

i

National Aeronautics and Space Administration

Chapter Contents
Glossary .. ii
8.0 Small Spacecraft Avionics .. 202

8.1 Introduction ... 202
8.2 Chapter Scope and Organization .. 203
8.3 State-of-the-Art (TRL 5-9): Command and Data Handling 204

8.3.1 Avionics and On-board Computing Form Factors 205
8.3.2 Highly Integrated On-Board Computing Products 206
8.3.3 Radiation-Hardened Processors and FPGAs .. 210
8.3.4 Memory, Electronic Function Blocks, and Components 211
8.3.5 Bus Electrical Interfaces .. 212
8.3.6 Radiation Mitigation and Tolerance Schemes ... 212

8.4 State-of-the-Art (TRL 5-9): Flight Software ... 215
8.4.1 Implication of C&DH Processors on FSW ... 216
8.4.2 Frameworks ... 217
8.4.3 Operating Systems .. 218
8.4.4 Software Languages ... 219
8.4.5 Mission Operations and Ground Support Suites 220
8.4.6 Development Environment, Standards, and Tools 220

8.5 On the Horizon (TRL 1-4): Command and Data Handling 224
8.5.1 Open-Source Platforms ... 224

8.6 On the Horizon (TRL 1-4): Flight Software .. 225
8.7 Avionics Systems Platform and Mission Development Considerations 225

8.7.1 Flight Payload and Subsystems Avionic elements examples 226
8.7.2 Platform Size Ranges and Configurations ... 226
8.7.3 Integrated Avionics Platform Architectures .. 227
8.7.4 SS Mission Avionics Configurations .. 227
8.7.5 Spacecraft and Mission Autonomy .. 227
8.7.6 Industry 4.0, Foundational and Enabling Technologies and Products 228

8.8 Summary... 228
References .. 229

ii

National Aeronautics and Space Administration

Glossary

(ADC/DAC) Analog to Digital/Digital to Analog
(API) Application Programming Interfaces
(ASICs) Application Specific Integrated Circuits
(ASIST) Advanced Spacecraft Integration and System Test
(BSPs) Broadband Service Providers
(C&DH) Command and Data Handling
(CCD) Charge Couple Devices
(CCSDS) Consultative Council for Space Data Systems
(cFE) core Flight Executive
(cFS) core Flight System
(CI) Continuous Integration
(CM) Configuration Management
(CMOS) Complementary Metal Oxide Semiconductors
(COTS) Commercial-off-the-Shelf
(CRAM) Chalcogenide Random Access Memory
(CRC) Cyclic Redundancy Check
(DRAM) Dynamic Random Access Memory
(ECC) Error-Correcting Code
(EDAC) Error Detection and Correction
(EPS) Electrical Power System
(ES) Executive Services
(ESSI) Enhanced Synchronous Serial Interface
(FEC) Forward Error Correction
(FERAM) Ferro-Electric Random Access Memory
(FPGA) Field Programmable Gate Arrays
(FSW) Flight Software
(GPIO) General Purpose Input/Output
(GPUs) Graphics Processor Units
(HIL) Hardware-in-the-Loop
(I/O) Input & Output
(I&T) Integration and Testing
(IMA) Integrated Mission Architectures

iii

National Aeronautics and Space Administration

(IoT) Internet of Things
(ITOS) Integrated Test and Operations System
(ITOS) Integrated Test and Operations System
(LVDS) Low-Voltage Differential Signaling
(MarCO) Mars Cube One
(MBSE) Model-Based Systems Engineering
(MRAM) Magnetoresistive Random Access Memory
(NMF) NanoSat MO Framework
(NMF) NanoSat MO Framework
(OSAL) Operating System Abstraction Layer
(PCM) Phase Change Memory
(PIL) Processor-in-the-loop
(PSA) Payload and Subsystems Avionics
(PZT) Lead-Zirconium-Titanium Oxide
(rad-hard) radiation-hardened
(RAM) Random Access Memory
(ROS) Robot Operating System
(RTEMS) Real-Time Executive for Multiprocessor Systems
(RTOS) Real Time Operating System
(SCFW) SpaceCloud Framework
(SDK) Software Development Kit
(SDR) Software Defined Radios
(SEEs) Single Event Effects
(SEL) Single Event Latch-up
(SEU) Single Event Upsets
(SMP) Symmetric Multiprocessing
(SRAM) Static Random Access Memory
(SSA) Small Spacecraft Avionics
(SWaP) Size, Weight and Power
(TID) Total Ionizing Dose
(TMR) Triple Modular Redundancy
(USB) Universal Serial Bus

202

National Aeronautics and Space Administration

8.0 Small Spacecraft Avionics
8.1 Introduction
Small Spacecraft Avionics (SSA) are described as all electronic subsystems, components,
instruments, and functional elements included in the spacecraft platform. These include primarily
flight sub-elements Command and Data Handling (C&DH), Flight Software (FSW), and other
critical flight subsystems, including Payload and Subsystems Avionics (PSA). All must be
configurable into specific mission platforms, architectures, and protocols, and be governed by
appropriate operations concepts, development environments, standards, and tools. The C&DH
and FSW are the brain and nervous system of the integrated avionics system, and generally
provide command, control, communication, and data management interfaces with all other
subsystems in some manner, whether in a direct point-to-point, distributed, integrated, or hybrid
computing mode. The avionics system is essentially the foundation for all components and their
functions integrated on the spacecraft. As the nature of the mission influences the avionics
architecture design, there is a large degree of variability in avionics systems.
Traditional spacecraft avionics have been designed around centralized architectures where each
subsystem relies on a single processor whereby if one element fails, then the entire architecture
commonly fails. This design often results in heavy weight, high power consumption, large volume,
complex interfaces, and weak system reconfiguration capabilities. An open, distributed, and
integrated avionics architecture with modular capability in software and hardware design is
becoming more appealing for complex spacecraft development needs. In anticipation of extended
durations in low-Earth orbit and deep space missions, vendors are now incorporating radiation
hardened or radiation-tolerant architecture designs in their small spacecraft avionics packages to
further increase their overall reliability. Figure 8.1 illustrates the general functional construct and
distribution of a centralized small spacecraft system.

Figure 8.1: Functional block diagram of the LADEE spacecraft. Credit: NASA.

203

National Aeronautics and Space Administration

As new generation avionics systems will integrate most of the electronic equipment on the
spacecraft, an avionics system designed with networked real-time multitasking distributed system
software, which can also implement dynamic reconfiguration of functions and task scheduling and
improves the failure tolerance may minimize the need for expensive radiation-hardened electronic
components. The improved avionics composition can include high-performance computing
hardware to handle the large amount of anticipated data generated by more complex small
spacecraft; embedded system software networked for real-time multitasking distributed system
software; and software partition protection mechanisms. Some systems now implement a
heterogeneous architecture in mixed criticality configurations, meaning they contain multiple
processors with varying levels of performance and capabilities.
An example of new generation SSA/PSA distributed avionics application is the integration of Field
Programmable Gate Arrays (FPGA)-based software defined radios (SDR) on small spacecraft. A
software defined radio can transmit and receive in widely different radio protocols based on a
modifiable, reconfigurable architecture, and is a flexible technology that can "enable the design
of an adaptive communications system." This can enable the small spacecraft to increase data
throughput and provides the ability for software updates on-orbit, also known as re-
programmability. Additional FPGA-based functional elements include imagers, AI/ML processors,
and subsystem-integrated edge and cloud processors. The ability to reprogram sensors or
instruments while on-orbit have benefited several CubeSat missions when instruments do not
perform as anticipated, or they enter into an extended mission and subsystems or instruments
need to be reprogrammed quickly. Figure 8.2 is a block diagram of an FPGA-based SDR system.

Figure 8.2: Functional block diagram example of a Software Defined radio. Credit: Renesas (IDT
is now part Renesas).

8.2 Chapter Scope and Organization
This chapter updates and organizes state-of-the-art SSA by combining and integrating two
previously separate chapters, C&DH and FSW. Given the distributed and integrated nature of

204

National Aeronautics and Space Administration

modern, small spacecraft avionics, flight payload and subsystems avionic elements are also
included, but only describes the avionics (electronics) elements, while the more detailed small
spacecraft subsystems specifics are discussed in their respective chapters.
The chapter organizes the state-of-the-art in small spacecraft avionics into C&DH (8.3) and FSW
(8.4), where modern requirements of avionics systems are identified to meet the need of complex
small spacecraft systems, and the technological progression of SSA systems avionics
architecture and composition is expanded upon. Some of the challenges this technology may
encounter are also identified, and on the horizon activities (TRL <5) (8.5) highlight the
development of new generational small spacecraft avionics systems. Finally, a summary
discussion of Avionics Systems Platform and Mission Development Considerations (8.6) is
provided that discusses how these considerations are being addressed and/or mitigated by state-
of-the-art advances in C&DH FSW, and Payload/Subsystems avionics products, and some
projections for future Small Spacecraft Avionic systems (8.7).
The information described below is not intended to be exhaustive but provides an overview of
current state-of-the-art technologies and their development status. It should be noted that
Technology Readiness Level (TRL) designations may vary with changes specific to payload,
mission requirements, reliability considerations, and/or the environment in which performance
was demonstrated. Readers are highly encouraged to reach out to companies for further
information regarding the performance and TRL of described technology. There is no intention of
mentioning certain companies and omitting others based on their technologies or relationship with
NASA.

8.3 State-of-the-Art (TRL 5-9): Command and Data Handling
Current trends in small spacecraft C&DH generally appear to be following those of previous, larger
scale C&DH subsystems. The current generation of microprocessors can easily handle the
processing requirements of most C&DH subsystems and will likely be sufficient for use in
spacecraft bus designs for the foreseeable future. Cost and availability are likely primary factors
for selecting a C&DH subsystem design from a given manufacturer. The ability to spread non-
recurring engineering costs over multiple missions, and to reduce software development through
reuse, are desirable factors in a competitive market. Heritage designs are desirable for customers
looking to select components with proven reliability for their mission. This C&DH Section is
organized as follows:

1. Avionics and on-board computing form factors
2. Highly Integrated On-Board Computing Products
3. Radiation-Hardened Processors and FPGAs
4. Memory, Electronic Function Blocks, and Components
5. Bus Electrical Command and Data Interfaces
6. Radiation Mitigation and Tolerance Schemes

As small satellites move from the early CubeSat designs with short-term mission lifetimes to
potentially longer missions, radiation tolerance also comes into play when selecting parts. These
distinguishing features, spaceflight heritage and radiation tolerance, are the primary
differentiators in the parts selection process for long-term missions, verses those which rely
heavily on commercial-off-the-shelf (COTS) parts. Experimental missions typically focused on
low-cost, easy-to-develop systems that take advantage of open-source software and hardware
provide an easy entry into space systems development, especially for hobbyists or those who
lack specific spacecraft expertise.

205

National Aeronautics and Space Administration

Small spacecraft C&DH technologies and capabilities have been continuously evolving, enabling
new opportunities for developing and deploying next-generation small spacecraft avionics. When
small spacecraft were first introduced, a primary purpose was to observe and send information
back to Earth. As awareness and utility has expanded, there is a need to improve the overall
capability of collecting data in a specific mission environment. Small spacecraft, including
nanosatellites and CubeSats, currently perform a wide variety of science in low-Earth orbit and
these smaller platforms are emerging as platform candidates for more formidable missions
beyond low-Earth orbit.
Since the publication of the earlier editions of this report, several CubeSats using COTS
components and integrated systems have successfully flown in the low-Earth orbit environment
with short mission durations of typically less than one year. As an example of open-source
compilation resources, the Nanosatellite Database (https://www.nanosats.eu) describes itself as
the “World’s largest database of nanosatellites, [with] over 3000 nanosats and CubeSats…”.
Significant differences in mission requirements between short-term experimental missions and
long-term high reliability missions can impact how state-of-the-art is perceived for flight units. As
CubeSats become larger and SmallSats become smaller, technology maturation and
miniaturization will further increase capabilities. The Mars Cube One (MarCO) mission was the
first CubeSat to operate in deep space, and in late 2021 Artemis I will release seven 6U spacecraft
into lunar orbit, and five 6U spacecraft that will demonstrate a variety of technologies in deep
space. Although not technically a spacecraft, the Mars Helicopter Ingenuity successfully
integrated and demonstrated the use of COTS hardware and open-source software during its
successful technology demonstration as a component of the NASA Perseverance Mars Rover
mission currently in operation on the Mars surface.
As spacecraft manufacturers begin to use more space qualified parts, they find that those devices
can often lag their COTS counterparts by several generations in performance but may be the only
means to meet the radiation requirements placed on the system. Presently there are several
commercial vendors who offer highly integrated systems that contain the on-board computer,
memory, electrical power system (EPS), and the ability to support a variety of Input & Output (I/O)
for the CubeSat class of small spacecraft. A variety of C&DH developments for CubeSats have
occurred due to in-house development by new companies that specialize in CubeSat avionics,
and the use of parts from established companies who provide spacecraft avionics for the space
industry in general. While parallel developments are impacting the growth of CubeSats, vendors
with ties to the more traditional spacecraft bus market are increasing C&DH processing
capabilities within their product lines.
In-house designs for C&DH units are being developed by some spacecraft bus vendors to better
accommodate small vehicle concepts. While these items generally exceed CubeSat form factors
in size, they can achieve similar environmental performance and may be useful in small satellite
systems that replicate more traditional spacecraft subsystem distribution. In anticipation of
extended durations in low-Earth orbit and deep space missions, vendors are now incorporating
radiation hardened or radiation tolerant designs in their CubeSat avionics packages to further
increase the overall reliability of their products.
8.3.1 Avionics and On-board Computing Form Factors
The CompactPCI and PC/104 form factors continue generally to be the industry standard for
CubeSat C&DH bus systems, with multiple vendors offering components that can be readily
integrated into space rated systems. Overall form factors should fit within the standard CubeSat
dimension of less than 10 x 10 cm. The PC/104 form factor was the original inspiration to define
standard architecture and interface configurations for CubeSat processors. But with space at a
premium, many vendors have been using all available space exceeding the formal PC/104 board

https://www.nanosats.eu/

206

National Aeronautics and Space Administration

size. Although the PC/104 board dimension continues to inspire CubeSat configurations, some
vendors have made modifications to stackable interface connectors to address reliability and
throughput speed concerns. Many vendors have adopted the use of stackable "daughter" or
"mezzanine" boards to simplify connections between subsystem elements and payloads, and to
accommodate advances in technologies that maintain compatibility with existing designs. A few
vendors provide a modular package which allows users to select from a variety of computational
processors.
The form factors used in more traditional spacecraft designs frequently follow "plug into a
backplane" VME standards. 3U boards offer a size (roughly 100 x 160 mm) and weight advantage
over 6U boards (roughly 233 x 160 mm) if the design can be made to fit in the smaller form factor.
It should be noted that CubeSats also use "U" designations, but these refer to the volume of the
vehicle based on initial CubeSat standards of 1U (100 x 100 x 100 mm), 3U (100 x 100 x 300
mm), and 6U (100 x 200 x 300 mm). Some small spacecraft bus designers consider using just a
single board C&DH unit as a means of saving weight.
A hybrid form factor configuration is that of the Qseven Computer-on-Module (Q7). “The Qseven
concept is an off-the-shelf, multi-vendor, Computer-On-Module that integrates all the core
components of a common PC and is mounted onto an application specific carrier board. Qseven
modules have a standardized form factor of 70 x 70 mm or 40 x 70 mm and have specified pinouts
based on the high speed MXM system connector that has a standardized pinout regardless of the
vendor. The Qseven module provides the functional requirements for an embedded application.
These functions include, but are not limited to, graphics, sound, mass storage, network and
multiple USB ports. A single ruggedized MXM connector provides the carrier board interface to
carry all the I/O signals to and from the Qseven module. This MXM connector is a well-known and
proven high speed signal interface connector that is commonly used for high-speed PCI Express
graphics cards in notebooks (https://sget.org/standards/qseven/).
8.3.2 Highly Integrated On-Board Computing Products
A variety of vendors are producing highly integrated, modular, on-board computing systems for
small spacecraft. These C&DH packages combine microcontrollers and/or FPGAs with various
memory banks, and with a variety of standard interfaces for use with the other subsystems on
board. The use of FPGAs and software-defined architectures also gives designers a level of
flexibility to integrate uploadable software modifications to adapt to new requirements and
interfaces. Table 8-1 summarizes the current state-of-the-art of these components. Since
traditional CubeSat designs are based primarily on COTS parts, spacecraft vendors often try to
use parts that have radiation tolerance or have been radiation-hardened (rad-hard), as noted in
the pedigree column in table 8-1. The vehicle column shows which spacecraft classification
corresponds to each on-board unit; "general satellite" classification refers to larger SmallSat
platforms (i.e., larger than CubeSats). It should be noted that while some products have achieved
TRL 9 by virtue of a space-based demonstration, what is relevant in one application may not be
relevant to another, and different space environments and/or reliability considerations may result
in lower TRL assessments. Some larger, more sophisticated computing systems have
significantly more processing capability than what is traditionally used in SmallSat C&DH systems,
however the increase in processing power may be a useful tradeoff if payload processing and
C&DH functions can be combined (note that overall throughput should be analyzed to assure
proper functionality under the most stressful operating conditions).

https://sget.org/standards/qseven/

207

National Aeronautics and Space Administration

Table 8-1: Sample of Highly Integrated On-board Computing Systems

Manufacturer Product Processor Pedigree Vehicle TRL Citation

GomSpace Nanomind A3200 Atmel AT32UC3C MCU COTS CubeSat Ukn (1)
ISISpace iOBC ARM 9 COTS CubeSat 9 (2)

Pumpkin

PPM A1 TI MSP430F1612 COTS CubeSat 9

(3)

PPM A2 TI MSP430F1611 COTS CubeSat 9
PPM A3 TI MSP430F2618 COTS CubeSat 9
PPM B1 Silicon Labs C8051F120 COTS CubeSat 9

PPM D1 Microchip
PIC24FJ256GA110 COTS CubeSat 9

PPM D2 Microchip
PIC33FJ256GP710 COTS CubeSat 9

PPM E1 Microchip
PIC24FJ256GB210 COTS CubeSat 9

Xiphos

Q7S Xilinx Zynq 7020 Arm 9
COTS
w/SEE

mitigation

Nano-,
Micro- and
SmallSats

9 (4)

Q8S Xilinx Ultrascale+ ARM
Cortex-A53

COTS
w/SEE

mitigation

Nano- Micro-
and

SmallSats
8 (5)

BAE
RAD750 RAD750 rad-hard General

Satellite 9 (6)

RAD5545 RAD5545 rad-hard by
design

General
Satellite Ukn (7)

AAC Clyde
Space

Kryten-M3 SmartFusion Cortex-M3 COTS CubeSat Ukn (8)

Sirius OBC SmartFusion Cortex-M3
COTS
w/SEE

mitigation
CubeSat Ukn (9)

208

National Aeronautics and Space Administration

Innoflight

cfc-300 Xilinx Zynq ARM Cortex
A9 COTS CubeSat Ukn (10)

cfc-400 Xilinx Zynq Ultrascale+ COTS CubeSat Ukn (11)

cfc-500 Xilinx Kintex Ultrascale+
NVIDIA TK1 COTS CubeSat Ukn (12)

Space Micro CSP Xilinx Zynq-7020 Dual
ARM Core COTS CubeSat Ukn (13)

NanoAvionics SatBus 3C2 STM32 ARM Cortex M7 COTS CubeSat 9 (14)

MOOG

G-Series Steppe
Eagle AMD G-Series compatible Rad Hard by

design
General
Satellite Ukn

(15)
V-Series Ryzen AMD V-Series compatible Rad Hard by

design
General
Satellite Ukn

SEAKR

Athena-3 SBC PowerPC e500 Ukn General
Satellite 9

(16) Medusa SBC PowerPC e500 Ukn General
Satellite 9

RCC5 Virtex 5 FX-130T Ukn General
Satellite 9

Unibap

iX10-100

Microchip PolarFire FPGA
with RISC-V , AMD

V1605b (Ryzen) CPU and
GPU, and up to 3 Intel

Movidius Myriad X VPUs
and optional NVMe based
compute storage (up to 8

TB)

COTS with
SEE

mitigation

Nano-,
Micro- and
SmallSats

5 (41)

iX5-100
Microchip SmartFusion2

ARM Cortex-M3 and AMD
G-Series SOC

COTS with
SEE

mitigation

Nano-,
Micro- and
SmallSats

8 (19)

e2160
Microchip SmartFusion2
FPGA with ARM Cortex-

M3 and AMD 2nd

COTS with
SEE

mitigation

Nano-,
Micro- and
SmallSats

9 (18)

209

National Aeronautics and Space Administration

generation G-Series SOC
CPU and GPU

e2155

Microchip SmartFusion2
FPGA with ARM Cortex-

M3 and AMD 1st
generation G-Series SOC

CPU and GPU

COTS with
SEE

mitigation

Nano-,
Micro- and
SmallSats

9 (18)

Ibeos EDGE Computer Nvidia TK1

COTS with
Single Event
Effects and

TID
Characterizat

ion.
Radiation-

tolerant with
single event

effects
mitigation

CubeSat,
general

SmallSat,
ESPA-class
satellite and

larger

6 (42)

DDC

SCS750 series SBC IBM 750FX Rad-hard
Sp-COTS

General
SmallSats 9 (43)

SCS3740 GR740 Rad-Hard quad-
core LEON 4FT®

Rad-hard
Sp-COTS

General
SmallSats,
NanoSats

6 (44)

EnduroSat OBC ARM Cortex-M7 COTS CubeSats 9

210

National Aeronautics and Space Administration

System developers are gravitating towards ready-to-use hardware and software development
platforms that can provide seamless migration to higher performance architectures. As with non-
space applications, there is a reluctance to change controller architectures due to the cost of
retraining and code migration. Following the lead of microcontrollers and FPGA vendors, CubeSat
avionics vendors are now providing simplified tool sets and basic, cost-effective evaluation
boards.
Two such example units have been identified which may be able to support small satellite designs
beyond the CubeSat form factors (see table 8-2). Spacecraft bus vendors may also have
preferred sources for C&DH units, such as those developed in-house.

Table 8-2: Sample of Small C&DH Units
Vendor Unit Mass (kg) Power (W) Processor MIPs References

Moog C&DH
Avionics unit < 3 25 BRE 440 266 (17)

SEAKR C&DH
Avionics unit 5.4 14 LEON 25 (16)

8.3.3 Radiation-Hardened Processors and FPGAs
The FPGA functions as the Main Control Unit, with interfaces to all functional subcomponents of
a typical C&DH system. This then enables embedded, adaptive, and reprogrammable capabilities
in modular, compact form factors, and provides inherent architectural capabilities for processor
emulation, modular redundancies, and “software-defined-everything.”
Several radiation-hardened embedded processors have recently become available. These are
being used as the core processors for a variety of purposes including C&DH. Some of these are
the Vorago VA10820 (ARM M0) and the VA41620 and VA41630 (ARM M4); Cobham GR740
(quad core LEON4 SPARC V8) and the BAE 5545 quad core processor. These have all been
radiation tested to at least 50 kRad total ionizing dose (TID).
Xilinx and Microchip (formerly Microsemi), leaders in the space-grade FPGA market, have both
released new radiation-tolerant FPGA families in the past two years rated to 100 kRad TID. The
Xilinx RT Kintex UltraScale, a 20 nm device, has 726 k logic cells and supports 12.5 Gbps serial
data transmission. The Microchip RT PolarFire is a 28 nm device with 481k logic cells and up to
10.3125 Gbps data transmission. These both offer far more capability than either company's
previous families of rad-tolerant FPGA (Xilinx Virtex-5 and Microchip RTG4) and may be adopted
for more complex payload data processing needs than merely C&DH use. The Kintex UltraScale
is integrated within the Innoflight CFC-500 and Moog Steppe Eagle and Ryzen, listed in the table
above.

211

National Aeronautics and Space Administration

8.3.4 Memory, Electronic Function Blocks, and Components
The range of on-board memory for small spacecraft is wide, typically starting around 32 KB and
increasing with available technology. For C&DH functions, on-board memory requires high
reliability. A variety of different memory technologies have been developed for specific traits,
including Static Random Access Memory (SRAM), Dynamic RAM (DRAM), flash memory (a type
of electrically erasable, programmable, read-only memory), Magnetoresistive RAM (MRAM),
Ferro-Electric RAM (FERAM), Chalcogenide RAM (CRAM) and Phase Change Memory (PCM).
SRAM is typically used due to price and availability. A chart comparing the various memory types
and their performance is shown in table 8-3.

Table 8-3. Comparison of Memory Types

Feature SRAM DRAM Flash MRAM FERAM CRAM/
PCM

Non-volatile No No Yes Yes Yes Yes
Operating Voltage,

 ±10% 3.3 – 5 V 3.3 V 3.3 & 5 V 3.3 V 3.3 V 3.3 V

Organization
(bits/die) 512 k x 8 16 M x 8 16 M x 8; 32

M x 8
128 k x

8 16 k x 8 Unk

Data Retention (@
70°C) N/A N/A 10 years 10 years 10 years 10

years
Endurance

(Erase/Write
cycles)

Unlimited Unlimited 106 1013 1013 1013

Access Time 10 ns 25 ns

50 ns after
page ready;
200 s write;
2 ms erase

300 ns 300 ns 100 ns

Radiation (TID) 1 Mrad 50 krad 30 krad 1 Mrad 1 Mrad 1 Mrad

SEU rate (relative) Low-nil High
Nil (cells);

Low (device
electronics)

Nil Nil Nil

Temperature
Range Mil-std Industrial Commercial Mil-std Mil-std Mil-std

Power 500 mW 300 mW 30 mW 900 mW 270 mW Unk

Package 4 MB 128 MB 128 – 256 MB 1 MB
1.5 MB
(12 chip

package)
Unk

212

National Aeronautics and Space Administration

There are many manufacturers that provide a variety of electronic components that have high
reliability and are space rated (see table 8-4 for a noncomprehensive list). A visit to any of their
respective websites will show their range of components and subsystems including processors,
FPGAs, SRAM, MRAM, bus interfaces, Application Specific Integrated Circuits (ASICs), and Low-
Voltage Differential Signaling (LVDS).

Table 8-4: Sample of Space-Rated Electronics Manufacturers

Apogee Semiconductor (USA) Honeywell (USA) STMicroelectronics
(Switzerland)

BAE Systems (UK) Intel (USA) Texas Instruments (USA)

Moog Broad Reach (USA) Renesas (Japan) 3D Plus (USA)

Space Micro, Inc. (USA) SEAKR (USA) Xilinx (USA)

Cobham (Aeroflex, Gaisler) (Sweden) Microchip (USA) Vorago Technologies (USA)

Data Device Corporation (USA)

8.3.5 Bus Electrical Interfaces
CubeSat class spacecraft continue to use interfaces that are common in the microcontroller
or embedded systems world. Highly integrated systems, especially SoC, FPGA and ASICs,
will typically provide several interfaces to accommodate a wide range of users and to ease
the task of interfacing with peripheral devices and other controllers. FPGAs are commonly
used for these interfaces because of their flexibility and ability to change interfaces if
needed. Some of the most common bus electrical interfaces are listed below with a brief
description of applicable interface standards:

• Serial Communication Interfaces (SCI): RS-232, RS-422, RS-485 etc.
• Synchronous Serial Communication Interface: I2C, SPI, SSC and ESSI (Enhanced

Synchronous Serial Interface)
• Multimedia Cards (SD Cards, Compact Flash etc.)
• Networks: Ethernet, LonWorks, etc.
• Fieldbuses: CAN Bus, LIN-Bus, PROFIBUS, etc.
• Timers: PLL(s), Capture/Compare and Time Processing Units
• Discrete IO: General Purpose Input/Output (GPIO)
• Analog to Digital/Digital to Analog (ADC/DAC)
• Debugging: JTAG, ISP, ICSP, BDM Port, BITP, and DB9 ports
• SpaceWire: a standard for high-speed serial links and networks
• High-speed data: RapidIO, XAUI, SERDES protocols are common in routing large

quantities of mission data in the gigabit per second speeds
8.3.6 Radiation Mitigation and Tolerance Schemes
Deep space and long-duration low-Earth orbit missions will require developers to incorporate
radiation mitigation strategies into their respective designs. The CubeSat platform has traditionally
used readily available COTS components. Use of COTS parts has allowed for low-cost C&DH
development, while also allowing developers to take advantage of state-of-the-art technologies in
their designs. Many of the component and system vendors also provide radiation hardened (rad-
hard) equivalent devices as well. While there are many commercially available rad-hard
components, using these components impacts the overall cost of spacecraft development. To

213

National Aeronautics and Space Administration

keep costs as reasonable as possible, C&DH developers will need to address appropriate use of
rad-hard components, along with other radiation mitigation techniques for developing an overall
radiation tolerant design as discussed in the following section.
For space applications, radiation can damage electronics in two ways. TID is the amount of
cumulative radiation received, and single event effects (SEEs) are disturbances created by single
particles hitting the electronics (20). Total dose is measured in kilorads and can affect transistor
performance. Single Event Upsets (SEU) can affect the logic state of memory. A Single Event
Latch-up (SEL) can affect the output transistors on Complementary Metal Oxide Semiconductors
(CMOS) logic, potentially causing a high-current state.
This section summarizes techniques used to mitigate system failures caused by radiation effects.
C&DH element areas of consideration include: memory, imaging, protection circuits (watchdog
timers, communications watchdog timers, overcurrent protection, and power control), memory
protection (error-correction code memory and software error detection and correction),
communication protection (several components), and parallel processing and voting.
Memory
FRAM is a non-volatile random-access memory that is persistent like Flash memory. FRAM
memory cells are latched using a Lead-Zirconium-Titanium oxide (PZT) film structure, which is
more likely to maintain state during a single event effect than traditional capacitive latches found
in RAM (21) (22).
MRAM is another type of non-volatile random-access memory that is persistent. It is different than
FRAM and others in that it has virtually unlimited read and write cycle endurance. MRAM has
been built into some processors (TI MSP430FR) as well as separate chips.
Imaging
Charge Couple Devices (CCD) and CMOS are image sensors that are useful in radiation
environments. However, CCDs are preferred in space applications, while the CMOS detectors
are a newer technology for rad hardened image sensors (23) (24) (25) (26).
Protection Circuits

Watchdog Timers

Watchdog timers are often used to monitor the state of a processor. A watchdog timer is a
hardware circuit, external or internal to the processor, which resets the processor when the timer
expires unless refreshed by the processor. If the processor jumps to an erroneous memory
location through a SEU or a software exception, the watchdog timer resets the processor to
restore operations.

Communication Watchdog Timer

A dedicated communication watchdog timer circuit can monitor commands and responses to
determine if the system is locked up. Such a circuit resets power after a specific number of failed
transmissions.

Overcurrent Protection

Single Event Latch-up (SEL) can cause device failure due to an elevated current state. Hardware
and software overcurrent protection can be implemented to watch for elevated current levels and
then issue a power reset to the offending circuit. The sampling frequency for software overcurrent
protection must be sufficient to detect and reset the subsystem before the elevated current causes

214

National Aeronautics and Space Administration

permanent damage. For hardware protection, a shunt resistor and bypass diode can be used in
conjunction to filter voltage and current spikes for rad hardened devices.

Power Control

Since many components are more prone to radiation effects when powered on, a candidate
mitigation strategy is to power off devices when they are not operationally needed.
Memory Protection

Error-Correcting Code Memory

Error-Correcting Code (ECC) memory is capable of detecting and correcting bit errors in RAM
and flash memory. In general, ECC works by storing a checksum for a portion of the memory.
This checksum can be used to simply mark a portion of memory unstable. Additional processing
can use the memory and checksums to correct single and sometimes multi-bit errors. The memory
controller is responsible for managing the ECC memory during read and write operations (30).

Software Error Detection and Correction

Bit errors can be detected and corrected using software. In general, Error Detection and
Correction (EDAC) algorithms use Hamming codes or three copies of the memory to detect and
correct bit discrepancies. Software routinely "scrubs" the memory, compares each of the three
stored memory values, selects the majority value, and corrects the erroneous memory location.
Software EDAC can be performed at the bit or byte level. Memory lifetime needs to be considered
for software EDAC implementations, since every correction increases the write count to a memory
location.
Communication Protection

Shared Bus Switching

Another option is to decouple the clock and data lines so that each peripheral has its own pair.
Additional data lines can be used on the master controller. Alternatively, an external FPGA could
be used to assign a unique clock/data pair to each peripheral and, optionally, include a method
to reconfigure those assignments in flight.

Cyclic Redundancy Check

Cyclic Redundancy Check (CRC) is a common method for detecting memory or communication
errors. Parity is a single-bit implementation of a CRC where the bit of summary information is
calculated by the XOR of the data to be communicated or stored to memory. For communication
channels, a CRC is calculated prior to sending the message, and is appended to the message
stream in a known location. When the message is received, the CRC is calculated again and
compared to the previously generated CRC appended to the data stream. For memory, the CRC
is calculated prior to writing the data to memory. When the data is read out, a new CRC is
calculated and compared to the previously generated CRC. CRCs help detect data corruption but
cannot be used to correct the defective data.

Forward Error Correction

Forward Error Correction (FEC) transmits redundant data to help the receiver recover corrupted
data. In its simplest form, FEC could transmit three bits for every bit of data and then vote to

215

National Aeronautics and Space Administration

restore the original data. More efficient algorithms balance the data overhead with the correction
accuracy (27).
Parallel Processing and Voting

Triple Modular Redundancy

SEU can interrupt discrete logic, including processing. Triple Modular Redundancy (TMR) is a
fault mitigation technique where logic is replicated three times, and the output of the logic is
determined by a majority vote.

Firmware Protection

Many spacecraft subsystems include a processor to handle and optimize operations. These
processors require firmware which is written into onboard program memory. Like data memory,
program memory is also susceptible to single-event upsets and device failure. To counter this
issue, a bootloader may be used to check the validity of the firmware and provide a mechanism
for uploading new versions. Additionally, multiple copies of the firmware may be stored in memory
in case the primary version is corrupt.

8.4 State-of-the-Art (TRL 5-9): Flight Software
The FSW is, at a fundamental level, the instructions for the spacecraft to perform all operations
necessary for the mission. These include all the science objectives as regular tasks (commands)
to keep the spacecraft functioning and ensure the storage and communication of data (telemetry).
The FSW is usually thought of as the programs that run on the C&DH avionics but should also
include all software running on the various subsystems and payload(s).
There are many factors in the selection of a development environment and/or operating system
used for a space mission. A major factor is the amount of memory and computational resources.
There are always financial and schedule concerns. Another factor is what past software an
organization may have used and their experiences with that software. Also, the maturity of the
software as well as its availability on the target are additional factors to be considered in the final
selection.
Flight Software complexity refers to the amount of operations to be performed and is not based
on the size of the spacecraft, only the overall requirements and mission objectives. The more
software is required to do, the bigger the task and cost. This complexity is what primarily drives
the cost and schedule for the program or mission. Required reliability and fault management can
also increase complexity and cost, regardless of the size of the spacecraft.
With the increase in processing capability with C&DH and other processors, more capabilities
have been enabled with FSW. Previously, larger processors have only been in larger spacecraft
and would not be possible in CubeSats and MicroSats. There have been several advances that
make more processing capability now available for CubeSats. Low-power ARM-based
processors, as well as advances in radiation hardened processors, have brought similar
processing capabilities down to the small size of CubeSats. All of this has brought increased
demands and requirements on FSW.
FSW must operate in a real-time environment. This definition can have numerous interpretations.
Generally, C&DH and other subsystems need to be able to supervise several inputs and outputs
as well as process and store data within a fixed time-period. These all need to be performed in a
reliable and predictable fashion throughout the lifetime of the mission. The needs of each mission
can vary greatly, but this basic deterministic and reliable processing is a fundamental requirement.

216

National Aeronautics and Space Administration

8.4.1 Implication of C&DH Processors on FSW
The processor and memory available on the C&DH can put significant limitations on the FSW.
For some of the smaller jobs, or to reduce electronic complexity, smaller processors are used.
These have typically been thought of as embedded processors, with many of them containing
dedicated memory. Modern integrated space avionics, including heterogeneous and mixed
criticality architectures, also impact the nature and operational constructs, and can contribute to
advanced configurations such as Multiple Modular Redundant systems architectures which can
allow advanced paradigms for radiation tolerance and system redundancies in critical small
spacecraft missions.
Software code and programs are very integrated with the hardware, requiring careful
implementation and integration. Software development environments for these kinds of
processors usually come from the microprocessor themselves, or from third party vendors. Some
of the past tools (and processors used) have been MPLAB (Microchip PIC family), and TI
CCStudio (TI MSP430). On some of these types of processors a “bare bones” approach to the
software design is usually implemented with limited to no operating system. This is primarily
because of memory and processor limitations. These programs tend to be highly optimized. Part
of the challenge with these systems is development and testing. Most interactions with the
software must be done remotely through a secondary processor, usually a PC. This type of
development usually requires unique skills and can involve a significant learning curve for
developers. Efficient programmers need to have a good understanding of both the software and
hardware and how they function together. Timing and performance matter greatly, so that they
need to be able to write code in an efficient manner. Typically, these projects have up to 20,000
lines of code.
Larger processors have been increasing in popularity with current missions, especially CubeSats.
With increases in power production as well as lower power processors, radiation tolerant
processors have been available in both SmallSats and CubeSats. Several vendors have large
processors that can run Real-Time Operating Systems (RTOS) such as VxWorks, RTEMS and
FreeRTOS that were described earlier. Linux has been used, usually with real-time extensions.
In other instances, functionality is distributed between a large capability processor and a smaller
dedicated flight controller whereby the controller conducts and manages the real-time aspects,
allowing efficient management of power and operational complexity. These give software
developers a significant advantage with a software development environment and usually a base
implementation on the processing target. RTOS have been designed to operate in minimal
processor/memory environments with real-time needs. These projects typically have for small
projects 50K to 70K lines of code, to larger projects that can exceed a million.
This FSW Section is organized as follows:

1. Frameworks: In the context of Small Spacecraft Avionics, a Flight Software Framework
can be described as a hierarchal systems-of-systems architecture, sometimes described
as a set of Lego-like building block constructs, partitions, and functions

2. Operating Systems (OS): System software that manages computer
hardware, software resources, and provides common services for
computer programming.

3. Software Languages: System programming involves designing and writing computer
programs that allow the computer hardware to interface with the programmer and the
user, leading to the effective execution of application software on the computer system
(Techopedia).

217

National Aeronautics and Space Administration

4. Mission Operations Suites: Software and systems used to monitor, control, communicate,
and display command, control, status, and data dissemination of all aspects of a space
mission, include spacecraft performance and procedures, systems health, science and
technology data handling and management, and telemetry tracking and control.

5. Development environment, standards, and tools: the collection of hardware and software
systems tools to design, develop, validate, and operate small spacecraft missions, with
adherence to accepted software and space mission standards.

8.4.2 Frameworks
cFS – https://cfs.gsfc.nasa.gov
The core Flight System (cFS) is a generic flight software architecture framework. cFS has been
used in dozens of space missions ranging from flagship spacecraft to small satellite and
CubeSats. cFS is actively being used in a number of missions both in flight and in development.
The core Flight Executive (cFE) and Executive Services (ES) are a set of applications, application
framework, and runtime environment developed by Goddard Space Flight Center. cFE includes
core services like messaging, timekeeping, events, and table-driven commanding and
configuration (18). cFS is built on an Operating System Abstraction Layer (OSAL) that leads to
the same code base running on different operating systems. cFS provides most of the basic
functionality to operate a spacecraft. The core Flight System, as well as supporting infrastructure,
has been used by NASA on numerous missions and is being used by other organizations. cFS,
as well as the supporting OSAL, are open-source and currently released under the Apache 2.0
license (29).
F’ – https://github.com/nasa/fprime
F’ is a software framework for rapid development and deployment of embedded systems and
spaceflight applications. Originally developed at JPL, F´ is open-source software that has been
successfully deployed for several space applications. It has been used for, but is not limited to,
CubeSats, SmallSats, instruments, and deployables. F’ is currently released under the Apache
2.0 license (33, 34). Most recently, F’ was used to operate the Mars Helicopter, Ingenuity, along
with other open-source SW and HW products.
NanoSat Mission Operations Framework –
https://en.wikipedia.org/wiki/NanoSat_MO_Framework
From the above webpage: “…The NanoSat MO Framework (NMF) is a software framework
for nanosatellites based on [Consultative Council for Space Data Systems] (CCSDS) Mission
Operations services. It facilitates not only the monitoring and control of the nanosatellite software
applications, but also the interaction with the nanosatellite platform. This is achieved by using the
latest CCSDS standards for monitoring and control, and by exposing services for common
peripherals among nanosatellite platforms. Furthermore, it is capable of managing the software
on-board by exposing a set of services for software management.[1]
In simple terms, it introduces the concept of apps in space that can be installed, and then simply
started and stopped from the ground. Apps can retrieve data from the nanosatellite platform
through a set of well-defined platform services. Additionally, it includes CCSDS standardized
services for monitoring and control of apps. An NMF App can be easily developed, distributed,
and deployed on a spacecraft. [2]
There is a Software Development Kit (SDK) to help develop software based on the NanoSat MO
Framework. This SDK allows quick development of software that can run on ground and/or in

https://cfs.gsfc.nasa.gov/
https://github.com/nasa/fprime
https://en.wikipedia.org/wiki/NanoSat_MO_Framework
https://en.wikipedia.org/wiki/NanoSat_MO_Framework#cite_note-dissertation-1
https://en.wikipedia.org/wiki/NanoSat_MO_Framework#cite_note-apps_in_space-2

218

National Aeronautics and Space Administration

space. The reference implementation of the NanoSat MO Framework will be used in ESA's OPS-
SAT mission.”
SpaceCloud
The SpaceCloud Framework (SCFW) revolutionizes satellite software development, converting
purpose-built, custom space hardware into flexible and reusable compute nodes. This allows for
simplified space missions, providing an all-inclusive solution for on-orbit data processing and on
the ground management software. Like cloud computing on ground, it also allows orchestration
of operations each node (or satellite) will perform, including approving execution of applications
and upgrading the SCFW software. SpaceCloud® offers common types of cloud resources such
as processors, GPU or dedicated AI accelerators, and in some cases optimized resources in
FPGA technology. For storage, the S3 application programming interfaces (API) is compatible
with Amazon Web Services. Machine learning and inference can be done with TensorFlow, TVM,
PlaidML, OpenVINO / OneAPI, among others.
ROS – https://en.wikipedia.org/wiki/Robot_Operating_System
Taken directly from webpage: “…Robot Operating System (ROS or ros) is an open-source
robotics middleware suite. Although ROS is not an operating system but a collection of software
frameworks for robot software development, it provides services designed for a heterogeneous
computer cluster such as hardware abstraction, low-level device control, implementation of
commonly used functionality, message-passing between processes, and package management.
Running sets of ROS-based processes are represented in a graph architecture where processing
takes place in nodes that may receive, post and multiplex sensor data, control, state, planning,
actuator, and other messages. Despite the importance of reactivity and low latency in robot
control, ROS itself is not a Real Time Operating System (RTOS). It is possible, however, to
integrate ROS with real-time code.[3] The lack of support for real-time systems has been
addressed in the creation of ROS 2.0,[4][5][6] a major revision of the ROS API which will take
advantage of modern libraries and technologies for core ROS functionality and add support for
real-time code and embedded hardware.”
8.4.3 Operating Systems
VxWorks
Windriver calls VxWorks the industry-leading RTOS. VxWorks is fully featured and has been used
by the industry for many years, and by NASA for over 20 years since the Clementine mission. It
is used in satellites as well as robotics such as Robonaut and MER. It has many features of a
user operating system with tasks and processes, memory protection and separation. VxWorks
has a commercial license, with several advanced development and diagnostic tools licensed
separately. Due to the cost, VxWorks needs to be budgeted for the life of the mission.
VxWorks currently supports 32-, 64-bit, and multi-core processors including Intel, Arm, Power
Architecture and RISC-V. Multi-core processors support both asymmetric and symmetric
multiprocessing. There are numerous board support packages for enabling early prototyping and
aiding software development (31).
RTEMS
From the RTEMS.org website: “the Real-Time Executive for Multiprocessor Systems (RTEMS) is
an open-source RTOS that supports open standard API such as POSIX. It is used in space flight,
medical, networking and many more embedded devices. RTEMS currently supports 18 processor
architectures and approximately 200 [broadband service providers] (BSPs). These include ARM,
PowerPC, Intel, SPARC, RISC-V, MIPS, and more. RTEMS includes multiple file systems,
symmetric multiprocessing (SMP), embedded shell, and dynamic loading, as well as a high-

https://en.wikipedia.org/wiki/Robot_Operating_System

219

National Aeronautics and Space Administration

performance, full-featured IPV4/IPV6 TCP/IP stack from FreeBSD which also provides RTEMS
with USB.”
RTEMS is considered open-source, released under a modified GNU General Public License.
Support is available through the primary manager OAR. It has been sponsored, deployed, and
used widely on several NASA and ESA missions. RTEMS has been in development since the
1980s. RTEMS could be considered a simpler operating system with no provided memory or
process management. Although build environments are provided, development tools are not as
featured as commercial products (32).
FreeRTOS
FreeRTOS is a small, real-time operating system kernel designed for embedded devices. It is
open-source and released under the MIT license. FreeRTOS is designed to be small and simple;
however, it lacks some of the more advanced features found on larger operating systems.
FreeRTOS has been used on several CubeSat projects where memory is limited.
Linux
Linux is another operating system that is being implemented on several spacecraft. Linux is
deployed on PowerPC-, LEON-, and ARM-based processors. It is readily available and widely
used in both government and commercial sectors. There are several distributions and guides that
have been developed for embedded use that would be suitable for spacecraft use. Some of the
distributions have been Yocto (Xilinx ZYNQ) and Debian (BeagleBone Black and PowerPC).
There are real-time extensions, as well as additional extensions such as Xenomai, to improve
critical real-time performance. Numerous development and diagnostic tools are available. Linux
is a full featured operating system that has been used for desktop applications. Linux tends to be
larger, requiring more memory and processing capability. It is popular on the ARM processors
because those issues tend not to be a factor.
Debian – https://en.wikipedia.org/wiki/Debian
Taken directly from webpage: “Debian also known as Debian GNU/Linux, is a Linux distribution
composed of free and open-source software, developed by the community-supported Debian.
The Debian Stable branch is the most popular edition for personal computers and servers. Debian
is also the basis for many other distributions, most notably Ubuntu. Debian is one of the oldest
operating systems based on the Linux kernel.“
8.4.4 Software Languages
Rather than list details for each listed software language, reference links to examples of relevant
software languages are provided from Wikipedia and other sources listed below in table 8-5.

Table 8-5: Relevant Software Languages
Software Language Wikipedia page

C https://en.wikipedia.org/wiki/C_(programming_language
C++ https://en.wikipedia.org/wiki/C%2B%2B

Python https://en.wikipedia.org/wiki/Python_(programming_language
Arduino https://en.wikipedia.org/wiki/Arduino

Assembly Language https://en.wikipedia.org/wiki/Assembly_language

https://en.wikipedia.org/wiki/C_(programming_language
https://en.wikipedia.org/wiki/C%2B%2B
https://en.wikipedia.org/wiki/Python_(programming_language
https://en.wikipedia.org/wiki/Arduino
https://en.wikipedia.org/wiki/Assembly_language

220

National Aeronautics and Space Administration

8.4.5 Mission Operations and Ground Support Suites
Although not directly used on the spacecraft, operators need a way to talk to the spacecraft, and
ground operations and testing need that same capability. For smaller spacecraft and missions, it
is usually best to use the same ground support software for these three tasks: mission operations,
integration and testing, and development and testing. There are numerous proprietary tools and
programs, but a small set of tools that have been used at NASA are described below. For more
information, please refer to the Ground Data System and Mission Operations chapter.
Integrated Test and Operations System (ITOS) is a space ground system developed for GSFC
by the Hammers Company ITOS (37). It is a comprehensive command and telemetry solution for
spacecraft, component, and instrument development, integration, testing, and mission operations.
It is highly user configurable, and provides a scalable, cost-effective platform for small-budget
projects to billion-dollar observatories. It includes multi-spacecraft control and closed-loop
simulation capabilities.
Advanced Spacecraft Integration and System Test (ASIST) is also a space ground system
developed for GSFC by Design America, Inc. ASIST provides satellite telemetry and command
processing for integration and testing (I&T) and operations environments (38). ASIST is described
as “an object-oriented, real-time command and control system for spacecraft development,
integration, and operations. Mature and reliable, ASIST has logged hundreds of thousands of
hours in component development, spacecraft integration, and validation labs.”
INCONTROL is a proprietary tool developed by L3HARRIS. Some of the features include
providing support for single-mission, multi-mission, and constellation support. It also provides
capabilities for automation, event logging, data distribution, procedure development, archiving,
data displays, equipment monitor and control, data retrieval, report generation, and simulation
(39).
COSMOS – https://www.ball.com/aerospace/programs/cosmos
COSMOS is a tool developed by Ball Aerospace that provides a framework for operating and
testing an embedded system (40). COSMOS is open-source, licensed under the MIT license. The
tool includes modules for telemetry display, plotting, scripting, logging, and configuration table
management.
Yamcs – https://yamcs.org
Yamcs is an open-source software framework for command and control of spacecraft, satellites,
payloads, ground stations and ground equipment. Yamcs /jæmz/ is open-source software
developed by Space Applications Services, an independent Belgian company, with a subsidiary
in Houston, USA. The aim of Space Applications Services is to research and develop innovative
systems, solutions and products and provide services to the aerospace and security markets and
related industries. Activities cover manned and unmanned spacecraft, launch/re-entry vehicles,
control centers, robotics and a wide range of information systems. Yamcs is developed around
the criteria of flexibility and open-source code to innovate, reduce MCS development,
implementation and integration costs through easy expandability, scalability, and adaptability over
time.

8.4.6 Development Environment, Standards, and Tools
Most software development tools that are used for FSW are also used in the overall software
development industry. Common version control tools are Git and Subversion. More large projects
are switching to the Git repository due to its distributed nature and merging features. The NASA
cFS project uses Git and is sourced on https://github.com/.

https://github.com/

221

National Aeronautics and Space Administration

Additional tools have been used with these version control tools to provide more process control
and configuration management. The Atlassian tools are an example of these that interface directly
to Git or Subversion and provide issue/bug tracking (Jira), documentation (Confluence),
continuous integration (Bamboo) and others. The Atlassian tools are a licensed product that is
free for trial and suitable for a small number of users. There are several other tools for each of
these functions that are used. For instance, Trac is an open-source, web-based project
management and bug tracking system.
Model-Based Systems Engineering (MBSE)
Excerpted from (https://www.omgwiki.org/MBSE/doku.php?id=start)
“The Object Management Group Standards Development Organization, in accordance with The
INCOSE SE Vision 2020 (INCOSE-TP-2004-004-02 September, 2007), defines Model-based
systems engineering (MBSE) as “the formalized application of modeling to support system
requirements, design, analysis, verification and validation activities beginning in the conceptual
design phase and continuing throughout development and later life cycle phases. MBSE is part
of a long-term trend toward model-centric approaches adopted by other engineering disciplines,
including mechanical, electrical and software. In particular, MBSE is expected to replace the
document-centric approach that has been practiced by systems engineers in the past and to
influence the future practice of systems engineering by being fully integrated into the definition of
systems engineering processes.” Applying MBSE is expected to provide significant benefits over
the document centric approach by enhancing productivity and quality, reducing risk, and providing
improved communications among the system development team.
Modeling has always been an important part of systems engineering to support functional,
performance, and other types of engineering analysis. Wayne Wymore introduced a mathematical
foundation for MBSE in his book entitled Model-Based Systems Engineering in 1993. However,
the growth in computing technology and the introduction of modeling standards such as SysML,
UPDM, Modelica, HLA, and others, are helping to enable MBSE as a standard practice, and
provide a foundation to integrate diverse models needed to fully specify and analyze systems.…”
Auto-Generation of Software
Automatic generation of source code from higher symbolic languages is being adopted by a wide
number of missions. This technique is commonly being used by several NASA centers including
ARC, GSFC and JSC. Key advantages of using this approach are rapid development and testing,
and significant time and cost savings. There are a variety of tools that have been used in the past,
but the most popular is MATLAB/Simulink. This allows an engineer to completely develop the
algorithms in a graphical or higher-level language and have flight code automatically generated.
Simulations and tests are also developed within MATLAB/Simulink. A common way that these
kinds of tools are used are within the GNC development, but other missions such as LADEE have
used it for almost the entire FSW with over 85% of the new code generated in this manner (35,
36).
Using these tools has advantages. They are designed for analysis and have built-in simulation
tools. They are usually seen as being easier to understand due to their graphical nature. These
tools are familiar to many engineers since they have been used by several colleges and
universities. One thing to be aware when developing software with this method is that good
modeling practices need to be adopted so that the resultant models produce good code. These
include all the best practices performed with traditional software development. An example is to
establish and use modeling guidelines so that the resultant code is consistent.

222

National Aeronautics and Space Administration

Simulations and Simulators
Simulations are needed to fully test software before release to verify and help validate the
software. In a sense, unit tests are very simple simulations. Overall simulations need to be large
enough to run all released flight software. The preferred method is to test all the FSW in an
integrated fashion. If that cannot be performed, then partial tests may have to be performed. The
testing should be designed to cover all executed code. The issues of not testing all the code is
that total execution performance and possible interactions between modules may not be tested.
Scenarios or a “day in the life” tests should be covered, as well as off-nominal fault recovery.
Simulators usually refer to the hardware and infrastructure needed to run the FSW and
simulations. The main part of the simulation is the actual FSW. This should be run on a processing
environment as close to the flight processor as possible. For some situations, that can be an
actual spare flight unit. For some processors that are costly, such as the RAD750, either an
engineering unit or a similar PowerPC processor that is binary compatible may be used. These
processors are either connected to actual hardware interfaces that are connected to spacecraft
subsystems, or subsystem simulators. These types of simulators are referred to as Hardware-in-
the-Loop (HIL) simulators because they use actual hardware for testing. The other type of
simulator is a processor-in-the-loop (PIL) simulator where a flight-like processor is tested against
simulations of the hardware and subsystems. Depending on the environment and processing
load, this is usually done in a separate processor, but can be done on a single flight-like processor.
The simulation portion (non-flight software) is almost always preferred to be executed on a
separate processor so that interference with the flight software is minimized or eliminated.
NASA Ames has created a development environment where the same flight executable can be
executed on a flight-like processor in simulation. This is done by simulating each of the interfaces
through a standard POSIX interface and having the flight executable talk to that interface. Lower-
level interface communication can then occur either through a hardware interface (flight-like), or
UDP Ethernet (simulation) based on the simulator configuration.
Software Best Practices and NPR7150
Software can be complex and overwhelming because of the large scope and unique nature of
software development. Additionally, flight software can be costly and have reliability issues
because it can be large in scope, complex, and there are significant difficulties with testing in a
flight-like environment. To help address developmental challenges, software development has
created best practices. These can be implemented several ways but encompass some basic
elements. Some software best practices include:

• Create a plan*, schedule, and budget for software: a plan is needed to fully understand
the scope of the software effort. Ideally, plans would be developed based on previous
experiences, but there may not be a similar experience that can be used for a particular
project, and the software manager must rely on instinct and best judgement. Usually,
software will require multiple releases because incrementally developed features of the
software are needed by the customer at various stages of the project (e.g. I&T, pre-launch,
operations). Include a cost discussion and customer sign-off.

• Configuration management/revision control: this should be used for all software
development not just FSW. There are many readily available tools, but two of the most
popular are Git and Subversion. These tools provide an automatic history of the software
development. Configuration Management (CM) allows coordination between multiple
team members, assists in the overall software release, and tracks what changes are in
that release. CM also allows back tracing to see when a software bug may have been
introduced.

223

National Aeronautics and Space Administration

• Code reviews: all code should be inspected prior to being accepted by the project. These
reviews can be performed in a variety of methods, from off-line informal peer reviews to
more formal meetings such as perspective-based code inspections. Some developers
believe that this is a poor use of time and are hesitant to have others look at their work.
Code reviews lead to a higher quality product and better understanding of the software.

• Documentation: documentation can be both within the code or developed separately.
Some documentation tools process the software code to produce formal documentation.
The documentation should be consistent with the overall software effort.

• Testing: testing can come as three different parts.
o Unit- and component-level tests: each software module should have a unit test

(function level) and/or component test (module level) that is required to pass before
that code is accepted for release. A record of these tests should be kept as part of
the overall software release procedure. When fixing a discrepancy or bug the unit
test should be modified to test those fixes.

o Manual or interface testing: software is tested against the actual devices or a copy
to ensure that both the hardware and software can successfully communicate and
control each subsystem. Tests should be repeated, and edge cases should be
tested whenever possible.

o Integrated testing: integrated testing is the main time that all the FSW can be tested
together. This ensures that the overall system operates in an expected and reliable
manner. Ideally subsystems have actual hardware, but simulations can be used.

• Continuous integration: Continuous Integration (CI) works with the CM tools to know when
changes have been committed. The CI tools automatically build executables and run
configured tests (unit and integrated tests). This removes the burden of building and
testing from the developers and finds any issues with new code much faster. CI does
require setup time and an understanding of the tools.

*Software planning is a whole topic unto itself. There are several software development
approaches. Currently agile software development is one of the most popular. The overall cost of
the software development effort needs to be understood, and a detailed cost estimate should be
performed. As the complexity of the FSW increases, so does the cost and the effort of estimating
that cost. There are a number of different methods for estimating those costs, including analogy,
parametric models such as Cocomo, and bottoms-up cost estimates (16) (17) (18). Typically,
there is a lot of uncertainty in software cost estimates, so it is important to try to understand the
bounds of that uncertainty and, if possible, to give confidence in the estimate.
In order to ensure that all NASA projects follow best software practices NASA Software
Engineering Requirements standard NPR 7150.2 (currently NPR7150.2C – for updated NPR
standards please see https://nodis3.gsfc.nasa.gov/) is mandated for all NASA Flight Software
(and NASA developed software in general). It covers requirements for software management and
planning, software engineering life cycle requirements, and supporting software life cycle
requirements. Overall NPR 7150.2 addresses:

• Roles and responsibilities for tailoring requirements
• Software management

o Software lifecycle planning
o Cost estimates
o Training
o Classification assessments
o Software assurance and software verification and validation

• Software engineering life cycle requirements
o Requirements

224

National Aeronautics and Space Administration

o Architecture
o Design
o Implementation
o Testing
o Operations, maintenance, and retirement

• Supporting software life cycle requirements
o Configuration management
o Risk management
o Peer reviews/inspections
o Measurements
o Non-conformance or defect management

• Recommended software documentation

Digital Twin – https://en.wikipedia.org/wiki/Digital_twin
Taken directly from the webpage: “…A digital twin is a virtual representation that serves as the
real-time digital counterpart of a physical object or process. …The first practical definition of digital
twin originated from NASA in an attempt to improve physical model simulation of spacecraft in
2010. Digital twins are the result of continual improvement in the creation of product design and
engineering activities. Product drawings and engineering specifications progressed from
handmade drafting to computer aided drafting/computer aided design to model-based systems
engineering.
The digital twin of a physical object is dependent on the digital thread—the lowest level design
and specification for a digital twin—and the "twin" is dependent on the digital thread to maintain
accuracy.”

8.5 On the Horizon (TRL 1-4): Command and Data Handling
Many C&DH systems will continue to follow trends set for embedded systems. Short duration
missions in low-Earth orbit will continue to take advantage of advances made by industry leaders
who provide embedded systems, technologies, and components. In keeping with the low-cost,
rapid development theme of CubeSat-based missions, many COTS solutions are available for
spacecraft developers.
While traditional C&DH processing needs are relatively stagnant, as small satellites are being
targeted for flying increasingly data-heavy payloads (i.e. imaging systems) there is new interest
in advanced on-board processing for mission data. Typically, these higher performance functions
would be added as a separate payload processing element outside of the C&DH function.
Automotive and smartphone industries have pushed the energy efficiency of embedded Graphics
Processor Units (GPUs) – processors optimized for matrix multiplication.
8.5.1 Open-Source Platforms
Several open-source hardware platforms hold promise for small spacecraft systems. Arduino
boards consist of a microcontroller with complementary hardware circuits, called shields. The
Arduino platform uses Atmel microcontrollers; therefore, developers can exploit Atmel's
development environment to write software (https://www.arduino.cc). The ArduSat spacecraft
used the Arduino platform and successfully engaged the public to raise funding on Kickstarter.
Raspberry Pi (https://www.raspberrypi.org) is another high-performance open-source hardware
platform capable of handling imaging, and potentially, high-speed communication applications
(27). Raspberry Pi microcontrollers have been shown to be able to accommodate NASA standard
core Flight Software and are available in multiple, demonstrated embodiments (28).

225

National Aeronautics and Space Administration

BeagleBone (https://beagleboard.org/bone) has also emerged as a popular open-source
hardware platform. BeagleBone contains an ARM processor and supports OpenCV, a powerful
open-source machine vision software tool that could be used for imaging applications. BeagleSat
is an open-source CubeSat platform based on the BeagleBone embedded development board. It
provides a framework and tool set for designing a CubeSat from the ground up, while expanding
the CubeSat community and bringing space to a broader audience.
Arduino has become known for being beginner friendly and making the world of microcontrollers
more approachable for software designers. Though it presents a relatively familiar set of APIs to
developers, it does not run its own operating system. On the other hand, the BeagleBone Black,
Raspberry Pi, and Intel Edison are full-featured embedded Linux systems running Angstrom,
Raspbian, and Yocto Linux kernels out of the box respectively. This broadens the range of
developer tool options, from web-based interfaces to Android and Python environments. Not only
does this further ease the learning curve for novice developers, but it allows the full power of a
Linux system to be harnessed in computation tasks.
Several vendors have developed and implemented C&DH solutions using the Xilinx ZYNQ family
of processors (https://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html).
This processor offers single- to quad-core ARM processing at GHz speeds with built-in FPGA.
Although not directly radiation hardened, several radiation mitigation factors have been
implemented. These systems typically have been developed on open-source Linux OS.

8.6 On the Horizon (TRL 1-4): Flight Software
FSW is key to mission success. The field of software is a very dynamic environment and
continuously evolving. The challenges with flight software usually remain the same regardless of
the size of the spacecraft (CubeSat to SmallSat) and are related to the size and complexity of the
endeavor. Overall, flight software can be known for scheduling issues and implementation issues
especially during integration and test. Temptation of adding additional features is usually present.
All these factors can drive up overall complexity and threaten success of FSW and the mission
as a whole.
It is essential that FSW be as simple as possible. It is critical to survey the options and plan any
FSW effort early. Wherever possible early development and testing should be exercised. Efforts
to add additional features should be looked at very critically with strong efforts to stick to the
existing plan. With good planning and careful execution, a favorable outcome can be achieved.

8.7 Avionics Systems Platform and Mission Development Considerations
There are many factors to be considered in the optimum selection, configuration and
implementation of avionics subsystems, components, and elements for small spacecraft
missions. Overall spacecraft concerns of size, weight and power (SWaP) always need to be
considered. Some of the more pertinent issues and concerns that all small spacecraft missions
must address include:

• Mission applicability and tailoring
• Element, module, and component modularity and interoperability
• Manufacturing and production efficiency, complexity, and scaling
• Mission environment, especially radiation and long-duration space exposure
• Standards and regulatory concerns

Small Spacecraft Avionic systems considerations of particular interest in determining the state-
of-the-art for the C&DH, FSW, and subsystem/payload specific electronic systems include the
following:

226

National Aeronautics and Space Administration

• Small spacecraft platform size ranges and configurations
• Integrated avionics platform architectures
• Mission avionics configurations
• Spacecraft and mission autonomy

8.7.1 Flight Payload and Subsystems Avionic elements examples
Below are some reference examples of representative flight payload and subsystems avionics
products. These include onboard controllers, systems health avionics, payload processors, and
cloud-based processors. Other examples can include use of FPGAs, single-board computers,
compute modules, and open-source platforms as described elsewhere in this chapter.
Subsystem integrated OBC controllers:

ex. UNIBAP ix5-100 (www.unibap.com)
Integrated systems health avionics:

ex. IoT Mesh avionics (https://ti.arc.nasa.gov/m/pub-
archive/426h/0426%20(Alena).pdf)
Onboard Payload Processors

https://www.esa.int/Enabling_Support/Space_Engineering_Technology/Onboard_
Computers_and_Data_Handling/Architectures_of_Onboard_Data_Systems
Cloud-based processors

ex: Spacecloud (https://incubed.phi.esa.int/portfolio/uss/)

8.7.2 Platform Size Ranges and Configurations
The generally accepted and documented small spacecraft standard size definitions are described
in incremental order of magnitude increments (subNano=0.1-10 kg; Nano=1-10 kg, and micro=
10-100 kg). With increased capability and miniaturization of space subsystems and components,
and availability of standard launch vehicle deployers and interfaces, many SmallSat providers
have begun to develop smaller spacecraft platforms based on containerized CubeSat ranges in
increments of "U" described as 10 cm cubic volume, 2 kg max/cube. These units straddle the
generic NanoSat/MicroSat size ranges, with 1-3U being considered nanosatellites, and 6-27U
standard CubeSats now in the lower half of the microsatellite range.
This often-overlapping standardization impacts small spacecraft avionics in several ways:

• Spacecraft avionics components are performance driven, and not necessarily dependent
on spacecraft platform sizes.

• In general, containerized CubeSat standard components are probably upward compatible
with equivalent nanosatellite size ranges, but not necessarily the reverse.

• CubeSat subsystems, assemblies, and components are being developed in "U"
compatible form factors and may in some cases limit the use and integration of products
that do not fit within the U or multiple U dimension and mass constraints.

• Consideration for using available higher TRL avionics products may be constrained to
those selected for containerized spacecraft platforms.

http://www.unibap.com/
https://ti.arc.nasa.gov/m/pub-archive/426h/0426%20(Alena).pdf
https://ti.arc.nasa.gov/m/pub-archive/426h/0426%20(Alena).pdf
https://www.esa.int/Enabling_Support/Space_Engineering_Technology/Onboard_Computers_and_Data_Handling/Architectures_of_Onboard_Data_Systems
https://www.esa.int/Enabling_Support/Space_Engineering_Technology/Onboard_Computers_and_Data_Handling/Architectures_of_Onboard_Data_Systems
https://incubed.phi.esa.int/portfolio/uss/

227

National Aeronautics and Space Administration

8.7.3 Integrated Avionics Platform Architectures
The aeronautics industry has defined and adapted the concept of Integrated Mission Architectures
(IMA), where IMA are defined as real-time computer network airborne systems. Standard IMA
avionics protocols exist (ARINC653 and ARINC 654) to define and inform the community, thus
facilitating interfacing and interchangeability of systems components and software functionalities.
Following the trend now well established for aircraft, two embodiments and configurations for
integrated modular avionics architectures for small spacecraft can be characterized as follows:

• Federated: Each subsystem of the spacecraft is considered an independent dedicated
autonomous element, with the avionic component performing all functions independently,
with data exchanged only over standardized communications protocols and interfaces.

• Integrated: Shared, distributed functionality, that can be configured as distributed,
heterogeneous, and/or mixed criticality elements, with the capability for smart subsystems,
and modular redundant fault tolerant radiation and anomaly mitigation procedures.

8.7.4 SS Mission Avionics Configurations
As the use and utility of lower cost small spacecraft for space missions gains acceptance beyond
technology demonstration, risk reduction, and education, multi-satellite mission architectures are
gaining increasing interest and acceptance. Such configuration architectures as distributed ad
hoc constellation networks and swarms, synchronized formations, and other multi-satellite cluster
formations are creating new opportunities and for small spacecraft avionics. Increased need for
synchronization, intersatellite communications, controlled positioning for integrated C&DH
functionality, coordination and conduct, operation of ConOps and autonomous operations impose
new constraints on the avionics system, not only for single satellites, but now also as systems of
systems, whereby overall mission performance is now dependent on all the platform elements
acting in a co-dependent fashion.
8.7.5 Spacecraft and Mission Autonomy
The NASA 2020 Technology Roadmap defines autonomous systems (in the context of robotics,
spacecraft, or aircraft) as a cross-domain capability that enables the system to operate in a
dynamic environment independent of external control.
(https://www.nasa.gov/sites/default/files/atoms/files/2020_nasa_technology_taxonomy.pdf)
Of particular interest for spacecraft autonomy are the topic areas listing the characteristics of
autonomous systems:

• Situational and self-awareness
• Reasoning and acting
• Collaboration and interaction
• Engineering and integrity

Spacecraft autonomy can be considered a part of management, direction, and control for all
subsystems and functions in a spacecraft. The C&DH is the brain and executive decision-making
component and the nerve center. It takes input from and provides direction to all subsystems
(ADCS, Power, Propulsion, Comm, vehicle health, etc.). Those subsystems may also have a
degree of autonomy depending on the complexity if it’s a local “smart subsystems” processor.
Some systems now implement a heterogeneous architecture, meaning they contain multiple
processors with varying levels of performance and capabilities. For instance, the higher
performance modules and components can be used for sophisticated number crunching and
processing, AI and onboard computing for both spacecraft and mission performance optimization,

https://www.nasa.gov/sites/default/files/atoms/files/2020_nasa_technology_taxonomy.pdf

228

National Aeronautics and Space Administration

as well as science data real-time adaptive analysis (we used to call these co-processors, now
heterogeneous architectures). This allows lower performance onboard processors and FPGAs
etc. to conduct the routine spacecraft operations functions and interact with the subsystems which
also may include distributed performance cascades.
8.7.6 Industry 4.0, Foundational and Enabling Technologies and Products
In keeping with the trends seen in other disciplines and industries, the Industry 4.0 and “digitally
managed everything” is absolutely of critical importance for technological and programmatic
efficiencies in small spacecraft avionic systems development and utilization. The following is just
a short list of 21st century tools, technologies, and approaches that must be considered in
development and deployment of next-generation small spacecraft avionic systems:

1. Artificial Intelligence, Machine Learning / Machine Vision
2. Robotics and Automation
3. Model-Based Systems Engineering
4. Embedded Systems / Edge Computing
5. Internet-of-Space-Things
6. Cloud Computing
7. Augmented Reality/ Virtual Reality / Mixed Reality
8. Software-Defined-Everything
9. Advanced manufacturing
10. Digital Twin

8.8 Summary
Space applications now require considerable autonomy, precision, and robustness, and are
refining technologies for such operations as on-orbit servicing, relative and absolute navigation,
inter-satellite communication, and formation flying. An exciting trend is that small spacecraft
missions are becoming more complex in the anticipation of these platforms being used for lunar
and deep space science and exploration missions. Small spacecraft technology must expand to
meet the needs of this increasing small spacecraft mission complexity, to achieve the next
generational goals of collecting important science in deep space using small spacecraft, as well
as risk mitigation for larger more complex and mission-critical situations. In parallel, spacecraft
electronic components have matured to have higher performance, higher reliability, and are being
miniaturized to meet the growing needs of these now very capable spacecraft.
With the combination and integration of the previously separate C&DH and FSW chapters, the
2021 Small Spacecraft Avionics chapter has attempted to cast these elements in a broader,
interrelated framework, and attempts to show that C&DH, FSW, and smart payloads are not just
independent space platform subsystems but are part of an integrated avionics ecosystem of all
electronic elements of a space platform, now primarily digitally based and or managed. Also, SSA
should not be considered as an isolated spaceflight technology component, but rather as a core
digital engineering technology emphasis area, capable of taking advantage of and integrating
products, processes, and technologies from other disciplines. To continue to be relevant and
efficient, the small spacecraft avionics communities must remain cognizant and receptive of the
continuously evolving nature of the digital based Industry4.0 technology revolution now being
evidenced in other related and/or associated vertical disciplines and solutions.
For feedback solicitation, please email: arc-sst-soa@mail.nasa.gov. Please include a business
email for further contact.

229

National Aeronautics and Space Administration

References
(1) GomSpace. NanoMind A3200 - Datasheet. [Online] 2019.

https://gomspace.com/shop/subsystems/command-and-data-handling/nanomind-
a3200.aspx.

(2) ISIS. ISIS On board computer - Datasheet. [Online] 2019. https://www.isispace.nl/wp-
content/uploads/2016/02/IOBC-Brochure-web-compressed.pdf.

(3) Pumpkin Space Systems. "Processor-specific CubeSat Kit™ Components." Pumpkin
Products/Store. [Online] 2020. https://www.pumpkinspace.com/store/c19/Processor-
specific_CubeSat_Kit%E2%84%A2_Components.html.

(4) Xiphos. Q7S Specifications - Datasheet. [Online] 2020. http://xiphos.com/wp-
content/uploads/2015/06/XTI-2001-2020-e-Q7S-Spec-Sheet.pdf.

(5) Xiphis. Q8S SPECIFICATIONS - Datasheet. [Online] 2020. http://xiphos.com/wp-
content/uploads/2020/06/XTI-2001-2025-f-Q8S-Rev-B-Spec-Sheet-1.pdf.

(6) BAE Systems. "RAD750 3U CompactPCI single-board computer." BAE Systems: Space
product literature. [Online] 2008. https://www.baesystems.com/en-us/our-company/inc-
businesses/electronic-systems/product-sites/space-products-and-processing/radiation-
hardened-electronics.

(7) BAE Systems. "RAD5545 Space VPX single-board computer." BAE Systems: Space
products literature. [Online] 2017. https://www.baesystems.com/en-us/our-company/inc-
businesses/electronic-systems/product-sites/space-products-and-processing/radiation-
hardened-electronics.

(8) AAC Clyde Space. Command & Data Handling KRYTEN-M3 - Datasheet. [Online] 2020.
https://www.aac-
clyde.space/assets/000/000/179/AAC_DataSheet_Kryten_original.pdf?1600342763.

(9) AAC Clyde Space. Command & Data Handling Sirius OBC LEON3FT - Datasheet.
[Online] 2020. Available at: https://www.aac-
clyde.space/assets/000/000/181/AAC_DataSheet_Sirius_OBC_-
_updated_tables_original.pdf?1599046187.

(10) Innoflight. CFC-300: Compact Flight Computer - Datasheet. [Online] 2020. Available at:
https://www.innoflight.com/product-overview/cfcs/cfc-300/.

(11) Innoflight. CFC-400: Compact Flight Computer - Datasheet. [Online] 2020. Available at:
https://www.innoflight.com/product-overview/cfcs/cfc-400/.

(12) Innoflight. CFC-500: Compact On-Board Computer - Datasheet. [Online] 2020. Available
at: https://www.innoflight.com/product-overview/cfcs/cfc-500/.

(13) Space Micro. CubeSat Space Processor (CSP). Datasheets. [Online] 2019. Available at:
https://www.spacemicro.com/assets/datasheets/digital/slices/CSP.pdf.

(14) Nanoavionics. CubeSat On-Board Computer - Main Bus Unit SatBus 3C2 - Datasheet.
[Online] 2020. https://nanoavionics.com/CubeSat-components/CubeSat-on-board-
computer-main-bus-unit-satbus-3c2/.

(15) Moog. Radiation Tolerant, 75GLOP 3U SPaceVPX GPU Single Board Computer -
Datasheet. Moog: Space Defense: Space Literature. [Online] 2020. Available at:
https://www.moog.com/content/dam/moog/literature/Space_Defense/spaceliterature/avio
nics/Moog-Rad-Tolerant-75GFLOP-3U-SpaceVPX-GPU-Single-Board-Computer-
Datasheet.pdf.

230

National Aeronautics and Space Administration

(16) SEAKR. Commercial Products. SEAKR: Catalog. [Online] 2020. Available at:
 https://www.seakr.com/catalog/.
(17) Moog. Integrated Avionics Unit - Datasheet. Moog: Space: Avionics. [Online] 2020.

Available at:
https://www.moog.com/content/dam/moog/literature/Space_Defense/spaceliterature/avio
nics/moog-integrated-avionics-unit-datasheet.pdf.

(18) Fitzsimmons, S.: “Open-source Software for CubeSat Satellites.” AIAA/USU Conference
on Small Satellites. 2012.

(19) Bruhn, F.C., Tsog, N., Kunkel, F. et al. Enabling radiation tolerant heterogeneous GPU-
based onboard data processing in space. CEAS Space J 12, 551–564 (2020).
https://doi.org/10.1007/s12567-020-00321-9

(20) Nguyen, M.: “FPGA Advances Improve Radiation Mitigation for Remote-Sensing
Satellites.” 2015, pp. vol. 17, no. 8.

(21) Ball Aerospace & Technologies Corp. “The User Interface for Command and Control of
Embedded Systems.” 2015.

(22) Henkel, H.: “Total Dose Radiation Tests at FRAM Non-Volatile Memories.” 1996.
(23) NASA Goddard Space Flight Center. “GSFC Open-Source Software.” 2015.
(24) Bardoux, A., et al., “Radiation Effects on Image Sensors.” International Conference on

Space Optics. 2012.
(25) Chapman, T.: “Radiation Tolerances.” 2015.
(26) Holbert, K. E.: "Single Effect Events.” 2015.
(27) Wooster, P, et al.: “Open-Source Software for Small Satellites.” AIAA/USU Conference on

Small Satellites. No. #SSC07-XII-3. 2007.
(28) Cudmore, Alan: "Pi-Sat: a Low-Cost Small Satellite and Distributed Spacecraft Mission

System Test Platform." s.l.: NASA GSFC, 2015. GSFC-E-DAA-TN27347.
(29) NASA Goddard Space Flight Center. “Core Flight Software System.” 2015.
(30) LaBel, K. A. et. al.: “Commercial Microelectronics Technologies for Applications in the

Satellite radiation Environment.” Aerospace Applications Conference. 1996.

(31) Windriver. VXWORKS. [Online] Available at:
https://www.windriver.com/products/vxworks/.

(32) RTEMS. RTEMS Real Time Operating System (RTOS). [Online] 2020. Available at:
https://www.rtems.org.

(33) NASA. A Flight Software and Embedded Systems Framework. [Online] 2020.
https://nasa.github.io/fprime/.

(34) Bocchino, Robert, et al.: "F Prime: An Open-Source Framework for Small-Scale Flight
Software Systems." Logan: 32nd Annual Small Satellite Conference, 2018.

(35) Multi-Purpose Spacecraft Simulator for the LADEE Mission. Benz, Nathaniel, Viazzo,
Danilo and Gundy-Burlet, Karen. s.l.: IEEE, 2015.

(36) Gundy-Burlet, Karen: "Validation and Verification of LADEE Models and Software.". s.l. :
American Institute of Aeronautics and Astronautics.

(37) NASA. ITOS Capabilities. Integrated Test and Operations Systems (ITOS) . [Online]
2020. Available at: https://itos.gsfc.nasa.gov/itos-capabilities.php.

(38) NASA. ASIST Public Web Site - NASA. [Online] 2012. Available at: https://nasa-
asist.gsfc.nasa.gov.

https://www.seakr.com/catalog/
https://www.moog.com/content/dam/moog/literature/Space_Defense/spaceliterature/avionics/moog-integrated-avionics-unit-datasheet.pdf
https://www.moog.com/content/dam/moog/literature/Space_Defense/spaceliterature/avionics/moog-integrated-avionics-unit-datasheet.pdf
https://doi.org/10.1007/s12567-020-00321-9

231

National Aeronautics and Space Administration

(39) L3Harris Technologies. Space Software. Telemetry and RF products. [Online] 2020.
https://www2.l3t.com/trf/incontrol/index.htm.

(40) Ball Aerospace. The User Interface for Command and Control of Embedded Systems.
[Online] 2020. Available at: https://cosmosrb.com/.

(41) Bruhn, F.C., Tsog, N., Kunkel, F. et al. Enabling radiation tolerant heterogeneous GPU-
based onboard data processing in space. CEAS Space J 12, 551–564 (2020).
https://doi.org/10.1007/s12567-020-00321-9

(42) Ibeos: “Standard Products.” [Online] 2021. Accessed August 8, 2021. Available at:
https://www.ibeos.com/standard-products

(43) eoPortal Directory, “DSX (Demonstration and Science Experiments) in MEO”, [Online]
Accessed December 12, 2021. Available at: https://earth.esa.int/web/eoportal/satellite-
missions/d/dsx

(44) Data Device Corporation, “High-Speed, SWaP Optimized 3U SpaceVPX SBC”, [Online]
Available at: https://www.ddc-web.com/en/connectivity/processor-based-
solutions/sbcsforspace-1/low-power-quad-core-3u-spacevpx-computer-for-
space?partNumber=SCS3740

https://cosmosrb.com/
https://doi.org/10.1007/s12567-020-00321-9I
https://earth.esa.int/web/eoportal/satellite-
https://earth.esa.int/web/eoportal/satellite-
https://www.ddc-web.com/en/connectivity/processor-based-solutions/sbcsforspace-1/low-power-quad-core-3u-spacevpx-computer-for-space?partNumber=SCS3740
https://www.ddc-web.com/en/connectivity/processor-based-solutions/sbcsforspace-1/low-power-quad-core-3u-spacevpx-computer-for-space?partNumber=SCS3740
https://www.ddc-web.com/en/connectivity/processor-based-solutions/sbcsforspace-1/low-power-quad-core-3u-spacevpx-computer-for-space?partNumber=SCS3740

	Glossary
	8.0 Small Spacecraft Avionics
	8.1 Introduction
	8.2 Chapter Scope and Organization
	8.3 State-of-the-Art (TRL 5-9): Command and Data Handling
	8.3.1 Avionics and On-board Computing Form Factors
	8.3.2 Highly Integrated On-Board Computing Products
	8.3.3 Radiation-Hardened Processors and FPGAs
	8.3.4 Memory, Electronic Function Blocks, and Components
	8.3.5 Bus Electrical Interfaces
	8.3.6 Radiation Mitigation and Tolerance Schemes
	Memory
	Imaging
	Protection Circuits
	Memory Protection
	Communication Protection
	Parallel Processing and Voting

	8.4 State-of-the-Art (TRL 5-9): Flight Software
	8.4.1 Implication of C&DH Processors on FSW
	8.4.2 Frameworks
	cFS – https://cfs.gsfc.nasa.gov
	F’ – https://github.com/nasa/fprime
	NanoSat Mission Operations Framework – https://en.wikipedia.org/wiki/NanoSat_MO_Framework
	SpaceCloud
	ROS – https://en.wikipedia.org/wiki/Robot_Operating_System

	8.4.3 Operating Systems
	VxWorks
	RTEMS
	FreeRTOS
	Linux
	Debian – https://en.wikipedia.org/wiki/Debian

	8.4.4 Software Languages
	8.4.5 Mission Operations and Ground Support Suites
	COSMOS – https://www.ball.com/aerospace/programs/cosmos
	Yamcs – https://yamcs.org

	8.4.6 Development Environment, Standards, and Tools
	Model-Based Systems Engineering (MBSE)
	Auto-Generation of Software
	Simulations and Simulators
	Software Best Practices and NPR7150
	Digital Twin – https://en.wikipedia.org/wiki/Digital_twin

	8.5 On the Horizon (TRL 1-4): Command and Data Handling
	8.5.1 Open-Source Platforms

	8.6 On the Horizon (TRL 1-4): Flight Software
	8.7 Avionics Systems Platform and Mission Development Considerations
	8.7.1 Flight Payload and Subsystems Avionic elements examples
	Subsystem integrated OBC controllers:
	Integrated systems health avionics:
	ex. IoT Mesh avionics (https://ti.arc.nasa.gov/m/pub-archive/426h/0426%20(Alena).pdf)
	Onboard Payload Processors
	https://www.esa.int/Enabling_Support/Space_Engineering_Technology/Onboard_Computers_and_Data_Handling/Architectures_of_Onboard_Data_Systems
	Cloud-based processors

	8.7.2 Platform Size Ranges and Configurations
	8.7.3 Integrated Avionics Platform Architectures
	8.7.4 SS Mission Avionics Configurations
	8.7.5 Spacecraft and Mission Autonomy
	8.7.6 Industry 4.0, Foundational and Enabling Technologies and Products

	8.8 Summary
	References

