic system to study antibiotic resistance 

in low Earth orbit: Development and lessons learned 

from space flight. Acta Astronautica. 2020 February 19; 

epub: 48 pp. DOI: 10.1016/j.actaastro.2020.02.031. 

E. coli AntiMicrobial Satellite (EcAMSat) — Padgen 

MR, Lera MP, Ricco AJ, Chin M, Chinn T, et al. EcAMSat 

spaceflight measurements of the role of ss in antibiotic 

resistance of stationary phase Escherichia coli in 

https://www.nasa.gov/mission_pages/station/research/experiments/explorer/Facility.html?#id=2036
https://www.frontiersin.org/articles/10.3389/fpls.2020.00673/full
https://www.nasa.gov/mission_pages/station/research/experiments/explorer/Investigation.html?#id=7902
https://link.springer.com/article/10.1007/s42496-020-00049-z
https://www.nasa.gov/mission_pages/station/research/experiments/explorer/Investigation.html?#id=1040
https://www.nasa.gov/mission_pages/station/research/experiments/explorer/Investigation.html?#id=1040
https://www.nature.com/articles/s41526-019-0091-2
https://www.nasa.gov/mission_pages/station/research/experiments/explorer/Investigation.html?#id=1821
https://www.sciencedirect.com/science/article/abs/pii/S2214552420300158
https://www.nasa.gov/mission_pages/station/research/experiments/explorer/Investigation.html?#id=1531
https://www.nasa.gov/mission_pages/station/research/experiments/explorer/Investigation.html?#id=1531
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0230818
https://www.nasa.gov/mission_pages/station/research/experiments/explorer/Investigation.html?#id=1074
https://bmcplantbiol.biomedcentral.com/articles/10.1186/s12870-020-02392-6
https://www.nasa.gov/mission_pages/station/research/experiments/explorer/Investigation.html?#id=7503
https://www.mdpi.com/2076-3417/9/19/4042
https://www.nasa.gov/mission_pages/station/research/experiments/explorer/Investigation.html?#id=1557
https://www.nasa.gov/mission_pages/station/research/experiments/explorer/Investigation.html?#id=1557
https://mbio.asm.org/content/11/1/e03415-19/article-info
https://www.nasa.gov/mission_pages/station/research/experiments/explorer/Investigation.html?#id=7556
https://www.nature.com/articles/s41526-020-0107-y
https://www.nasa.gov/mission_pages/station/research/experiments/explorer/Investigation.html?#id=7358
https://www.sciencedirect.com/science/article/pii/S009457652030093X
https://www.nasa.gov/mission_pages/station/research/experiments/explorer/Investigation.html?#id=7358
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microgravity. Life Sciences in Space Research. 2020 

February 1; 24: 18-24. DOI: 10.1016/j.lssr.2019.10.007. 

Effect of Microgravity at Bone Cell and Tissue 

Levels (Invitrobone) — Colucci S, Colaianni G, 

Brunetti G, Ferranti F, Mascetti G, et al. Irisin prevents 

microgravity-induced impairment of osteoblast 

differentiation in vitro during the space flight CRS-14 

mission. FASEB: Federation of American Societies for 

Experimental Biology Journal. 2020 June 15; epub:  

11 pp. DOI: 10.1096/fj.202000216R. 

Effect of Space Flight on Innate Immunity to 

Respiratory Viral Infections (Mouse Immunology-2) 

— Deymier AC, Schwartz AG, Lim C, Wingender B, 

Kotiya A, et al. Multiscale effects of spaceflight on 

murine tendon and bone. Bone. 2019 November 12; 

131: 115152. DOI: 10.1016/j.bone.2019.115152. 

Effects of Microgravity on Stem Cell-Derived Heart 

Cells (Heart Cells) — Wnorowski A, Sharma A,  

Chen H, Wu H, Shao N, et al. Effects of spaceflight 

on human induced pluripotent stem cell-derived 

cardiomyocyte structure and function. Stem Cell 

Reports. 2019 November 7; epub: 10 pp.  

DOI: 10.1016/j.stemcr.2019.10.006. 

Exercise Countermeasures for Knee and  

Hip Joint Degeneration during Spaceflight  

(Willey Gait) — Kwok A, Rosas S, Bateman TA, 

Livingston EW, Smith TL, et al. Altered Rodent Gait 

Characteristics after &sim;35 Days in Orbit aboard  

the International Space Station. Life Sciences in  

Space Research. 2020 February; 24: 9-17.  

DOI: 10.1016/j.lssr.2019.10.010. 

GeneLAB — Fujita S, Rutter L, Ong Q, Muratani M. 

Integrated RNA-seq analysis indicates asynchrony  

in clock genes between tissues under spaceflight.  

Life. 2020 September; 10(9): 196.  

DOI: 10.3390/life10090196. 

GeneLAB — Beheshti A, Chakravarty K, Fogle H, 

Fazelinia H, Silveira WA, et al. Multi-omics analysis 

of multiple missions to space reveal a theme of lipid 

dysregulation in mouse liver. Scientific Reports.  

2019 December; 9(1): 19195.  

DOI: 10.1038/s41598-019-55869-2. 

Influence of Factors of the Space Environment on 

the Condition of the System of Microorganisms-

Hosts Relating to the Problem of Environmental 

Safety of Flight Techniques and Planetary 

Quarantine (Biorisk-MSN) — Sychev VN,  

Novikova ND, Poddubko SV, Deshevaya EA, Orlov OI. 

The biological threat: The threat of planetary quarantine 

failure as a result of outer space exploration by humans. 

Doklady Biological Sciences. 2020 January; 490(1):  

28-30. DOI: 10.1134/S0012496620010093. 

Influence of microgravity on the production of 

Aspergillus secondary metabolites (IMPAS) - a 

novel drug discovery approach with potential 

benefits to astronauts' health (Micro-10) — 

Romsdahl J, Blachowicz A, Chiang Y, Venkateswaran 

KJ, Wang CC. Metabolomic analysis of Aspergillus 

niger isolated from the International Space Station 

reveals enhanced production levels of the antioxidant 

pyranonigrin A. Frontiers in Microbiology. 2020 May 21; 

11: 931. DOI: 10.3389/fmicb.2020.00931. 

International Space Station Internal Environments 

(ISS Internal Environments) — Kamyshev NG, 

Besedina NG, Bragina JV, Danilenkova LV, Fedotov SA,  

et al. Behavioral changes in Drosophila males after  

travel to international space station. Acta Astronautica. 

2020 June 30; epub: 15 pp.  

DOI: 10.1016/j.actaastro.2020.06.048. 

International Space Station Internal Environments 

(ISS Internal Environments) — Ichijo T, Shimazu T,  

Nasu M. Microbial Monitoring in the International Space 

Station and Its Application on Earth. Biological  

& Pharmaceutical Bulletin. 2020; 43(2): 254-257.  

DOI: 10.1248/bpb.b19-00912. 

International Space Station Internal Environments 

(ISS Internal Environments) — Thompson AF, English EL, 

Nock AM, Willsey GG, Eckstrom K, et al. Characterizing 

species interactions that contribute to biofilm formation 

in a multispecies model of a potable water bacterial 

community. Microbiology-SGM. 2019 October 4; 166(1): 

34–43. DOI: 10.1099/mic.0.000849. 

International Space Station Internal Environments 

(ISS Internal Environments) — Karpov DS,  

Domashin AI, Kotlov MI, Osipova PG, Kiseleva SV,  

https://www.sciencedirect.com/science/article/pii/S2214552419301257?via%3Dihub
https://www.nasa.gov/mission_pages/station/research/experiments/explorer/Investigation.html?#id=7355
https://faseb.onlinelibrary.wiley.com/doi/abs/10.1096/fj.202000216R
https://www.nasa.gov/mission_pages/station/research/experiments/explorer/Investigation.html?#id=65
https://www.sciencedirect.com/science/article/pii/S8756328219304466?via%3Dihub
https://www.nasa.gov/mission_pages/station/research/experiments/explorer/Investigation.html?#id=1657
https://www.sciencedirect.com/science/article/pii/S2213671119303674
https://www.nasa.gov/mission_pages/station/research/experiments/explorer/Investigation.html?#id=7827
https://www.sciencedirect.com/science/article/pii/S221455241930135X
https://www.mdpi.com/2075-1729/10/9/196
https://www.nature.com/articles/s41598-019-55869-2
https://www.nasa.gov/mission_pages/station/research/experiments/explorer/Investigation.html?#id=1258
https://link.springer.com/article/10.1134/S0012496620010093
https://www.nasa.gov/mission_pages/station/research/experiments/explorer/Investigation.html?#id=1164
https://www.frontiersin.org/articles/10.3389/fmicb.2020.00931/full
https://www.nasa.gov/mission_pages/station/research/experiments/explorer/Investigation.html?#id=1018
https://www.sciencedirect.com/science/article/pii/S009457652030415X
https://www.nasa.gov/mission_pages/station/research/experiments/explorer/Investigation.html?#id=1018
https://www.jstage.jst.go.jp/article/bpb/43/2/43_b19-00912/_article
https://www.nasa.gov/mission_pages/station/research/experiments/explorer/Investigation.html?#id=1018
https://www.microbiologyresearch.org/content/journal/micro/10.1099/mic.0.000849
https://www.nasa.gov/mission_pages/station/research/experiments/explorer/Investigation.html?#id=1018
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et al. Biotechnological potential of the Bacillus subtilis  

20 strain. Molecular Biology. 2020 January 1; 54(1): 

119-127. DOI: 10.1134/S0026893320010082. 

International Space Station Internal Environments 

(ISS Internal Environments) — McGhee JJ, Rawson N,  

Bailey BA, Fernandez-Guerra A, Sisk-Hackworth L,  

et al. Meta-SourceTracker: application of Bayesian 

source tracking to shotgun metagenomics. PeerJ.  

2020 March 24; 8: e8783. DOI: 10.7717/peerj.8783. 

International Space Station Internal Environments 

(ISS Internal Environments) — O'Rourke A, Lee MD, 

Nierman WC, Everroad RC, Dupont CL. Genomic and 

phenotypic characterization of Burkholderia isolates 

from the potable water system of the International 

Space Station. PLOS ONE. 2020 February 19; 15(2): 

e0227152. DOI: 10.1371/journal.pone.0227152. 

International Space Station-Microbial Observatory 

of Pathogenic Viruses, Bacteria, and Fungi  

(ISS-MOP) Project (Microbial Tracking-2) —  

Avila-Herrera A, Thissen J, Urbaniak C, Be NA,  

Smith DJ, et al. Crewmember microbiome may influence 

microbial composition of ISS habitable surfaces.  

PLOS ONE. 2020 April 29; 15(4): e0231838.  

DOI: 10.1371/journal.pone.0231838. 

Investigation of the Osteoclastic and Osteoblastic 

Responses to Microgravity Using Goldfish Scales 

(Fish Scales) — Furusawa Y, Yamamoto T, Hattori A, 

Suzuki N, Hirayama J, et al. De novo transcriptome 

analysis and gene expression profiling of fish scales 

isolated from Carassius auratus during space flight: 

Impact of melatonin on gene expression in response to 

space radiation. Molecular Medicine Reports. 2020 July 

28; 2627-2636. DOI: 10.3892/mmr.2020.11363. 

Japan Aerospace Exploration Agency Protein 

Crystallization Growth (JAXA PCG) — Funaki R,  

Okamoto W, Endo C, Morita Y, Kihira K, et al. 

Genetically engineered haemoglobin wrapped  

covalently with human serum albumins as an artificial 

O2. Journal of Materials Chemistry B. 8(6): 1139-1145. 

DOI: 10.1039/C9TB02184A. 

Japan Aerospace Exploration Agency Protein 

Crystallization Growth (JAXA PCG) — Negoro S,  

Shibata N, Lee Y, Takehara I, Kinugasa R, et al. 

Structural basis of the correct subunit assembly, 

aggregation, and intracellular degradation of nylon 

hydrolase. Scientific Reports. 2018 June 27; 8(1): 1-16. 

DOI: 10.1038/s41598-018-27860-w.*

Japan Aerospace Exploration Agency Protein 

Crystallization Growth (JAXA PCG) — Sakamoto Y, 

Suzuki Y, Iizuka I, Tateoka C, Roppongi S, et al. Structural 

and mutational analyses of dipeptidyl peptidase 11 from 

Porphyromonas gingivalis reveal the molecular basis for 

strict substrate specificity. Scientific Reports. 2015 June 

9; 5(1): 11151. DOI: 10.1038/srep11151.*

JAXA Mouse Habitat Unit — Suzuki, Takafumi,  

Akira Uruno, Akane Yumoto, Keiko Taguchi,  

Mikiko Suzuki, Nobuhiko Harada, et al, ‘Nrf2  

Contributes to the Weight Gain of Mice during Space 

Travel’, Communications Biology, 3.1 (2020), 496.  

DOI: 10.1038/s42003-020-01227-2

Life Cycles of Higher Plants Under Microgravity 

Conditions (SpaceSeed) — Karahara I, Suto T, 

Yamaguchi T, Yashiro U, Tamaoki D, et al. Vegetative 

and reproductive growth of Arabidopsis under 

microgravity conditions in space. Journal of Plant 

Research. 2020 July 1; 133(4): 571-585.  

DOI: 10.1007/s10265-020-01200-4. 

Magnetic 3-D Bioprinter — Parfenov VA, Khesuani 

YD, Petrov SV, Karalkin PA, Koudan EV, et al. Magnetic 

levitational bioassembly of 3D tissue construct in space. 

Science Advances. 2020 July 15; 6(29): eaba4174. DOI: 

10.1126/sciadv.aba4174. 

MELiSSA ON board DAnish Utilisation flight 

(MELONDAU) — El_Nakhel C, Giordano M, Pannico A, 

Carillo P, Fusco GM, et al. Cultivar-specific performance 

and qualitative descriptors for butterhead salanova lettuce 

produced in closed soilless cultivation as a candidate 

salad crop for human life support in space. Life.  

2019 September; 9(3): 61. DOI: 10.3390/life9030061. 

Microbial Tracking Payload Series (Microbial 

Observatory-1) — Cao L, Gurevich AV, Alexander KL,  

Naman B, Leao T, Glukhov E, et al. MetaMiner:  

A Scalable Peptidogenomics Approach for Discovery 

of Ribosomal Peptide Natural Products with Blind 

https://link.springer.com/article/10.1134%2FS0026893320010082
https://www.nasa.gov/mission_pages/station/research/experiments/explorer/Investigation.html?#id=1018
https://peerj.com/articles/8783/
https://www.nasa.gov/mission_pages/station/research/experiments/explorer/Investigation.html?#id=1018
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0227152
https://www.nasa.gov/mission_pages/station/research/experiments/explorer/Investigation.html?#id=1663
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0231838
https://www.nasa.gov/mission_pages/station/research/experiments/explorer/Investigation.html?#id=766
https://www.spandidos-publications.com/10.3892/mmr.2020.11363
https://www.nasa.gov/mission_pages/station/research/experiments/explorer/Investigation.html?#id=151
https://pubs.rsc.org/en/content/articlelanding/2020/tb/c9tb02184a#!divAbstract
https://www.nasa.gov/mission_pages/station/research/experiments/explorer/Investigation.html?#id=151
https://www.nature.com/articles/s41598-018-27860-w
https://www.nasa.gov/mission_pages/station/research/experiments/explorer/Investigation.html?#id=151
https://www.nature.com/articles/srep11151
https://www.nature.com/articles/s42003-020-01227-2
https://www.nasa.gov/mission_pages/station/research/experiments/explorer/Investigation.html?#id=735
https://link.springer.com/article/10.1007%2Fs10265-020-01200-4
https://advances.sciencemag.org/content/6/29/eaba4174
https://advances.sciencemag.org/content/6/29/eaba4174
https://www.nasa.gov/mission_pages/station/research/experiments/explorer/Investigation.html?#id=1868
https://www.mdpi.com/2075-1729/9/3/61
https://www.nasa.gov/mission_pages/station/research/experiments/explorer/Investigation.html?#id=1569
https://www.nasa.gov/mission_pages/station/research/experiments/explorer/Investigation.html?#id=1569
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Modifications from Microbial Communities.  

Cell Systems. 2019 December 19; 9(6): 600-608.e4.  

DOI: 10.1016/j.cels.2019.09.004.

Microbial Tracking Payload Series (Microbial 

Observatory-1) — Bijlani S, Singh NK, Mason CE, 

Wang CC, Venkateswaran KJ. Draft genome  

sequences of Sphingomonas species associated  

with the International Space Station. Microbiology 

Resource Announcements. 2020 June 18; 9(25): 

e00578-20. DOI: 10.1128/MRA.00578-20. 

Microbial Tracking Payload Series (Microbial 

Observatory-1) — Bijlani S, Singh NK, Mason CE, 

Wang CC, Venkateswaran KJ. Draft genome sequences 

of Tremellomycetes strains isolated from the International 
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on Thermal and Thermomechanical Phenomena in 

Electronic Systems (ITherm), Orlando, Florida; 2020 July 

21. 315-322. DOI: 10.1109/ITherm45881.2020.9190438. 

Atomic Clock Ensemble in Space (ACES) —  

Laurent P, Esnault F, Gibble K, Peterman P,  

Leveque T, et al. Qualification and frequency accuracy  

of the space based primary frequency standard 

PHARAO. Metrologia. 2020 May 19; epub: 36 pp.  

DOI: 10.1088/1681-7575/ab948b. 

Atomic Clock Ensemble in Space (ACES) — 

Cacciapuoti L, Armano M, Much R, Sy O, Helm A,  

et al. Testing gravity with cold-atom clocks in space.  

The European Physical Journal D. 2020 August 4;  

74(8): 164. DOI: 10.1140/epjd/e2020-10167-7. 

Bose Einstein Condensate Cold Atom Lab 

(BECCAL) — Moller NS, A dos Santos FE, Bagnato 

VS, Pelster A. Bose–Einstein condensation on curved 

manifolds. New Journal of Physics. 2020 June; 22(6): 

063059. DOI: 10.1088/1367-2630/ab91fb. 

Bose Einstein Condensate Cold Atom Lab 

(BECCAL) — Lundblad N, Carollo RA, Lannert C, Gold 

MJ, Jiang X, et al. Shell potentials for microgravity Bose-

Einstein condensates. npj Microgravity. 2019 December 

4; 5(1): 1-6. DOI: 10.1038/s41526-019-0087-y. 

Coarsening in Solid Liquid Mixtures-4 (CSLM-4) —  

Stan T, Thompson ZT, Voorhees PW. Optimizing 

convolutional neural networks to perform semantic 

segmentation on large materials imaging datasets: 

X-ray tomography and serial sectioning. Materials 

Characterization. 2020 February 1; 160: 110119.  

DOI: 10.1016/j.matchar.2020.110119. 

Cold Atom Lab (Cold Atom Lab) — Aveline DC, 

Williams JR, Elliott ER, Dutenhoffer CA, Kellogg JR, 

et al. Observation of Bose–Einstein condensates in 

an Earth-orbiting research lab. Nature. 2020 June 11; 

582(7811): 193-197. DOI: 10.1038/s41586-020-2346-1. 

Columnar-to-Equiaxed Transition in Solidification 

Processing (CETSOL) — Li YZ, Mangelinck-Noel N, 

Zimmermann G, Sturz L, Nguyen-Thi H. Modification of 

the microstructure by rotating magnetic field during the 

solidification of Al-7 wt.% Si alloy under microgravity. 

Journal of Alloys and Compounds. 2020 September 25; 

836: 155458. DOI: 10.1016/j.jallcom.2020.155458. 

Constrained Vapor Bubble-2 (CVB-2) — Nguyen TT, 

Yu J, Wayner, Jr. PC, Plawsky JL, Kundan A, et al.  

Rip currents: A spontaneous heat transfer enhancement 

mechanism in a wickless heat pipe. International Journal 

of Heat and Mass Transfer. 2020 March 1; 149: 119170. 

DOI: 10.1016/j.ijheatmasstransfer.2019.119170. 

Detailed validation of the new atomization 

concept derived from drop tower experiments-

-Aimed at developing a turbulent atomization 

simulator (ATOMIZATION) — Umemura A, Osaka J, 

Shinjo J, Nakamura Y, Matsumoto S, et al. Coherent 

capillary wave structure revealed by ISS experiments 

for spontaneous nozzle jet disintegration. Microgravity 

Science and Technology. 2020 January 1; epub: 29 pp. 

DOI: 10.1007/s12217-019-09756-0. 

DEvice for the study of Critical LIquids and 

Crystallization - Directional Solidification Insert 

(DECLIC-DSI) — Mota FL, Ji K, Lyons T,  

Strutzenberg LL, Trivedi R, et al. In situ observation  

of growth dynamics in DECLIC directional solidification 

insert onboard ISS: DSI-R flight campaign.  

70th International Astronautical Congress 2019, 

Washington, DC; 2019 October 21. 8 pp. 

DEvice for the study of Critical LIquids and 

Crystallization - High Temperature Insert-Reflight 

(DECLIC HTI-R) — Hicks MC, Hegde UG, Lecoutre C,  

Marre S, Garrabos Y. Supercritical water (SCW) 

investigations in the DECLIC and DECLIC-Evo: Past, 

present and future. Acta Astronautica. 2020 June 4; 

epub: 24 pp. DOI: 10.1016/j.actaastro.2020.06.006. 

Dose Distribution Inside the International Space 

Station - 3D (DOSIS-3D) — Berger T, Matthia D, 

Burmeister S, Zeitlin C, Rios R, et al. Long term 

variations of galactic cosmic radiation on board the 

International Space Station, on the Moon and on  

the surface of Mars. Journal of Space Weather and 

Space Climate. 2020 July 28; 10: 34.  

DOI: 10.1051/swsc/2020028. 

Electromagnetic Levitator (EML) — Diefenbach A, 

Schneider S, Volkmann T. Experiment preparation and 
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performance for the Electromagnetic Levitator (EML) 

onboard the International Space Station. Preparation of 

Space Experiments; 2020. 

Electromagnetic Levitator (EML) — Nawer J,  

Gosse S, Matson DM. Tracking evaporation during 

levitation processing of nickel-based superalloys on  

the ISS. JOM Journal of the Minerals, Metals and 

Materials Society. 2020 July 8; 72: 3132–3139.  

DOI: 10.1007/s11837-020-04256-8. 

Electromagnetic Levitator Batch 2 - 

Investigation of Thermophysical Properties of 

Liquid Semiconductors in the Melt and in the 

Undercooled State under Microgravity Conditions 

(EML Batch 2 - SEMITHERM) — Luo Y, Damaschke B,  

Lohofer G, Samwer K. Thermophysical properties of 

a Si50Ge50 melt measured on board the International 

Space Station. npj Microgravity. 2020; 6: 10.  

DOI: 10.1038/s41526-020-0100-5. 

Electrostatic Levitation Furnace (ELF) (JAXA ELF) — 

Ishikawa T, Koyama C, Saruwatari H, Tamaru H,  

Oda H, et al. Density of molten gadolinium oxide 

measured with the electrostatic levitation furnace in the 

International Space Station. High Temperatures-High 

Pressures. 2020 February 2; 49(1-2): 5-15. 

Electrostatic Levitation Furnace (ELF) (JAXA 

ELF) — Oda H, Koyama C, Ohshio M, Saruwatari H, 

Ishikawa T. Density of Molten Zirconium-Oxygen System 

Measured with an Electrostatic Levitation Furnace in 

the International Space Station. International Journal 

of Microgravity Science and Application. 2020 July 31; 

37(3): 370302. DOI: 10.15011/ijmsa.37.3.370302. 

Electrostatic Levitation Furnace (ELF) (JAXA ELF) — 

Ohara K, Onodera Y, Kohara S, Koyama C, Masuno A, 

Mizuno A, Okada J. T, Tahara S, Watanabe Y,  

Oda H, Nakata Y, Tamaru H, Ishikawa T, Sakata O.  

Accurate synchrotron hard X-ray diffraction 

measurements on high-temperature liquid oxides, Int.  

J. Microgravity Sci. Appl. 2020 April 30; 37(2): 370202.  

DOI: 10.15011/jasma.37.2.370202

Electrostatic Levitation Furnace (ELF) (JAXA ELF) —  

Koyama C, Tahara S, Kohara S, Onodera Y, 

Smabraten DR, et al. Very sharp diffraction peak in 

nonglass-forming liquid with the formation of distorted 

tetraclusters. NPG Asia Materials. 2020 June 2; 12(1): 

1-11. DOI: 10.1038/s41427-020-0220-0. 

EML Batch 1 - NEQUISOL Experiment —  

Herlach DM, Burggraf S, Reinartz M, Galenko PK, 

Rettenmayr M, et al. Dendrite growth in undercooled 

Al-rich Al-Ni melts measured on Earth and in Space. 

Physical Review Materials. 2019 July 16; 3(7): 073402.  

DOI: 10.1103/PhysRevMaterials.3.073402. 

EML Batch 1 - THERMOLAB Experiment — Mohr M, 

Wunderlich RK, Novakovic R, Ricci E, Fecht HJ. Precise 

measurements of thermophysical properties of liquid 

Ti–6Al-4V (Ti64) alloy on board the international space 

station (ISS). Advanced Engineering Materials. 2020 

April 2; epub: 23 pp. DOI: 10.1002/adem.202000169. 

EML Batch 1 - THERMOLAB Experiment —  

Mohr M, Wunderlich RK, Dong Y, Furrer D, Fecht HJ. 

Thermophysical properties of advanced Ni-based 

superalloys in the liquid state measured on board the 

International Space Station. Advanced Engineering 

Materials. 2020; 22(4): 1901228.  

DOI: 10.1002/adem.201901228. 

EML Batch 1 - THERMOLAB Experiment — Chen LY,  

Mohr M, Wunderlich RK, Fecht HJ, Wang XD, et al. 

Correlation of viscosity with atomic packing in Cu50Zr50 

melt. Journal of Molecular Liquids. 2019 November 1; 

293: 111544. DOI: 10.1016/j.molliq.2019.111544. 

EML Batch 1 - THERMOLAB Experiment — Su Y,  

Mohr M, Wunderlich RK, Wang X, Cao Q, et al.  

The relationship between viscosity and local structure 

in liquid zirconium via electromagnetic levitation and 

molecular dynamics simulations. Journal of Molecular 

Liquids. 2020 January 15; 298: 111992.  

DOI: 10.1016/j.molliq.2019.111992. 

EML Batch 1 - THERMOLAB Experiment — Mohr M, 

Wunderlich RK, Hofmann DC, Fecht HJ. Thermophysical 

properties of liquid Zr52.5Cu17.9Ni14.6Al10Ti5-

prospects for bulk metallic glass manufacturing in 

space. npj Microgravity. 2019 October 25; 5(1): 24.  

DOI: 10.1038/s41526-019-0084-1. 
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EML Batch 1 - THERMOLAB Experiment —  

Van Hoesen D, Gangopadhyay A, Lohofer G, Sellers M, 

Pueblo C, et al. Resistivity Saturation in Metallic Liquids 

Above a Dynamical Crossover Temperature Observed in 

Measurements Aboard the International Space Station. 

Physical Review Letters. 2019 November 29; 123(22): 

226601. DOI: 10.1103/PhysRevLett.123.226601. 

Experimental Assessment of Dynamic Surface 

Deformation Effects in Transition to Oscillatory 

Thermo capillary Flow in Liquid Bridge of High 

Prandtl Number Fluid (Dynamic Surf) — Fujimoto S,  

Ogasawara T, Ota A, Motegi K, Ueno I. Effect of 

Heat Loss on Hydrothermal wave Instability in Half-

Zone Liquid Bridges of High Prandtl NumberFluid. 

International Journal of Microgravity Science and 

Application. 2019 April 30; 36(2): 360204.  

DOI: 10.15011//jasma.36.360204. 

Facility for Absorption and Surface Tension 

(FASTER) — Kovalchuk VI, Loglio G, Bykov AG,  

Ferrari M, Kragel J, et al. Effect of temperature on 

the dynamic properties of mixed surfactant adsorbed 

layers at the water/hexane interface under low-gravity 

conditions. Colloids and Interfaces. 2020 September; 

4(3): 27. DOI: 10.3390/colloids4030027. 

Flame Extinguishment Experiment (FLEX) — 

Nayagam V, Dietrich DL, Williams FA. Radiative 

extinction of burner-supported spherical diffusion  

flames: A scaling analysis. Combustion and Flame.  

2019 July 1; 205: 368-370.  

DOI: 10.1016/j.combustflame.2019.04.027. 

Flame Extinguishment Experiment (FLEX) — 

Williams FA, Nayagam V. Cool-flame dodecane-droplet 

extinction diameters. Combustion and Flame.  

2020 February 1; 212: 242-244.  

DOI: 10.1016/j.combustflame.2019.10.036. 

Flame Extinguishment Experiment (FLEX) — Xi X,  

Torero JL, Jahn W. Data driven forecast of droplet 

combustion. Proceedings of the Combustion Institute. 

2020 July 10; epub: 9 pp.  

DOI: 10.1016/j.proci.2020.05.012. 

Flame Extinguishment Experiment - 2 (FLEX-2) — 

Xu Y, Farouk TI, Hicks MC, Avedisian CT. Initial diameter 

effects on combustion of unsupported equi-volume 

n-heptane/iso-octane mixture droplets and the transition 

to cool flame behavior: Experimental observations and 

detailed numerical modeling. Combustion and Flame. 

2020 October 1; 220: 82-91.  

DOI: 10.1016/j.combustflame.2020.06.012. 

Fluid Boiling Condensation Experiment (FBCE) —  

O'Neill LE, Mudawar I. Review of two-phase flow 

instabilities in macro- and micro-channel systems. 

International Journal of Heat and Mass Transfer.  

2020 August 1; 157: 119738.  

DOI: 10.1016/j.ijheatmasstransfer.2020.119738. 

Fluid Boiling Condensation Experiment (FBCE) 

— Lee J, O'Neill LE, Mudawar I. 3-D computational 

investigation and experimental validation of effect 

of shear-lift on two-phase flow and heat transfer 

characteristics of highly subcooled flow boiling in vertical 

upflow. International Journal of Heat and Mass Transfer. 

2020 April 1; 150: 119291.  

DOI: 10.1016/j.ijheatmasstransfer.2019.119291. 

Fluid Dynamics in Space (FLUIDICS) — Berhanu M,  

Falcon E, Michel G, Gissinger C, Fauve S. Capillary 

wave turbulence experiments in microgravity. EPL 

(Europhysics Letters). 2020 January; 128(3): 34001. 

DOI: 10.1209/0295-5075/128/34001. 

FSL Soft Matter Dynamics - Particle STAbilised 

Emulsions and Foams (PASTA) (FSL Soft Matter 

Dynamics - PASTA) — Noskov BA, Yazhgur PA, 

Liggieri L, Lin SY, Loglio G, et al. Dilational rheology of 

spread and adsorbed layers of silica nanoparticles at 

the liquid-gas interface. Colloid Journal. 2014 March 1; 

76(2): 127-138. DOI: 10.1134/S1061933X14020057.*

FSL Soft Matter Dynamics - Particle STAbilised 

Emulsions and Foams (PASTA) (FSL Soft Matter 

Dynamics - PASTA) — Orsi D, Salerni F, Macaluso E, 

Santini E, Ravera F, et al. Diffusing wave spectroscopy 

for investigating emulsions: I. Instrumental aspects. 

Colloids and Surfaces A: Physicochemical and 

Engineering Aspects. 2019 November 5; 580: 123574. 

DOI: 10.1016/j.colsurfa.2019.123574. 
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Dynamics - PASTA)— Salerni F, Orsi D, Santini E, 

Liggieri L, Ravera F, et al. Diffusing wave spectroscopy 

for investigating emulsions: II. Characterization of 

a paradigmatic oil-in-water emulsion. Colloids and 

Surfaces A: Physicochemical and Engineering Aspects. 

2019 November 5; 580: 123724.  

DOI: 10.1016/j.colsurfa.2019.123724. 

FSL Soft Matter Dynamics - Particle STAbilised 

Emulsions and Foams (PASTA) (FSL Soft Matter 

Dynamics - PASTA) — Zabiegaj D, Santini E, Ferrari M,  

Liggieri L, Ravera F. Carbon based porous materials 

from particle stabilized wet foams. Colloids and Surfaces 

A: Physicochemical and Engineering Aspects. 2015 May 

20; 473: 24-31. DOI: 10.1016/j.colsurfa.2015.02.031.*

FSL Soft Matter Dynamics - Particle STAbilised 

Emulsions and Foams (PASTA) (FSL Soft Matter 

Dynamics - PASTA)— Santini E, Guzman E, Ferrari M, 

Liggieri L. Emulsions stabilized by the interaction of silica 

nanoparticles and palmitic acid at the water–hexane 

interface. Colloids and Surfaces A: Physicochemical and 

Engineering Aspects. 2014 October 20; 460: 333-341. 

DOI: 10.1016/j.colsurfa.2014.02.054.*

FSL Soft Matter Dynamics - Particle STAbilised 

Emulsions and Foams (PASTA) (FSL Soft Matter 

Dynamics - PASTA)— Zabiegaj D, Caccia M,  

Cascob ME, Ravera F, Narciso J. Synthesis of carbon 

monoliths with a tailored hierarchical pore structure for 

selective CO2 capture. Journal of CO2 Utilization. 2018 

July 1; 26: 36-44. DOI: 10.1016/j.jcou.2018.04.020.*

FSL Soft Matter Dynamics - Particle STAbilised 

Emulsions and Foams (PASTA) (FSL Soft Matter 

Dynamics - PASTA)— Guzman E, Santini E,  

Zabiegaj D, Ferrari M, Liggieri L, et al. Interaction of  

carbon black particles and dipalmitoylphosphatidylcholine  

at the water/air interface: thermodynamics and rheology. 

Journal of Physical Chemistry C. 2015 December 3; 

119(48): 26937-26947.  

DOI: 10.1021/acs.jpcc.5b07187.*

FSL Soft Matter Dynamics - Particle STAbilised 

Emulsions and Foams (PASTA) (FSL Soft Matter 

Dynamics - PASTA)— Llamas S, Santini E, Liggieri L, 

Salerni F, Orsi D, et al. Adsorption of sodium dodecyl 

sulfate at water–dodecane interface in relation to the  

oil in water emulsion properties. Langmuir.  

2018 May 29; 34(21): 5978-5989.  

DOI: 10.1021/acs.langmuir.8b00358.*

FSL Soft Matter Dynamics - Particle STAbilised 

Emulsions and Foams (PASTA) (FSL Soft Matter 

Dynamics - PASTA)— Zabiegaj D, Buscaglia MT, 

Giuranno D, Liggieri L, Ravera F. Activated carbon 

monoliths from particle stabilized foams. Microporous 

and Mesoporous Materials. 2017 February 1; 239: 45-

53. DOI: 10.1016/j.micromeso.2016.09.046.*

Fundamental and Applied Studies of Emulsion 

Stability (FASES) — Loglio G, Kovalchuk VI, Bykov AG,  

Ferrari M, Kragel J, et al. Interfacial Dilational 

Viscoelasticity of Adsorption Layers at the Hydrocarbon/

Water Interface: The Fractional Maxwell Model. Colloids 

and Interfaces. 2019 December; 3(4): 66. 

DOI: 10.3390/colloids3040066. 

Fundamental and Applied Studies of Emulsion 

Stability (FASES) — Pandolfini P, Loglio G, Ravera F, 

Liggieri L, Kovalchuk VI, et al. Dynamic properties of 

Span-80 adsorbed layers at paraffin-oil/water interface: 

Capillary pressure experiments under low gravity 

conditions. Colloids and Surfaces A: Physicochemical 

and Engineering Aspects. 2017 November 5; 532: 228-

243. DOI: 10.1016/j.colsurfa.2017.05.012.*

Inertial Spreading with Vibration and Water 

Coalescence (Drop Vibration) — Xia JY, Steen PH. 

Dissipation of oscillatory contact lines using resonant 

mode scanning. npj Microgravity. 2020 January 21; 6(1): 

1-7. DOI: 10.1038/s41526-019-0093-0. 

Observation and Analysis of Smectic Islands in 

Space (OASIS) — Pikina ES, Ostrovskii BI, Pikin SA. 

Coalescence of isotropic droplets in overheated free 

standing smectic films. Soft Matter. 2020 May 4; 16: 

4591-4606. DOI: 10.1039/C9SM02292A. 

Observation and Analysis of Smectic Islands in 

Space (OASIS) — Klopp C, Trittel T, Eremin A, Harth K, 

Stannarius R, et al. Structure and dynamics of a two-

dimensional colloid of liquid droplets. Soft Matter. 2019 

October 9; 15: 8156-8163. DOI: 10.1039/c9sm01433k. 
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To Learn More...

National Aeronautics and Space Administration 
https://www.nasa.gov/stationresults 

Canadian Space Agency 
http://www.asc-csa.gc.ca/eng/iss/default.asp

 

European Space Agency 
https://www.esa.int/Science_Exploration/Human_and_
Robotic_Exploration/Columbus

 

Japan Aerospace Exploration Agency 
http://iss.jaxa.jp/en/

http://iss.jaxa.jp/en/iss/

 

State Space Corporation ROSCOSMOS (ROSCOSMOS)  
http://tsniimash.ru/science/scientific-experiments-on-
board-the-is-rs/cnts/informational-resources/center- 
informational-resources/
http://en.roscosmos.ru/

https://www.nasa.gov/stationsresults 
http://www.asc-csa.gc.ca/eng/iss/default.asp 
https://www.esa.int/Science_Exploration/Human_and_Robotic_Exploration/Columbus
https://www.esa.int/Science_Exploration/Human_and_Robotic_Exploration/Columbus
http://www.esa.int/Our_Activities/Human_Spaceflight/International_Space_Station
http://iss.jaxa.jp/en/ 
http://iss.jaxa.jp/en/iss/ 
http://tsniimash.ru/science/scientific-experiments-onboard-the-is-rs/cnts/informational-resources/center-informational-resources/
http://tsniimash.ru/science/scientific-experiments-onboard-the-is-rs/cnts/informational-resources/center-informational-resources/
http://tsniimash.ru/science/scientific-experiments-onboard-the-is-rs/cnts/informational-resources/center-informational-resources/
http://en.roscosmos.ru/
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