RainCube: Mission Overview of the First Radar in a CubeSat

Small Spacecraft Community of Practice February 16, 2022

Shannon Statham, PhD RainCube Project Manager

Jet Propulsion Laboratory

California Institute of Technology

Jet Propulsion Laboratory, California Institute of Technology, CA, USA

RAINCUBE OVERVIEW

RainCube is a *technology demonstration* mission to enable *Ka-band* precipitation radar technologies on a low-cost, quick-turnaround platform.

InVEST-15 Selection, ESTO

- Validate new Earth science technologies in space (TRL 4 to TRL 7)

Two Key Mission Objectives

- Demonstrate new technologies in Ka-band on a 6U CubeSat platform
 - Miniaturized Ka-band Atmospheric Radar for CubeSats (miniKaAR-C)
 - Ka-band Radar Parabolic Deployable Antenna (KaRPDA)
- Enable precipitation profiling radar missions for Earth Science

Roles & Responsibilities

- NASA ESTO: Sponsor
- JPL: Project Management, Mission Assurance, Radar Payload
- Tyvak: Spacecraft Bus, System I&T, Mission Operations
- CSLI / NanoRacks: Launch to LEO via ISS

RainCube in a Nutshell

Goal:

Demonstrate the first radar and active instrument in a CubeSat via a Ka-band precipitation radar

Success Criteria:

- 1. Detect precipitation
- 2. Capture vertical structure of storms
- 3. Operate for at least 3 months

SPOILER ALERT

- Deployed from ISS in July 2018
- Detected precipitation in August 2018
 - First demonstration of a radar on a CubeSat
- Completed baseline mission in October 2018
- Coincident measurements of hurricanes & storms with TEMPEST-D
- Continued to operate until de-orbit in December 2020
 - Total of 2.5 years operating in space

THE RAINCUBE STORY

- May 2013 Brainstorming session
 - Earth Science Program Office and Radar Section
 - Can a science-grade radar instrument be flown on a CubeSat?
- July 2013 Initial concept developed
- Dec 2013 Test bed demo completed
- July 2014 Lab demo with prototype hardware

RainCube: Mission Overview of the First Radar in a CubeSat © 2022 Government Sponsorship Acknowledged

- Novel radar architecture that greatly reduces size, mass, and power
 - Only 5 unique RF active components
 - One Ka-band and one 40 MHz oscillator
 - One digital board for control, timing, on-board processing, SC digital interface, etc.

- Telecom antenna concept for higher data rates on CubeSats
 - Ka-band parabolic deployable antenna
 - Cassegrain architecture
 - Motorized system with spring-loaded ribs and sub-reflector
 - 0.5 meter dish that stows in ~1.5U

Small Satellite Radar Science Drivers

- Jan 2015 Feasibility study
 - Is a mission like RainCube feasible with current SOA CubeSat technologies?
 - If so, how much would it cost?
- May 2015 Ground demo of miniKaAR-C prototype
- May 2015 InVEST-15 proposal
 - Single 6U CubeSat tech demo of new radar technologies (\$7 million)
- July 2015 Airborn demo of miniKaAR-C prototype
- Nov 2015 RainCube is selected for InVEST-15

RainCube: Mission Overview of the First Radar in a CubeSat © 2022 Government Sponsorship Acknowledged

- Dec 2015 RainCube project kick-off
- May 2016 Tyvak selected for RainCube Spacecraft provider
- Sept 2016 Project Critical Design Review (CDR)

RainCube System Architecture

Radar Electronics & Antenna

- 35.75GHz center frequency
- 20dBZ sensitivity
- Vertically profile **0-18 km altitudes**
- 10km horizontal resolution
- 250m vertical resolution
- 35W max power draw

Jet Propulsion Laboratory California Institute of Technology

Spacecraft Bus

- Provide **35W** for payload power in transmit mode
- Maintain payload temperatures (-5C to +50C operational)
- Provide on-board altitude to radar via GPS
- Provide high payload data downlink via S-Band radio

- Dec 2015 RainCube project kick-off
- May 2016 Tyvak selected for RainCube Spacecraft provider
- Sept 2016 Project Critical Design Review (CDR)
- Jan 2017 Radar I&T begins
- Apr 2017 System Integration Review (SIR)

16 months from funding to flight instrument delivery

- Radar payload comprises of miniKaAR-C and KaRPDA flight assemblies
- Three radar operational modes:
 - Standby, Receive Only, and Transmit
- Final power draw in transmit mode is 22W

Enabling Technologies are Key to Miniaturization

- Aug 2017 System I&T begins
- Nov 2017 Self-compatibility test complete
- Jan 2018 System vibe test complete
- Feb 2018 System TVAC test complete
- Mar 2018 Launch delivery to NanoRacks

Antenna Deployment Video (actual deployment time is ~3 minutes)

RainCube: Mission Overview of the First Radar in a CubeSat © 2022 Government Sponsorship Acknowledged

• Cygnus OA-9E ISS Commercial Resupply Services Mission, Wallops

ISS Deployment: July 13th, 2018

Antenna Deployment: July 28th, 2018

RainCube: Mission Overview of the First Radar in a CubeSat © 2022 Government Sponsorship Acknowledged

First Echo: August 5th, 2018

First Rain Measurement: August 27th, 2018

RainCube: Mission Overview of the First Radar in a CubeSat © 2022 Government Sponsorship Acknowledged

RainCube & TEMPEST-D Coincidental Measurement of Typhoon Trami

Comparison of RainCube and GPM/DPR Measurements

- July 2020 Regained fine pointing control with new GNC algorithm
- Aug 2020 Measurements of Hurricanes Laura & Marco

RainCube Captures Hurricanes Laura & Marco

- July 2020 Regained fine pointing control with new GNC algorithm
- Aug 2020 Measurements of Hurricanes Laura & Marco
- Sept/Oct 2020 Continued to collect in-orbit radar measurements with varying pulse compression parameters
- Nov 2020 S-band downlink demo with AWS International Ground Network
- **Dec 2020** Antenna second motion operation completed
- Dec 2020 RainCube de-orbits on Christmas Eve

RainCube operated for 2.5 years on-orbit

Radar Performance Metrics

Performance Parameter	Requirement	Measured
Sensitivity @400km	20 dBZ	11.0 dBZ
Horizontal resolution @400km	10 km	7.9 km
Nadir data window (above sea level)	0 to 18 km	-3 to 20 km
Vertical resolution	250 m	250 m
Downlink data rate (in transmit)	50 kbps	49.6 kbps
Payload power consumption (AntDeployment / STDBY / RXOnly / TXScience)	10 / 8 / 15 / 35 W	5 / 3 / 10 / 22 W
Mass	6 kg	5.5 kg
Range sidelobe suppression	> 60dB @ 5km	> 65dB @ 1km
Transmit power & transmit loss (10W / 1.1 dB)	38.9 dBm	> 39 dBm
Antenna gain	42 dB	42.6 dB
Antenna beamwidth	1.2 deg	1.13 deg

Timeline from TRL 0 to TRL 8

LESSONS LEARNED

- Early studies & focused table-top reviews
 - Pre-Phase A Study (design trades with subsystem engineers)
 - Budget Review (workforce, schedule, and costs)
 - Feasibility Review (technology and design maturities)
 - Requirements Reviews (baseline vs threshold)

- Assess and tailor flight system requirements based on supplier inputs

- Embrace institutional practices & tools in a value-added philosophy
 - Assess applicability of institutional req'ts for a 3-month, tech demo mission with \$7m budget
- Open dialogues with JPL institutional stakeholders
 - Class D Technical Advisory Board
 - Safety & Mission Assurance
- Formulation of a Technical Advisory Board from the project beginning
 - Subject matter experts for all major subsystems
 - Experience with low cost, high risk missions
 - Attended specific technical meetings and tabletop reviews
 - Maintained awareness of project progress throughout implementation phases
 - Formal project review boards were comprised of TAB members

- Volume versus access to space
 - 6U was just big enough for RainCube
 - Many design trades & compromises due to volume
- Mass growth and margin standards
 - Many design compromises due to mass assumptions
 - Often overestimate & then require ballasts
 - Problematic for orbit life and other mission aspects

RAINCUBE LEGACY

RainCube has enabled unique opportunities for Earth Science missions

- Science-grade precipitation profiling radar on a small satellite platform is possible!
- New technologies can be flown on a variety of platforms
- Multi-satellite missions are now practical
 - Cost-effective approach for building multiple satellites for a single mission / objective
 - Significantly improve revisit times of weather phenomena using constellations
 - Compliment large weather satellite observations with temporal measurements

Manage mission risk and reliability through numbers

- Alternative to large, multi-instrument satellites
- Avoid "all eggs in one basket" and the resulting conservative risk posture
- A more sustainable approach to reduced budgets and cost-constrained missions

- Selected by NASA ESTO Instrument Incubator Program (IIP) 2019
- Compact, multi-frequency mm-wave radar instrument
 - Ka-band, W-band, and G-band
- Doppler capabilities at Ka-band
- Modular design for different frequency subsets
 and small satellite designs
- miniKaAR-C architecture is backbone of CloudCube design

- Investigation of Convective Updrafts (INCUS)
 - "... three SmallSats, flying in tight formation,... to directly address why convective storms, heavy precipitation, and clouds occur exactly when and where they form."
 - <u>https://climate.nasa.gov/news/3128/nasa-selects-new-mission-to-study-storms-impacts-on-</u> <u>climate-models/</u>
- Selected in November 2021
- \$177 million approximate cost (not including launch costs)
- Launch expected in 2027

Summary

- RainCube successfully demonstrated the first radar on a CubeSat
- Novel radar architecture increased from TRL 0 to TRL 7 in just over five years
 - First brain-storming session in May 2013
 - Rain detected from orbit in August 2018
 - Extended mission concluded in December 2020 (TRL 8)
- Enabling technologies for unique Earth Science missions
 - Improve weather and climate modeling

Special Thanks

- JPL RainCube Team Members
- Tyvak RainCube Team Members
- JPL Earth Science Program Office
- NASA Sponsors

RainCube Team in Pictures

