Title	Research Objectives:
Self-Organized Nanostructured Bonds through Transient Liquid Phase Dealloying	• This proposal aims to overcome major challenges in joining shape memory alloys through a controlled reaction between nanostructured laminates: interlayers made up of thousands individual layers, 10s of nm thick.
Research Team Ian D. McCue (PI), Materials Science and Engineering, Northwestern University	• The proposed bonding technique, transient liquid phase dealloying (TLPD) , relies on spontaneous pattern formation during selective interdiffusion to form nanoscale features that span the joint. Our initial work will focus on understanding fundamental reaction kinetics and processing-structure- relationships on bond strength and shape memory/superelastic performance (TRL 1), and progress to bulk interlayer fabrication and demonstration (TRL3) by the end of the effort.
nanostructured interdiffusi laminate interlayers pattern for Nitinol B-C	O 7
Approach Thrust 1: Thermodynamic Path Planning to Control Phase Evolution. Design compositional gradients within joints, via computational thermodynamics and path planning algorithms, to	B'' Diffusion 30 um C'' Diffusion Ti-6-4 / 316L SS Potential Impact TLPD will enable the design and fabrication of strong, tough, and intermetallic free joints between shape memory alloys without impeding their functional performance
Approach Thrust 1: Thermodynamic Path Planning to Control Phase Evolution. Design compositional gradients within joints, via computational thermodynamics and path planning algorithms, to	B'' Diffusion 30 um C'' Diffusion Ti-6-4 / 316L SS Potential Impact TLPD will enable the design and fabrication of strong, tough, and intermetallic free joints between shape memory alloys without impeding their functional performance