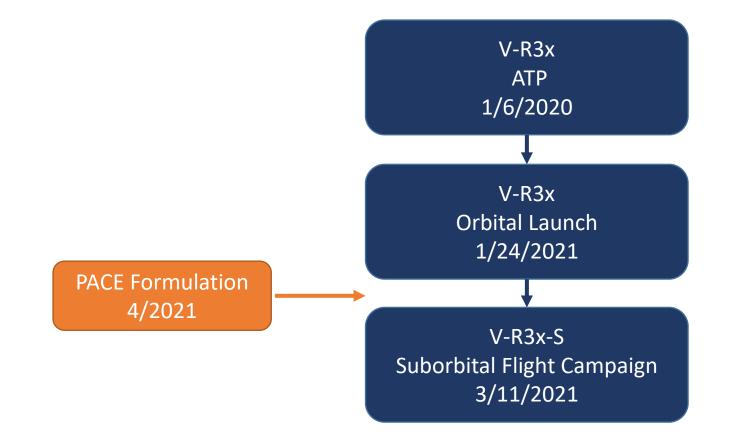


Carnegie Mellon University

PACE V-R3x S3VI CoP Webinar

Stanford & Carnegie Melon University REx Lab A. Nguyen, M. Holliday, K. Tracy, Z. Manchester

11/10/2021



NASA

- V-R3x Orbital Summary
 - Tech Demo Overview
 - Objective Tracking
 - Lessons Learned
- V-R3x Suborbital Summary
 - Tech Demo Overview
 - Objective Tracking
 - Lessons Learned
- Overall Summary
 - Lessons Learned for overall PACE pipeline
 - Path forward

Orbital vs Suborbital Comparison

Description	V-R3x Orbital	V-R3x-S Suborbital	
# Units	3	5 (1 Balloon + 4 Ground)	
Launch Date	1/24/2021	3/11/2021	
Target Altitude	525 km, SSO	30.48 km (100,000 ft)	
Mission Ops Duration	6 mo.	2 hrs at float (5 hrs total)	
Requirements	 S-band High Precision Ranging S-band High Data Rate Cross- link Relative Topology Recovery Distributed radiation sensor collection 	 S-band High Precision Ranging S-band High Data Rate Cross-link 	
Networking	Mesh Network w/ 3 nodes	Mesh Network w/ 5 nodes	

V-R3x Orbital

V-R3x Suborbital

Roger Hunter SST Program Manager NASA

Anh Nguyen Project Manager NASA Ames

Zac Manchester Principal Investigator Stanford/Carnegie Mellon University

Max Holliday Systems Engineer Stanford

Adam Zufall Systems Engineer NASA ARC-MEI

Dallas White SMA NASA ARC

Kevin Tracy Flight Dynamics Carnegie Mellon University

Stakeholders

Classification

NASA Project Manager

Principal Investigator

NASA Systems Engineer

Stanford Systems Engineer

Project Description

Launch Readiness

Tech Demo Duration

ATP

Launch

Status

V-R3x Tech Demo Overview

Total Project Cost <\$500K (including launch)

NASA STMD-SSTP	NASA
X-Project	
Anh N. Nguyen NASA Ames Research Center	
Zachary Manchester Stanford University	
Adam Zufall NASA Ames Research Center	
Max Alvarez Holliday Stanford University	
Low-power low-cost spacecraft ranging, topology recovery, and coordinated measurement demonstration for future spacecraft swarm systems	
Dec 20, 2019	
Dec 14, 2020	
Jan 21, 2021 – Space X Transporter-1 Mission, Florida	all and a second se
3 mo. threshold/baseline; 11 mo. extended	
<\$500K (including launch)	
Launched	the start

Key Milestones

- 12/03/2019: Initial Brainstorming session
- 12/16/2019: SSTP Proposal
- 01/06/2020: ATP Project Start
- 01/31/2020: Tech Demo Briefing (SPO, ACE, R Mgt, NTIA)
- 03/09/2020: COVID-19 Shutdown Start
- 05/18/2020: PDR/CDR
- 07/06/2020: Return to Site Authorized
- 12/03/2020: FRR
- 12/14/2020: Launch Readiness
- 01/03/2021: LV Integration
- •<u>12/18/2020</u> <u>12/30/2020</u> <u>1/14/2021</u> 1/21/2021: Launch
- 1/21/2021: Mission Operations Begin (Nominally 3 mo., NTE 11 mo.)

Concept to Launch Readiness in 12 mo.

Concept Of Operations

NASA

Eject from Dispenser

- SC untethered
- Dipole antenna constrained by dispenser

Separation & Deployment

- Wait 4 sec (launch vehicle requirement)
- Begin RF Transmissions

Nominal Operations

Tech Demo Activities

- S-band ranging <1 m precision (distances >500 km*)
- Hi-speed S-band cross-link demo (distances >10 km*)
- Coordinated radiation measurements
- Relative swarm topology recovery

*link budget dependent

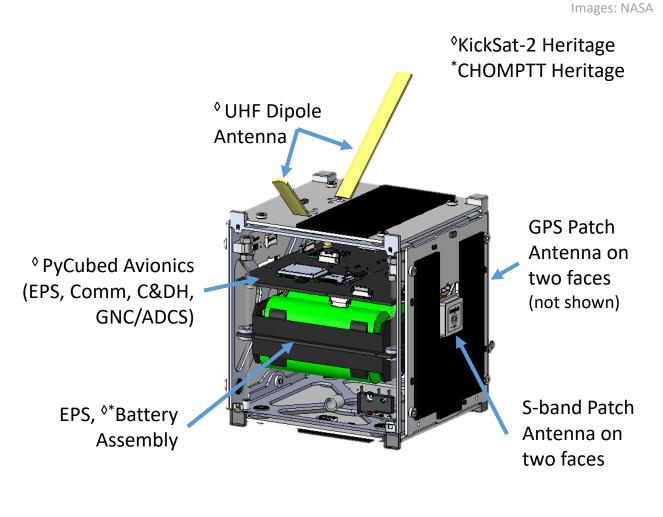
V-R3x S3VI CoP Webina

10/27/2021

NASA

L1 Tech Demo Requirements

ID	Short description	Requirement Description	Verification & Validation	Notes
1-1	S-band High Precision Ranging	V-R3x shall demonstrate ranging with <1 m precision at a distances up to 500 km between at least two satellite nodes	Orbit determination ground tool with inputs from spacecraft GPS and CSPoC TLEs	GPS accuracy limited to ~10 m for verification and validation. Will collect many GPS solutions for filtering to 1 m
1-2	S-band High Data Rate Cross-link	V-R3x shall demonstrate data rates > 50 Kbps (up to 250 kbps) between two satellite nodes at distances up to 10 km between at least two satellite nodes	Spacecraft telemetry downlink	
1-3	Relative Topology Recovery	V-R3x shall demonstrate relative topology recovery between all satellite nodes (post- processed on the ground)	Orbit determination ground tool comparison between SC ranging inputs and inputs from spacecraft GPS and CSPoC TLEs	
1-4	Distributed sensor collection	V-R3x shall Coordinate and collect radiation data from on-board sensors from each satellite node	Compare to simulated + terrestrial sensor data	Verification data already collected. Sensors already built.



10/27/2021

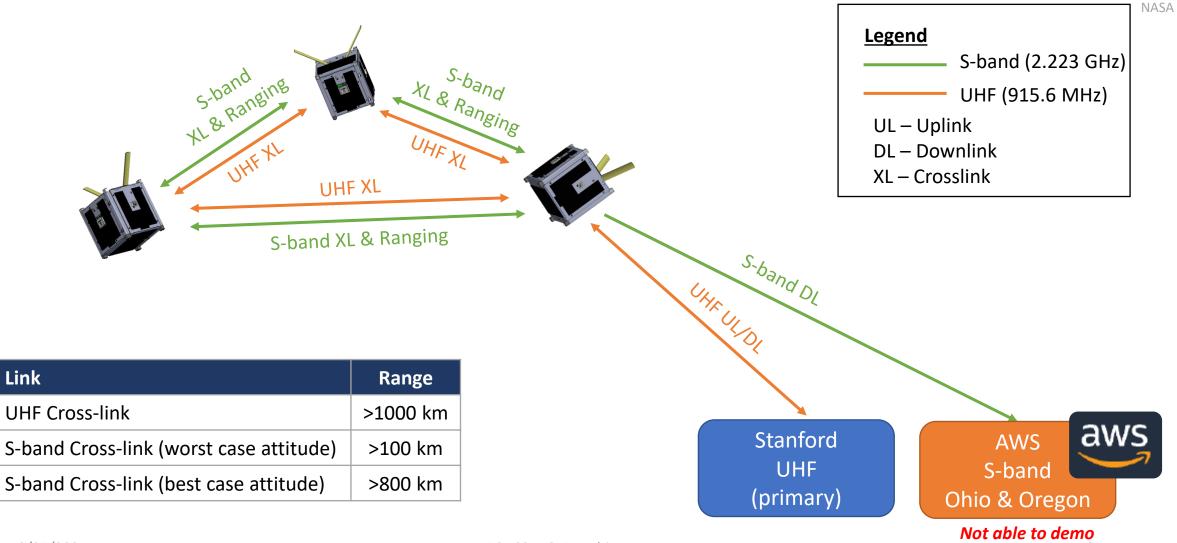
Description Specification No. of SC 3 Class 1U ~1 kg SC Mass SC Power 1W Orbit Average ±10 deg, 3-axis, Attitude Knowledge Sun Sensors, Magnetometer, IMU Attitude Control ±10 deg, 1-axis, Magnetorquers Orbit Knowledge GPS 4 MBytes MRAM On-board Data Storage 8 Gbytes SD Card 10.5 Ah, Energy Storage 76 Wh BOL, 49 Wh EOL Solar Array Power 1.33 W BOL, 1.27 W EOL UHF UL/DL/XL 1 kbps S-band DL/XL 20 - 250 kbps LEO, 525 km SSO, Orbit mission duration 3-11 mo. deorbit in 13 yrs Propulsion None

V-R3x S3VI CoP Webinar

Low cost, Low SWaP: S-band built-in-ranging

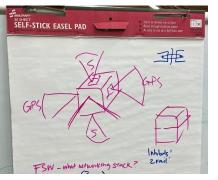
UHF	S-band
Uplink, Downlink, Cross-link, Beacon	Downlink, Cross-link, Ranging
915.6 MHz	2.2236 GHz
500 KHz, SF=12 (selected)	1625 KHz, SF=6 (selected)
1 W	500 mW
HopeRF	Semtech
RFM95PW	SX1280
1.46 kbps	152.34 kbps
0.122 ksps	25.39 ksps
LORA (CSS)	LORA (CSS)
base64	base64
-131 dBm	-132 dBm
0 dB	2 dB
500KF1D	1M63F1D
	Uplink, Downlink, Cross-link, Beacon 915.6 MHz 500 KHz, SF=12 (selected) 1 W HopeRF RFM95PW 1.46 kbps 0.122 ksps LORA (CSS) base64 -131 dBm 0 dB

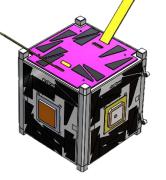
SemTech SX1280 Transceiver Credit: SemTech



Hope RF RFM95PW Transceiver Credit: HopeRF₁₂

Communications Overview





V-R3x Build

Brainstorm 12/03/2019

Project Proposal 12/16/2019

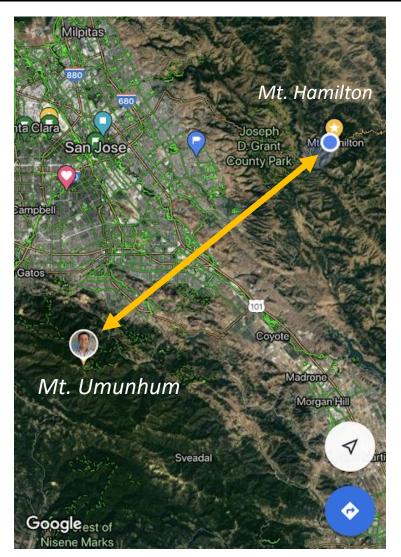
PDR/CDR 05/18/2020

EDU 08/31/2020

<image>

10/27/2021

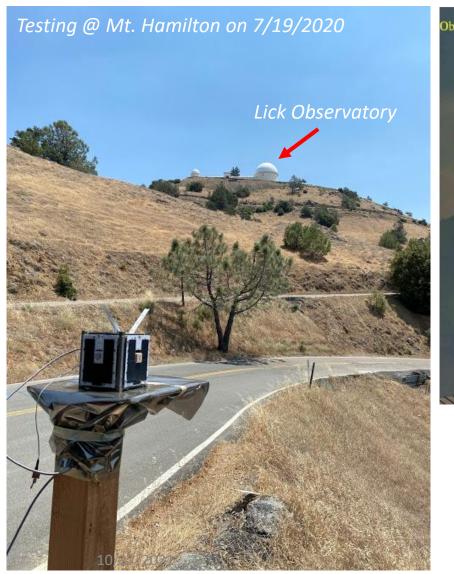
V-R3x S3VI CoP Webinar


07/19/2020 – Ridge Testing #1

View from Mt. Hamilton

V-R3x #2

V-R3x #1

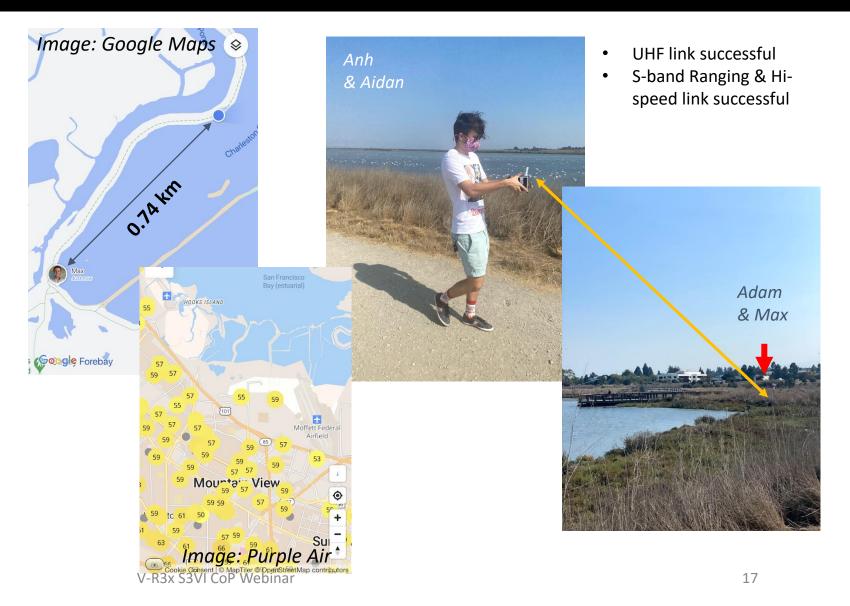

- UHF link closed
- S-band ranging & link didn't close
 - Likely due to valley noise

10/27/2021

08/20/2020 – Ridge Testing #2 postponed due to wildfires

V-R3x S3VI CoP Webinar

Looking East by Northeast



9/20/2020 - V-R3x Range Testing

9/26/2020 Ridge Testing

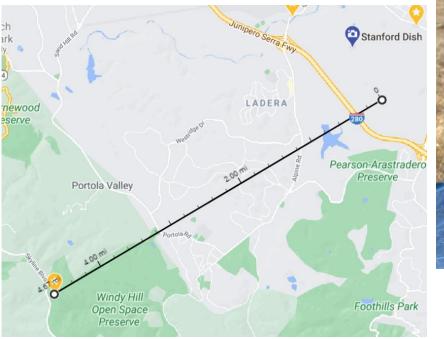

Windy Hill

Image Credits : NASA

Image: Google Maps

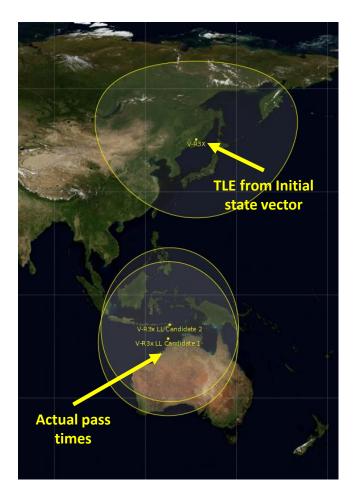
Total distance: 4.67 mi (7.51 km)

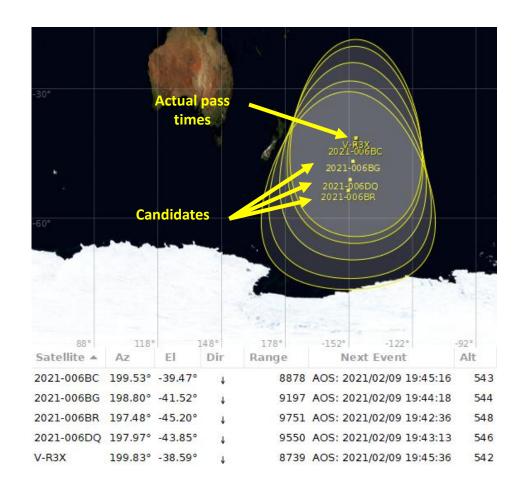
- UHF link closed
- S-band ranging & link didn't close
 - Likely due to valley noise

V-R3x S3VI CoP Webinar

1/24/2021 10:00A EST Launch

First Spacecraft Packets Recieved





Tracking Issues

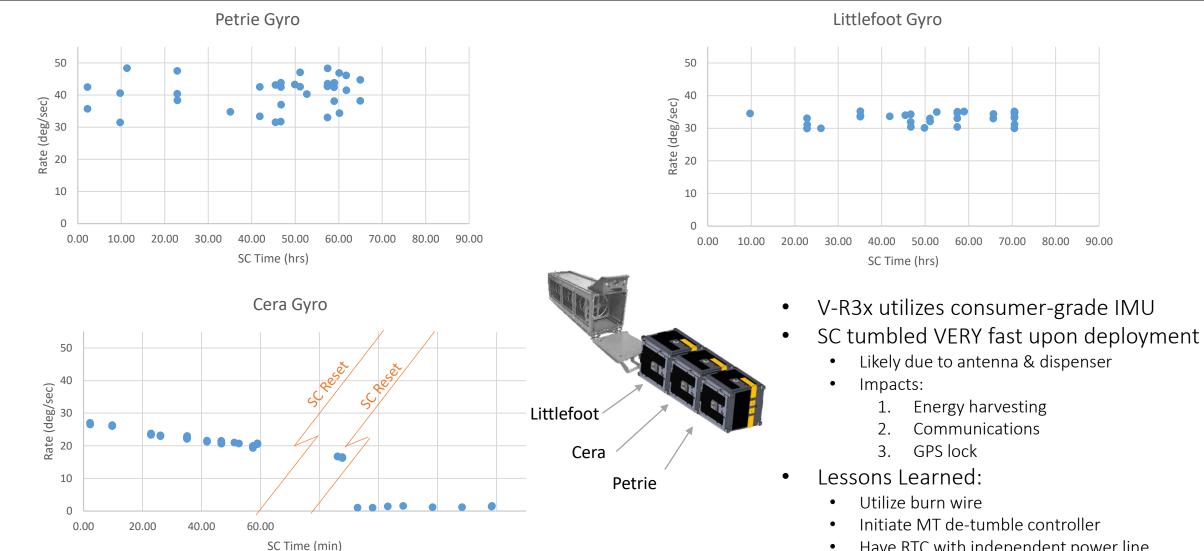
- Initial state estimates from SpaceX poor
- LeoLab tracking support for L+7 days poor
- After 2 months, we believe we are objects:
 - NORAD ID 47463 (OBJECT-BC)
 - NORAD ID 47467 (OBJECT-BG)
 - NORAD ID 47524 (OBJECT-DQ)
- Last packets heard from spacecraft on Feb 5, 2021 (2 wks)

Mission Timeline

Hour	Detail
0	SC Deployed
2	First community packet
3	First telemetry packets from Stanford GS Jan 24, 10:16AM PST
<mark>3−77</mark>	Gather beacon data from community and Stanford GS
(1d−3d)	Noticed power dropping and tumbling
50	First ground station uplink
(2d)	Query battery voltage
50 — 77	More commanding
(2d – 3d)	Attempt to downlink datasets, query battery voltage
77	Command SC to low power mode
(3d)	SC will stop beaconing (but still listens)
77 — 301	Uplink power tweaks
(3d — 12d)	Leverage over-the-air commanding to turn sensors off, reduce processing, etc
301	Last commanding to SC
(12d)	Uplink extended sleep code. Contacted all sats
316	Last packet received from SC
(13d)	Cera

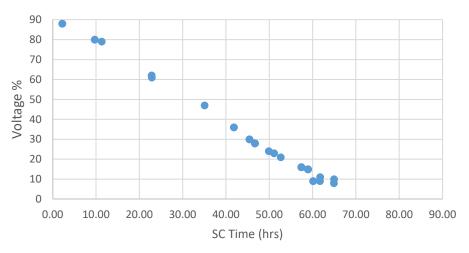
Post Launch ops

- Sat beaconed every 30s. beacon could contain 1 of 4 data "types" with ranging being one of them.
- Post launch, V-R3x team and hams around the world collected beacon 114 packets in the first 72 hrs
- Spacecraft beacons reported tumbling > 30 deg/sec and power dropping over time
- Poor initial ephemeris from Space-X, tracking by LEO labs, and tracking by SpaceTrack reduced direct contact time
- Commanded spacecraft to go in ultra-low-power-sleep mode to preserve batteries where beacons stop
 - Hams subsequently stop listening
- V-R3x team shifts focus to balloon units while waiting for orbital units to naturally slow down, get better TLEs, and potentially recharge batteries
- Post-balloon launch, satellites never returned to nominal conditions

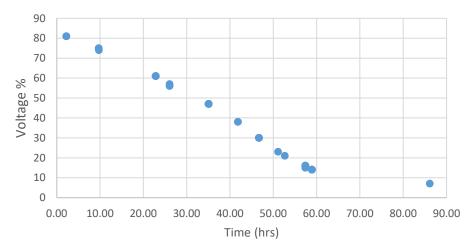

Beacon Packet Summary

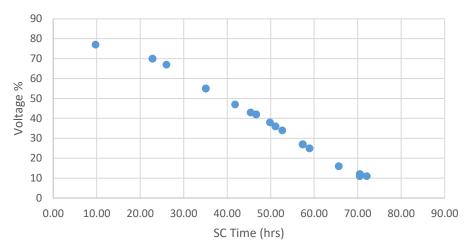
A CONTRACTOR OF	Littlefoot		Cera cket (45 bytes)		Petrie	
Bytes:	Header 4	State of HealthRotating Data+ Mission MetricsSummary2218		Summary	CRC 1	
	Ranging (pkts)	Hi-speed X-link (pkts)	GPS Pkts (GPS Locks)	Rad Pkts	Total Pkts	
Petrie	Cera (9) Littlefoot (1)	Cera (12) Littlefoot (2)	8 (0)	8	40	
Cera	Littlefoot (8) Petrie (9)	Littlefoot (11) Petrie (12)	7 (1)	10	57	
Littlefoot	Cera (8) Petrie (1)	Cera (11) Petrie (2)	4 (1)	9	35	

Have RTC with independent power line ٠


V-R3x S3VI CoP Webinar

^{10/27/2021}





Cera Power

- Over time, power dropped for all three satellites
- Issue likely related to selected solar cells and tumbling (see next set of slides)
- Note: % is non-linear
 - Full (100%): 8.4V
 - Empty (0%) : 4.5V

Solar Cells

- V-R3x selected COTS solar cells (22% efficiency)
 - Readily available
 - Cost-efficient
 - Hoped they'd be easy to work with
- EDU was thermal tested (see next slide)
 - +60C Hot, -15 Cold

Lessons Learned:

- Perform IV Curve at different temps
 - Characterize efficiency drop w/ temp
- Not easy to work with
 - Can't use reflow oven
 - Lots of manual labor needed for staking

IXOLAR[™] High Efficiency SolarMD.

Description

IXOLARTM SolarMD is an IXYS product line of Solar Module made of monocrystalline, high efficiency solar cells. The IXOLARTM SolarMD is an ideal for charging various battery powered and handheld consumer products such as mobile phones, cameras, PDAs, MP3-Players and toys. They are also suitable for industrial applications such as wireless sensors, portable instrumentation and for charging emergence backup batterie

With a cell efficiency of typically 25%. SolarMD gives the ability to extend run time even in "low light" conditions and increase battery life and run time in a small footprint, which can be easily accommodated in the design of portable products. The design allows connecting SolarMD flexibly in series and/or parallel to perfectly meet the custom-specific application's power requirements

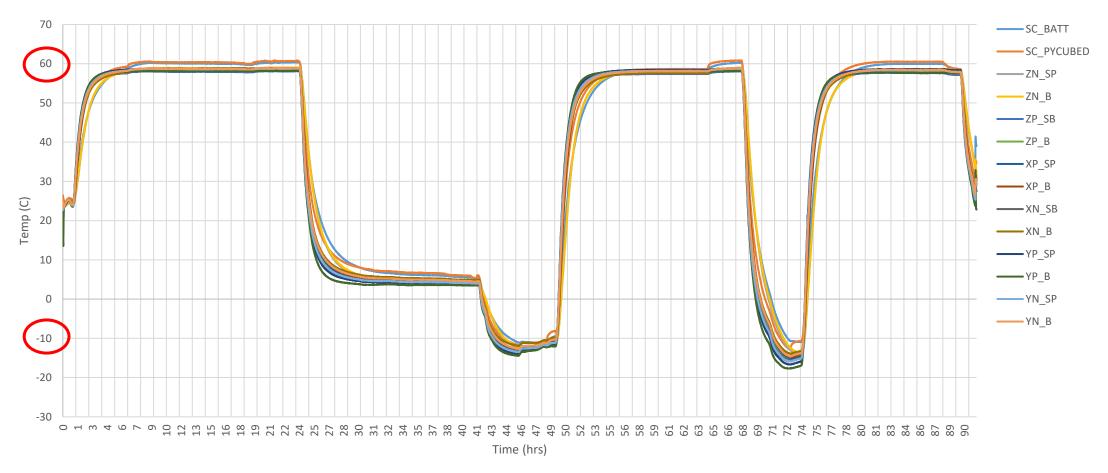
IXOLAR™ products have a very good photonic response over a wide range of wavelength and therefore can be used in both indoor and outdoor applications.

Product and Ordering Information						
Part Number	Open Circuit Voltage [V]	Short Circuit Current [mA]	Typ. Voltage @ Pree [V]	Typ. Current @ Pmp [mA]		
SM141K06L	4.15	58.6	3.35	55.1		

(Parameters given are typical values) Dimensions (W x L x H): 42 x 23 x 1.8 ± 0.3 [mm] SolarMD Weight: 3 grams Storage Temperature: -40°C ~ +90°C Operation Temperature: -40°C ~ +90°C olarMD are compliant to the RoHS Norm

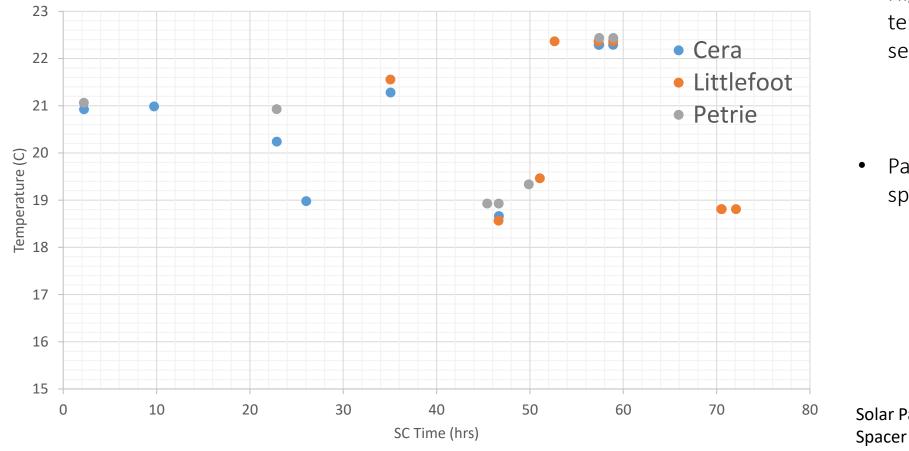
Symbol	Cell Parameter	Typical Ratings *)	Units
Voc	open circuit voltage	4.15	v
lsc	short circuit current	58.6	mA
Vmpp	voltage at max. power point	3.35	v
Impp	current at max. power point	55.1	mA
Pmpp	maximum peak power	184	mW
FF	fill factor	> 70	%
η	solar cell efficiency	25	%
∆Voc/∆T	open circuit voltage temp. coefficien	t -10.4	mV/K
∆lsc/∆T	max power temp. coefficient	26.5	uA /K

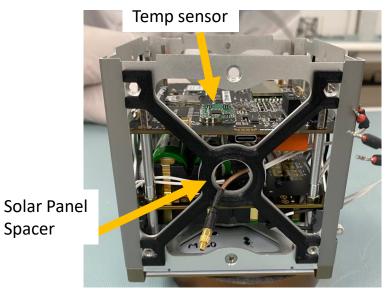
Image Credits : NASA


-				1953				
Typ. Voltage @ Pres [V]	Typ. Curr @ Prep[ft	ent nA]		-				
3.35	55.1		31					
			10	10 - Hard				_
					1000			
						_		
					•			
					•			
			1 .		•			
al Ratings *)	Units		+			-		
4.15	v	-				-	-	
58.6	mA	- /			- Contraction		+	1
3.35	v			A REAL	1	5	-1	0
55.1	mA	- /	-		14	, KO	0~	
184	mW		15	SN	14	10		
> 70	%		TE	SN	R	5.0		and the
25	96		, VC	5. 1.		the second	-	
-10.4	mV/K		12		- had -			
26.5	uA /K	1 .	1	E mart				
//m ^a), Air Mass 1.5)					
						1000		
							-	
							1	Ella.
						A		

V-R3x EDU TVAC Profile

NASA


V-R3x EDU TVAC Profile



On-orbit Temperatures

- High precision (28-bit) temperature data from radiation sensors inside spacecraft
 - Min: 18.5C
 - Max: 22.4C
- Panels thermally isolated with spacers

High Precision Ranging

	Full Datasets	Last Good Range					
Cera \leftrightarrow Petrie	15	701 to 809 meters					
Cera \leftrightarrow Littlefoot	11	746 to 772 meters					
Never able to downlink							

due to tumbling/power

Beacon packets provide "snippets" of range data:

 Ranging measurements stopped at ~1km due to measurement time-out (discovered during balloon campaign post orbital demo)

				Range
#	sat	sc-time (sec)	range-with	(m)
12	littlefoot	82152.08	cera	
30	littlefoot	126282.30	cera	
39	littlefoot	163430.90 cera		
44	littlefoot	168006.10	cera	746
54	littlefoot	179396.60	cera	740
66	littlefoot	206524.10	cera	
87	littlefoot	236348.20	cera	
93	littlefoot	253871.50	cera	
11	petrie	40749.63	cera	
21	petrie	82380.87	cera	
27	petrie	126239.00	cera	
34	petrie	150562.90	cera	701
49	petrie	168094.10	cera	
70	petrie	206607.80	cera	
77	petrie	212041.90	cera	
14	cera	82223.71	littlefoot	
33	cera	126366.50	littlefoot	
48	cera	168074.70	littlefoot	772
60	cera	184042.30	littlefoot	112
69	cera	206588.10	littlefoot	
85	cera	212191.50	littlefoot	
5	cera	34910.32	4910.32 petrie	
24	cera	93803.18	petrie	809
25	cera	126177.50	petrie	605
36	cera	150587.10	petrie	
103	cera	103695.50	petrie	

Actual Range After Deployment

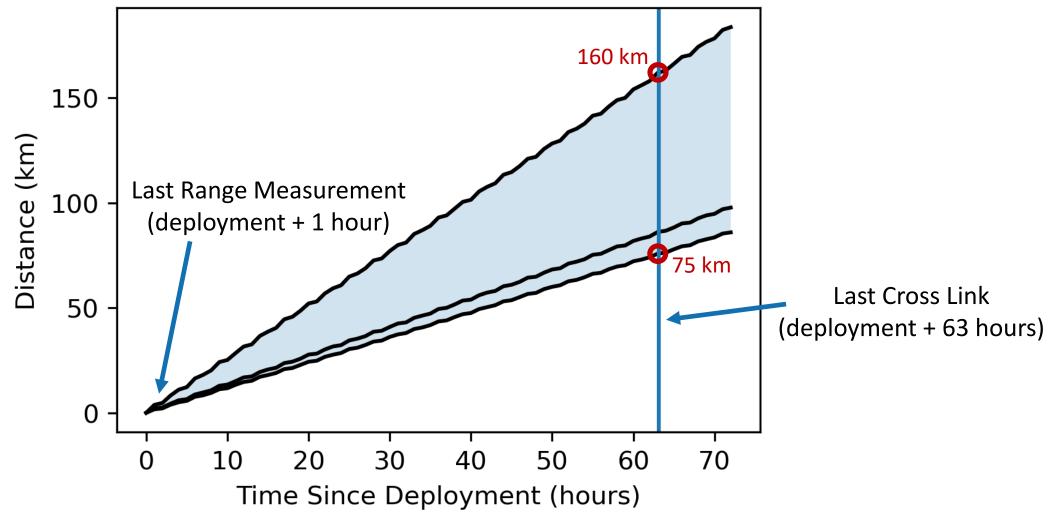


Image Credits : Z. Manchester

NASA

	Petrie	Littlefoot
Cera	9 UHF	21 UHF
(default mesh leader)	7 S-Band	15 S-band

Cross-link activities always initiated by mesh leader

Frequency	Expected	Actual
UHF (915.6 MHz)	3 – 37 kbps at distances 50m to >100km* between two nodes	37.5 kbps at distance of at least 75 km (up to 160 km)
S-Band (2223.6 MHz)	50 – 250 kbps at distances 50m to 10km* between two nodes	253 kbps at distance of at least 75 km (up to 160 km)

kpbs = kilo bits per second

* Link budget dependent

Image Credits : NASA

- V-R3x GPS: SkyTraq chip-scale GPS w/ two antennas on opposite faces 180° apart
- Nulls in gain pattern edge-on to both antennas
- Tumbling causes severe fading; GPS satellites will drop out when they are in the antenna nulls
- Receivers got partial locks (GPS time, altitude)
- Unable to get a full position + velocity solution on orbit
- Lesson learned: mitigate tumbling

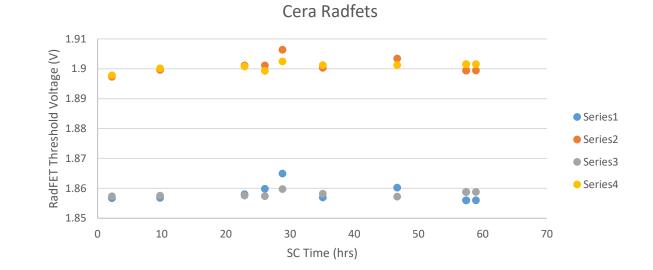
#	sat	sc-time	vbatt	boot-cnt	gps-tow	gps-ecef-x	gps-ecef-y	gps-ecef-z	Alt (km)
2	cera	7963.45	81	1	65525	0	0	0	0.00
18	cera	82308.59	61	1	69215	5583.008	3785.889	1514.893	535.50
29	cera	126262.30	47	1	69215	5583.008	3785.889	1514.893	535.50
52	cera	168159.80	30	1	69215	5583.008	3785.889	1514.893	535.50
62	cera	189608.80	21	1	69215	5583.008	3785.889	1514.893	535.50
73	cera	206706.10	16	1	69215	5583.008	3785.889	1514.893	535.50
80	cera	212106.90	14	1	69215	5583.008	3785.889	1514.893	535.50
15	littlefoot	82236.15	70	2	61753	0	0	0	0.00
42	littlefoot	167884.50	42	2	225265	5412.109	4031.982	1500	535.50
64	littlefoot	206439.90	27	2	247611	5412.109	4031.982	1500	535.50
79	littlefoot	212080.60	25	2	247611	5412.109	4031.982	1500	535.50
1	petrie	7943.65	88	1	65397	0	0	0	0.00
9	petrie	35003.26	80	1	92480	0	0	0	0.00
16	petrie	82256.21	62	1	139632	0	0	0 🖉	0.00
53	petrie	168193.40	28	1	225675	0	0	0 %	0.00
59	petrie	183985.60	23	1	241228	0	0	200	0.00
74	petrie	206713.90	16	1	264188	0	0	% 0	0.00
82	petrie	212130.50	15	1	269330	0	0 12 3		0.00
86	petrie	212349.10	15	1	269330	0			0.00

GPS Antenna

10/27/2021

Unable to downlink full datasets

Cera on-board dosimeters


•

•

indicate dose of ~700 rad(Si).

Reasonable dose

34

#	sat	sc-time	files-rad	rad-R1	rad-T	rad-R2
4	cera	8005.76	0	1.85666	20.9225	1.89733
10	cera	35037.42	0	1.85681	20.9854	1.8996
20	cera	82371.57	0	1.85804	20.2395	1.90113
23	cera	93760.98	0	1.85987	18.9791	1.90113
31	cera	126304.70	0	1.85698	21.2809	1.90032
46	cera	168032.40	1	1.86019	18.6633	1.90343
67	cera	206545.90	1	1.85597	22.2899	1.89941
75	cera	206748.50	1	1.85597	22.2899	1.89941
83	cera	212149.30	1	1.85597	22.2899	1.89941
102	cera	103653.10	2	1.86495	17.2779	1.90635
28	littlefoot	126240.30	0	1.55606	21.5545	1.51404
43	littlefoot	167936.50	0	1.5595	18.5634	1.51898
56	littlefoot	183882.90	0	1.55834	19.4618	1.51898
61	littlefoot	189532.10	0	1.55552	22.3652	1.5132
65	littlefoot	206482.10	0	1.55552	22.3652	1.5132
81	littlefoot	212126.20	0	1.55552	22.3652	1.5132
92	littlefoot	253829.50	0	1.55911	18.8078	1.51883
96	littlefoot	254008.60	0	1.55911	18.8078	1.51883
97	littlefoot	259541.60	0	1.55911	18.8078	1.51883
3	petrie	7985.85	0	1.53829	21.0617	1.53082
19	petrie	82312.22	0	1.53883	20.9268	1.53738
40	petrie	163544.70	0	1.54153	18.9277	1.54068
45	petrie	168017.70	0	1.54153	18.9277	1.54068
55	petrie	179593.40	1	1.54107	19.3337	1.54068
76	petrie	206756.10	1	1.53754	22.4353	1.53509
84	petrie	212179.80	1	1.53754	22.4353	1.53509
101	petrie	4167.85	2	1.53809	18.2167	1.53777

Objective Tracking

ID	Short Req.	Long Req.	Orbital
1-1	S-band High Precision Ranging	V-R3x shall demonstrate ranging with <1 m precision at a distances up to 500 km between at least two satellite nodes	IN-PROGRESS Requires complete ranging and GPS data. Beacon data indicates ranging successful ; no GPS yet.
1-2	S-band High Data Rate Cross-link	V-R3x shall demonstrate data rates > 50 Kbps (up to 250 kbps) between two satellite nodes at distances up to 10 km between at least two satellite nodes	COMPLETE 253 kbps at distance of at least 75 km (up to 160 km)
1-3	Relative Topology Recovery	V-R3x shall demonstrate relative topology recovery between all satellite nodes (post- processed on the ground)	IN-PROGRESS Requires complete ranging and GPS data. Beacon data indicates ranging successful ; no GPS yet.
1-4	Distributed sensor collection	V-R3x shall Coordinate and collect radiation data from on-board sensors from each satellite node	IN-PROGRESS Requires full dataset with GPS. Beacon data indicates radiation data collection successful.

Orbital Lessons Learned & Path Forward

- Lessons Learned/Challenges
 - Tracking is poor from LeoLabs & SpaceX initial state vector; build into mission ops; beacons extremely helpful
 - Tumbling is an issue: Mitigation either to tie down antenna –and/or– build in magnetorquer-only de-tumble
 - Do NOT use the solar cells we used
 - Plan on CA wildfire season for risk to schedule/testing
 - Severe COVID impacts to staffing for small team & getting services (standing up ground stations)
- Accomplishments
 - First to collect intersatellite range measurement using LoRa radios
 - V-R3x paved way for LoRa 915MHz transmissions with NTIA
 - Valuable lessons learned working with AWS commercial ground station. Configured and ready to go for next mission
 - Entire satellite programmed in Python (no C or assembly), open-source design
- Path forward
 - Continue to continuously listen for beacons over CMU Ground station after stood-up
- Dissemination of Information
 - Lessons Learned Session for SmallSat 2022
 - V-R3x Post-processing GNC Autonomous Navigation Paper K. Tracy
 - V-R3x Serial Bus Protection Journal M. Holliday
 - Follow-on PyCubed Paper M. Holliday

Post-launch Balloon Schedule

		Jan 2021		Feb	202	1		Mar 2021			Apr 2021											
Activity	Date	Wk 1	W	< 2 \	Wk 3	Wk 4	Wk 1	L Wk 2	Wk	3 W	٢4	Wk :	l W	k 2	Wk	: 3 V	Vk 4	Wk 1	LW	k 2	Wk 3	Wk 4
V-R3x Launch Integration	01/3/2021 - 1/8/2021																					
Balloon Development	1/11/2021 - 1/24/2021																					
V-R3x Orbital Launch	01/24/2021					٥																
Early Mission Ops	1/24/2021 - 2/15/2021																					
Balloon Development	2/15/2021 - 3/6/2021																					
Backet Drop Test	02/19/2021								\diamond													
Dress Rehearsal	03/03/2021											٥										
Balloon Campaign @ Raven, SD	3/7/2021 - 3/14/2021																					
Travel Day	03/07/2021												٥									
Integration & Indoor EMI/EMC Test	03/08/2021													٥								
Outdoor EMI/EMC Test	03/09/2021													٥								
Ops Planning (Snow Day)	03/10/2021													٥								
Site Planning/Waiting for STA	03/11/2021													٥								
Flight Campaign Day	03/12/2021													٥								
Recovery/Packing	03/13/2021													٥								
Travel Day	03/14/2021													٥								
Lead Eng. Out (Family Emergency)	3/15/2021 - 3/26/2021																					
Balloon Data Analysis	3/29/2021 - Current																					
Balloon Range Test	04/04/2021																	♦				
Balloon Ridge Test	04/09/2021																	♦				

V-R3x-S Team

Roger Hunter SST Program Manager NASA

Paul De León FO Flight Manager NASA

Anh Nguyen Project Manager NASA Ames

Zac Manchester Principal Investigator Carnegie Mellon University

Max Holliday Systems Engineer Stanford

Adam Zufall Systems Engineer NASA ARC-MEI

Kevin Tracy Flight Dynamics Carnegie Mellon University

Cedric Priscal Comms NASA-KBR

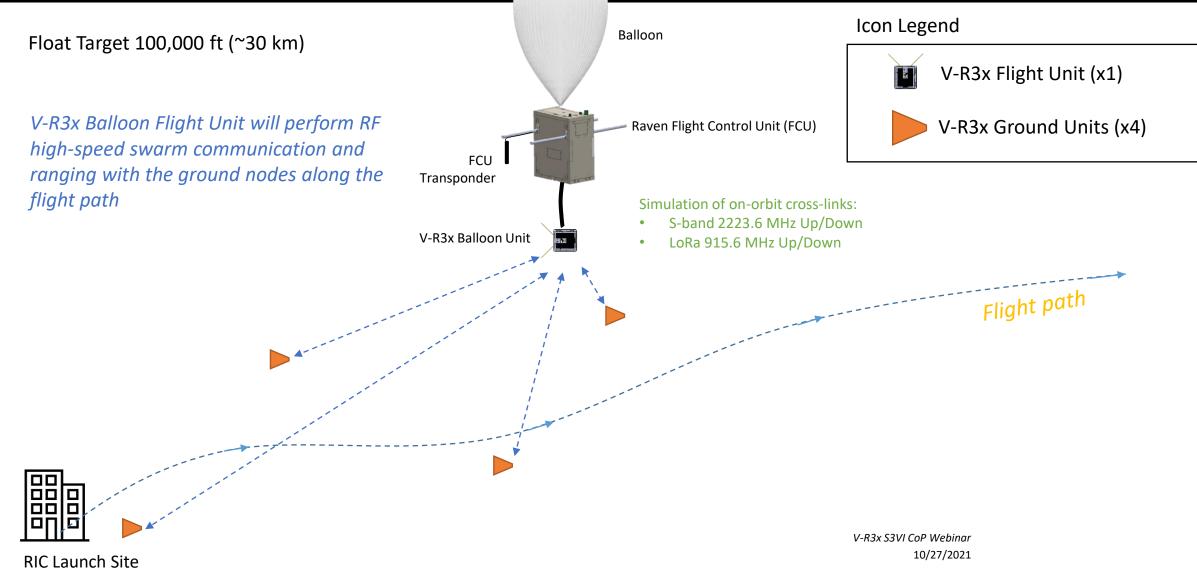
Alex Mazhari Rapid Prototyping NASA

V-R3x-S Balloon Campaign

V-R3x-S Balloon Objectives

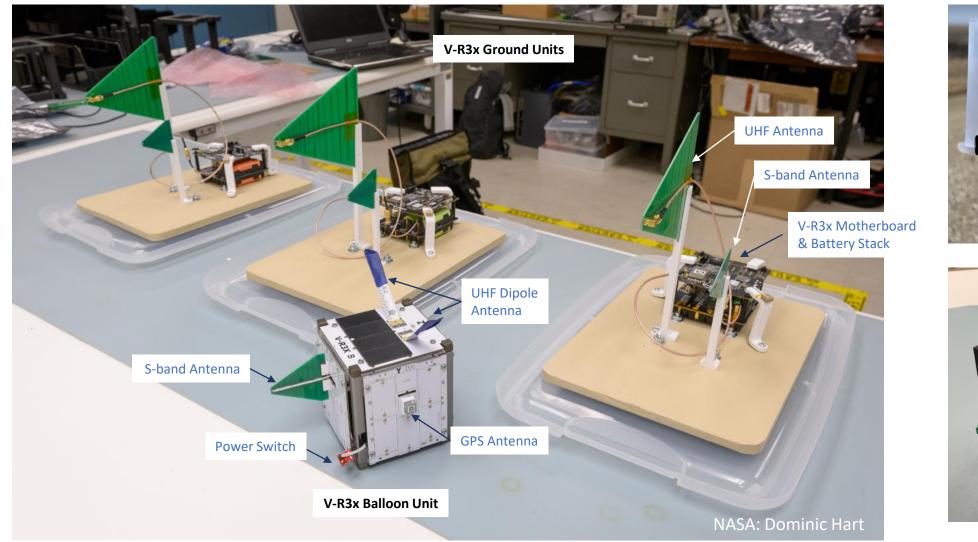
• Objective 1 (O-1): S-band High Precision Ranging

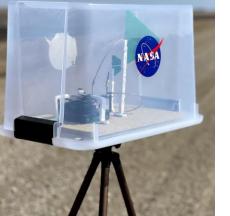
 O-1 Success Criteria: V-R3x shall demonstrate ranging with less than 1 m precision at distances 45 m -800 km between two satellite nodes. Spacecraft and balloon GPS will be used to validate ranging measurements.


• Objective 2 (O-2): S-band High Data Rate Cross-link

- O-2 Success Criteria: V-R3x shall demonstrate data rates 50 250 Kbps at distances 45 m 10 km between two satellite nodes. Spacecraft telemetry downlink will be used to validate the ranging measurements.
- Raven Flight Objectives
 - 100kft altitude for a minimum of (2) hours
 - Transmit and receive data from Balloon unit to four ground units via ISM & S-band

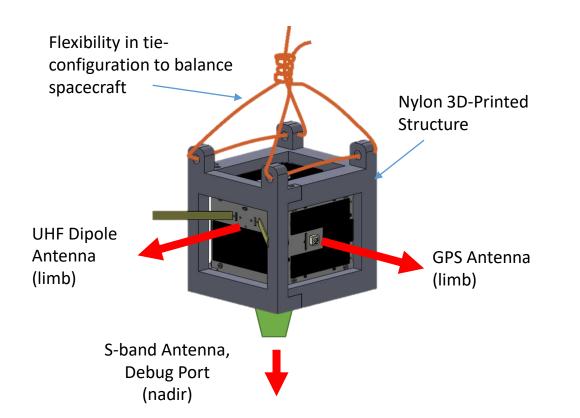
Balloon Demo Overview

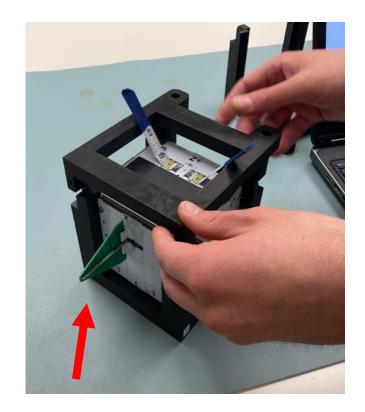




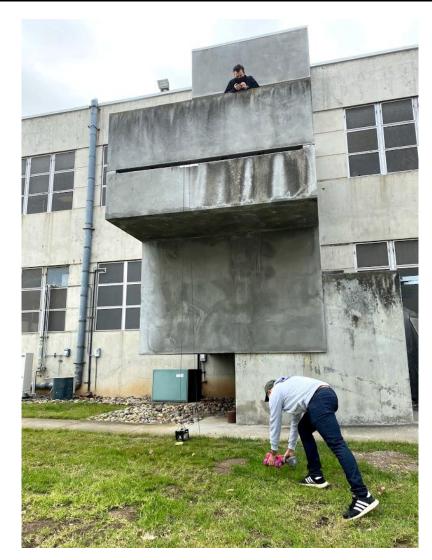


V-R3x Balloon Hardware



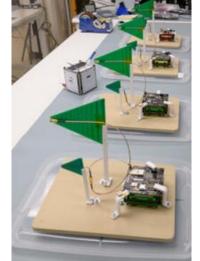


Mechanical Changes

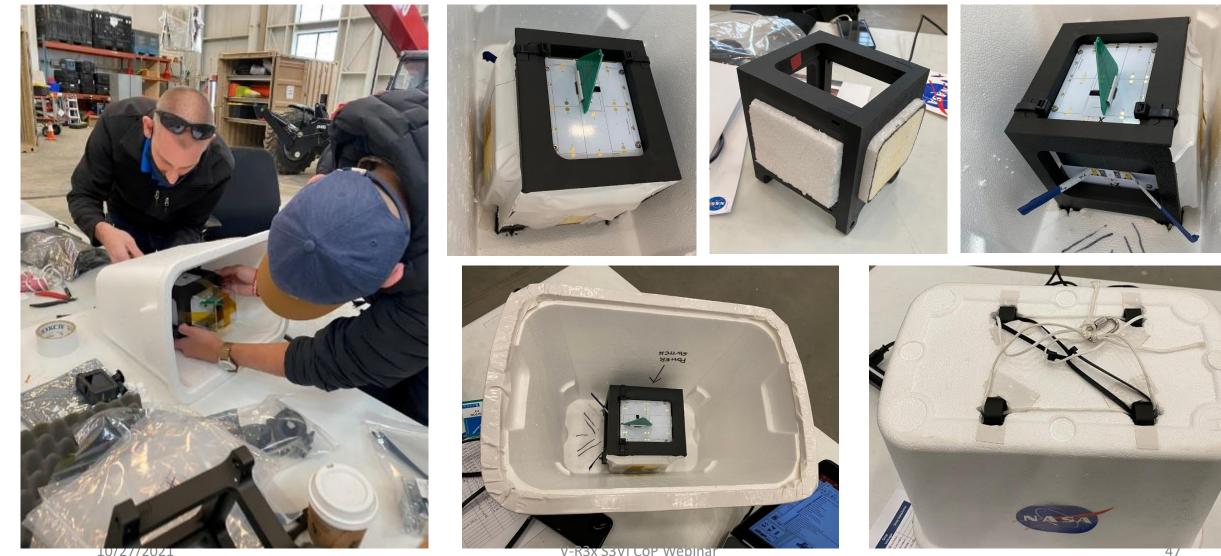

- Change of antenna for improved coverage susceptible to damage upon lift-off
- Intact recovery buys down risk for increased time/LOE in correlating missing data

2/19/2021 Bracket Pull/Drop Test

V-R3x S3VI CoP Webinar



3/3/2021 Field Test/Dress Rehearsal


3/8/2021 GS Assembly & Checkout

3/8/2021 Assembly, Check-out, Indoor EMI/EMC Test

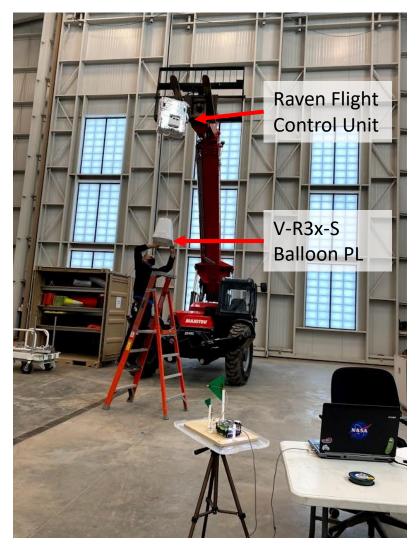
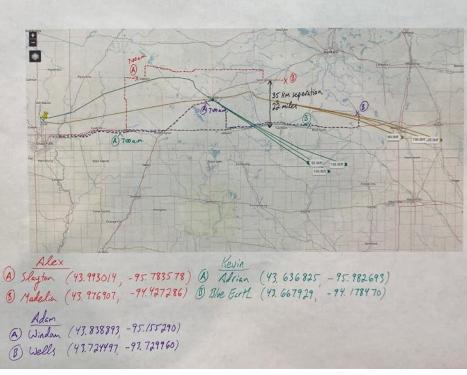

10/2//202.

Image Credits : NASA

3/8/2021 Indoor EMI/EMC Test

10/27/2021

3/9/2021 Outdoor EMI/EMC Test, Planning



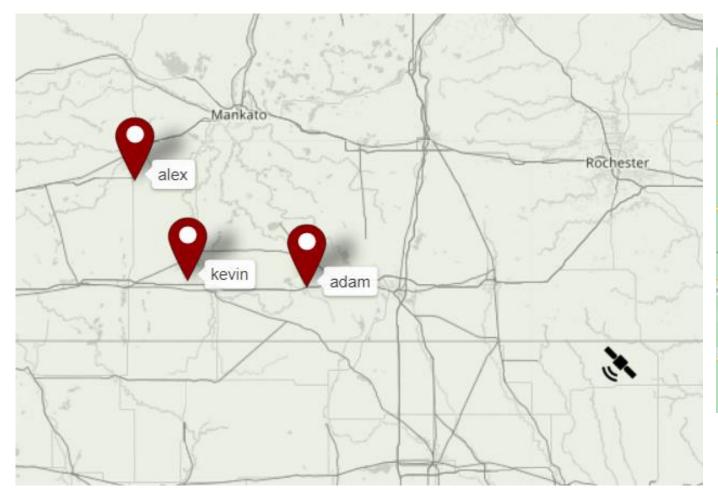
3/10/2021 Planning (Rain/Snow Day)

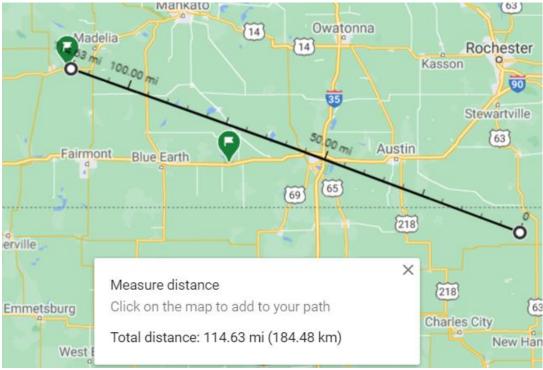

3.03 1		
	● pace-dev.org	
Cedric Exp	press	
Your position	43.701062, -96.708581	
Balloon	43.4946, -96.7584, 30480	m
Azimuth	189.9 °	
Elevation	52.2 °	

3/11/2021 Site Scouting/Waiting on STA

V-R3x S3VI CoP Webinar

3/12/2021 Flight Campaign Day


	● pace-dev.org	۵
Cedric Exp	oress	
Your position	43.701064, -96.708553	
Balloon	43.4974, -93.3731, 30028 m	
Azimuth	94.8 °	
Elevation	6.3 °	
N 11 200		-



Tracking via Cedric Express

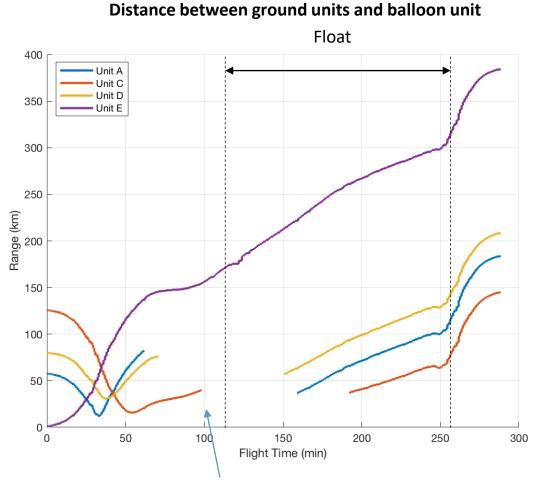
V-R3x S3VI CoP Webinar

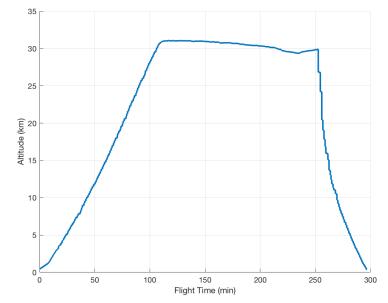
3/12/2021 Recovery

3/13/2021 Pick-up & Packing



Tracking Summary



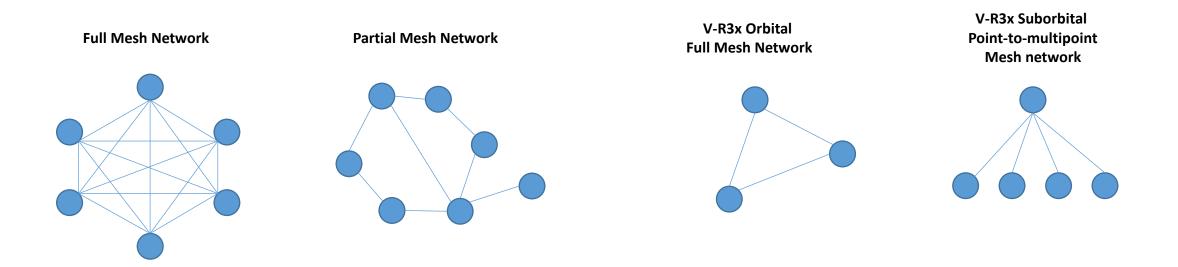

Range values from GPS data

Gaps due to units moving to next location

Balloon Unit Altitude

Chaser	Unit	Max Range (km)
Kevin	Α	183.48
Adam	C	144.69
Alex	D	208.29
Cedric	E	384.01

Experiment Summary


- Balloon unit successfully networked with each of the ground units over a duration of 5.2 hrs
- Successful mesh networking
- Successful high-speed data transfer S-band and UHF
- No S-band ranging data collected $\ensuremath{\mathfrak{S}}$
 - Frequency offsets (EFE's) collected for all links
 - Ranges not calculated
 - Successful GPS lock maintained throughout the duration of the flight

Mesh Networking

- V-R3x-S units successfully demonstrated point-to-multipoint, mesh networking
 - Point-to-multipoint: selected given the terrestrial nature of the suborbital experiment
 - **Partial mesh networking**: data was routed between nodes that weren't able to communicate directly via the mesh

- Maximum data rates achieved for both suborbital and orbital units
 - Maximum data rates are range independent and limited by hardware

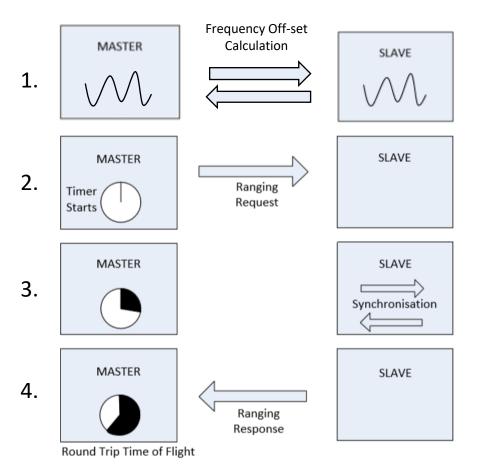
Frequency	Expected	Balloon Actual
UHF (915.6 MHz)	3 – 37 kbps at distances 45 m – 10 km between two satellite nodes	37.5 kbps at distances up to 30 km between two nodes
S-Band (2223.6 MHz)	50 - 250 Kbps at distances 45 m – 10 km between two satellite nodes	253 kbps at distances up to 30 km between two nodes

kpbs = kilo bits per second

ranging

61

Preamble	Double Header	Ranging Request	Ranging Silence	Ranging Response
16,25 Symbols	16 Symbols	15 Symbols	2 Symbols	15 Symbols

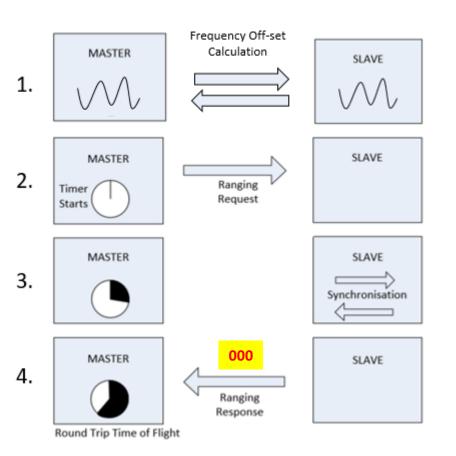

Newest S-band LoRa chips (SemTech SX1280 Transceiver) have ranging functionality built into the hardware

Chirp modulation is ideal for time-of-flight

Ranging Background

- Ranging to be performed between the nodes
- GPS data used for ground-truth

Ranging process



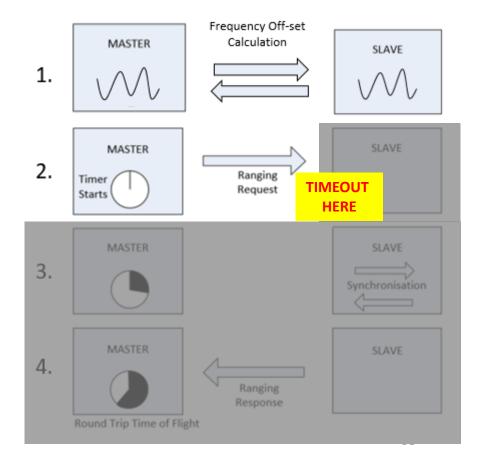
62

• After 37 minutes, the S-band radio chip started returning 000 for all ranging calculations for the remainder of the flight.

Ranging Anomaly Observations

- No usable ranging data was collected
- S-band radio still able close the link and calculate the frequency offset value (EFE) for each ranging exchange throughout the entire flight duration
- No useful data to extract from the EFEs since Doppler shifts were within the noise
- This is NOT the behavior of the on-orbit nodes
 - On-orbit ranging beacon packets logged ranges up to ~80 km

Ranging Anomaly –Investigation


Root cause analysis points to an IRQ routine error:

- Radio parameters changed for balloon flight to optimize ranging distances rather than precision to ensure links close with balloon
- Lower bandwidth means longer TX time per symbol.
- Increasing TX time, revealed an oversight in the way the interrupt controller bit is checked for ranging
- Interrupt controller returned a false positive where an interrupt was fired before the ranging had completed resulting in 000 after the balloon gained some distance from the ground nodes

Path forward

- Fixed the IRQ routine to check for bit-by-bit changes w/ documentation
- Selected new parameters, where Ridge Testing Radio Parameter Selection: Went through the link budget and pick the SF/bandwidth for this scenario; picked the most reliable choice to close the link (trade of closing the link vs accuracy

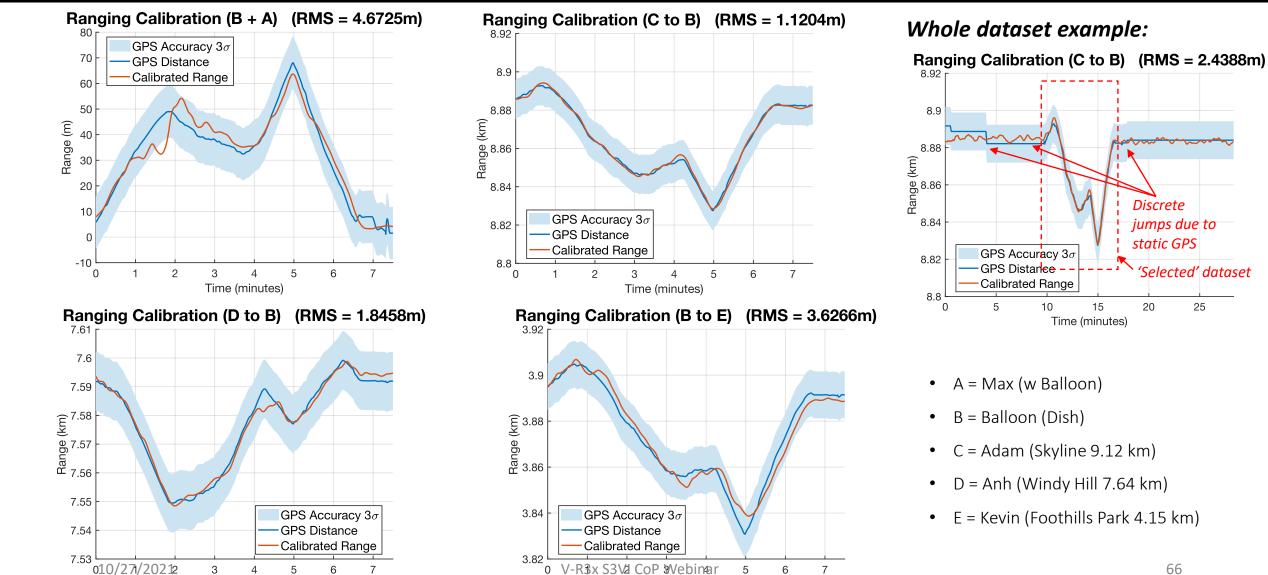
Units	SF	SF Bandwidth Ranging Distance		Ranging Precision
Orbit	10	1600 kHz	Short	Best
Balloon	10	400 KHz	Long	Worst



Ranging Anomaly – Testing

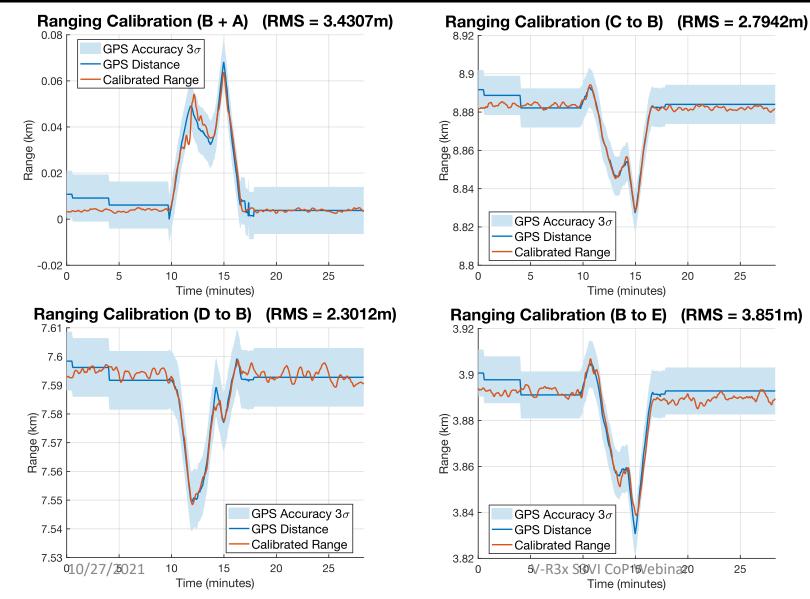
- Fixed the IRQ routine to check for bit-by-bit changes w/ documentation
- Selected new parameters to optimize timing and link budget and pick the SF/bandwidth for this scenario
- Range test 4/4 All nominal
- Ridge testing 4/9 Same anomaly observed
- Implemented firmware fixes
- Ridge testing w/ successful ranging 4/30

Units	SF	Bandwidth	Ranging Distance	Ranging Precision
Orbit	10	1600 kHz	Short	Best
Balloon	10	400 KHz	Long	Worst
Ridge Testing	10	800 KHz	Medium	Medium



Dataset 1

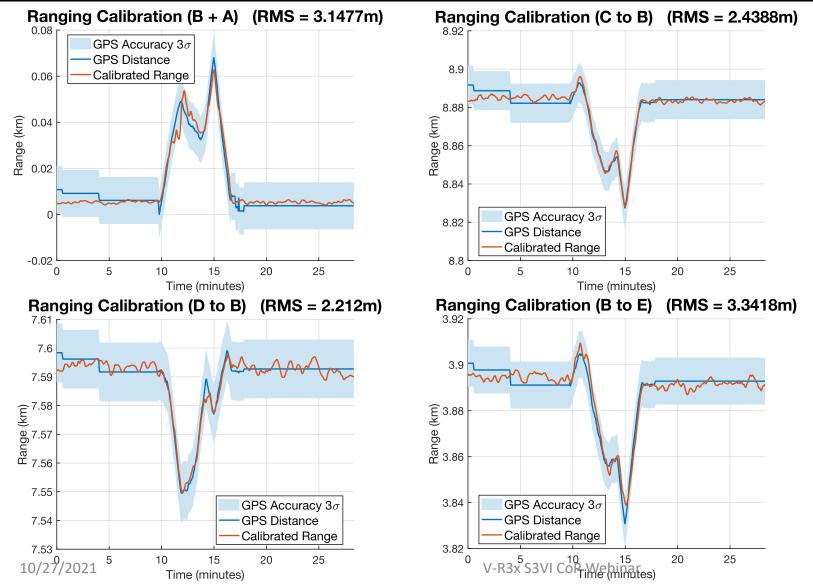
Time (minutes)


Time (minutes)

Dataset 2

Calibration coefficients from Dataset 1 and applied to the whole measurement history.

Notes on analysis


- Smoothing of raw range data was done using a sliding window moving average
- Also tried pure matlab smoothing data routine
- Potential to use a kalman filter and model max as a 2-d integrator

Dataset 3

New calibration based on all the data, not just the 'selected' data

Ridge Test Summary

Detect	Detect Summers	Range Error between Sats						
Dataset	Dataset Summary	B⇔A	B⇔C	B⇔D	B⇔E			
1	Calibration from 'selected' dataset	4.672m	1.120m	1.846m	3.627m			
2	Calibration applied to whole dataset from 'selected' dataset	3.431m	2.794m	2.301m	3.851m			
3	All data calibration	3.148m	2.439m	2.212m	3.342m			
Average Range Error		3.750m	2.118m	2.120m	3.607m			

- All errors within the stack-up for the given uncertainty on the GPS receiver and spec from the radio
- Manufacturers advertise numbers as guarantee with unit-to-unit variation
 - 7m for 3-sigma error for GPS
 - 5m is 2-sigma error for GPS
 - Expected error is **3.85m** (1-sigma)
- Take away:
 - Accuracy goes down with sqrt of measurements
 - Orbital dynamics would allow better filter implementation to achieve GPS ground-truth precision of 1m RMS

Suborbital Objective Tracking

ID	Short Req.	Long Req.	Suborbital
1-1	S-band High Precision Ranging	V-R3x shall demonstrate data rates 50 - 250 Kbps at distances 45 m – 10 km between two satellite nodes. Spacecraft telemetry downlink will be used to validate the ranging measurements.	NO BALLOON DATA Supplemental ridge test data indicates 2 m range precision at distances up to 9 km between at least two satellite nodes, indicating orbital data likely to achieve <1 m at 500 km.
1-2	S-band High Data Rate Cross-link	V-R3x shall demonstrate data rates 50 - 250 Kbps at distances 45 m – 10 km between two satellite nodes. Spacecraft telemetry downlink will be used to validate the ranging measurements.	COMPLETE 253 kbps at distances up to 30 km between two nodes

Raven Flight Objectives

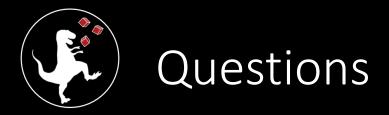
- 100kft altitude for a minimum of (2) hours COMPLETE
- Transmit and receive data from Balloon unit to four ground units via ISM & S-band COMPLETE

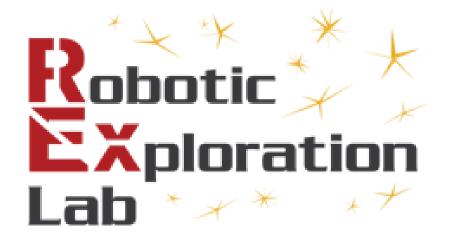
Suborbital Lessons Learned

Lessons Learned

- Suborbital demonstration before orbital demonstration would have been useful to address bugs
- GPS, UHF, and S-band Link budget better than expected for terrestrial demo
- High speed comm verified hardware limits
- Expected temperatures very cold
- Gather more data if possible of env. (temp, acceleration, etc.)
- Always get TSA paperwork; carry-on hardware does not fit in overhead cabins of older regional planes
- Check hardware end-of-day; go through debug exercise with everyone during campaign
- Stay on top of your STA
 - Submit with plenty of margin
- Raven has a lot of knowledge, materials, and expertise lean on them
 - Mechanical, Thermal, and Flight patterns
 - Environment at Raven dustier/drier than expected
- Achievements:
 - Demo'd meshed networking and debugged ranging
 - Valuable lessons learned for future comm mesh networking suborbital experiments

Global Objective Tracking


ID	Short Req.	Long Req.	Orbital	Suborbital
1-1	S-band High Precision Ranging	V-R3x shall demonstrate ranging with <1 m precision at a distances up to 500 km between at least two satellite nodes	IN-PROGRESS Requires complete ranging and GPS data. Beacon data indicates ranging successful; no GPS yet.	NO BALLOON DATA Supplemental ridge test data indicates 2 m range precision at distances up to 9 km between at least two satellite nodes, indicating orbital data likely to achieve <1 m at 500 km
1-2	S-band High Data Rate Cross-link	V-R3x shall demonstrate data rates > 50 Kbps (up to 250 kbps) between two satellite nodes at distances up to 10 km between at least two satellite nodes	COMPLETE 253 kbps at distances up to 75 m between two nodes	COMPLETE 253 kbps at distances up to 30 km between two nodes
1-3	Relative Topology Recovery	V-R3x shall demonstrate relative topology recovery between all satellite nodes (post-processed on the ground)	IN-PROGRESS Requires complete ranging and GPS data. Beacon data indicates ranging successful; no GPS yet.	NOT SCOPED
1-4	Distributed sensor collection	V-R3x shall Coordinate and collect radiation data from on-board sensors from each satellite node	IN-PROGRESS Requires full dataset with GPS. Beacon data indicates radiation data collection successful.	NOT SCOPED


PACE Global Lessons Learned

- Suborbital demonstration provides critical data and lessons learned to increase mission success for orbital demonstrations
- Ability to rapidly demonstrate this technology could not be done without University partners and PyCubed architecture
- Lessons learned from rapid V-R3x demo can enable future rapid follow-on missions (<12 mo.)
- COVID-19 impacts severely compressed schedule
- RFA is <u>always</u> an issue
- V-R3x provided many lessons learned and valuable experiences for shaping of PACE series of mission on how to technically and logistically bridge FO to SST opportunities

