Integrated Communication and Controls for Coordinated Swarms of Small Spacecraft

Colorado School of Mines: Jonathan Diller, **Qi Han,** Chris Dreyer JPL: Saptarshi Bandopadhyay, Pamela Clark, Jean-Pierre de la Croix, Amir Rahmani, Federico Rossi

This project is supported in part by NASA SmallSat Technology Partnership (STP) program with grant number 80NSSC18M0048.

Current Practice

- Use of single platform
- Use of multiple platforms
 - Issue commands to control each individual spacecraft from the earth
 - Data gathered by each spacecraft is transmitted to the Earth separately

Limitations in Current Practice

- Use of single platform
 - Non-optimal data gathering conditions
 - Requiring longer duration for data collection
 - e.g. up to a third of the time wasted in NEAR mission
- Use of multiple platforms
 - Expensive, slow, unreliable

Challenges

- Intermittent network connectivity
- Stringent bandwidth constraints
- Diverse quality of data and quality of service requirements

Our System Architecture: Distributed Spacecraft Networks

Our Approach

- Enable swarms of small spacecraft with integrated communication and control
 - Network-aware coordination of spacecraft orbits
 - Monitoring of distributed spacecraft network conditions
 - Mobile ad-hoc routing for data collection

Communication-aware Orbit Planning: Problem

- Objective: plan orbits to maximize quantity of data collected
- Constraints: Instrument requirements, communication bandwidth, on-board storage

Communication-aware Orbit Planning: Solution

- Used network-flow graph to model data flow
- Solved using mixed-integer linear programming (MILP)
- Found that Linear Relaxation approximates solution well and provides analytical insights

Communication-aware Orbit Planning: Evaluation

- Simulated in MatLab using IBM's CPLEX Optimizer with JPL's Small Body Dynamics Toolkit (SBDT)
- Evaluated with 7 spacecraft orbiting 433 Eros
- Compared with baseline: Monte Carlo approach to optimize quality of data without communication constraints

Communication-aware Orbit Planning: Results

- Comparison of communication-aware and communicationagnostic orbit optimization
 - 10% increase in data collected
 - 30% increase in data quality

	Comm-aware	Comm-agnostic
Reward	679.15	618.32
Number of regions observed	288	295
by cameras	45	2
by imaging spectrometers	16	151
by X-Ray spectrometer	95	81
by altimeter	132	61
Avg. observability	0.14	0.107
by cameras	0.0083	0.0057
by imaging spectrometers	0.014	0.0107
by X-Ray spectrometer	0.34	0.34
by altimeter	0.053	0.062

Network Monitoring

- When a spacecraft moves
 - Neighbors change
 - Dynamic network topology
- Need to monitor dynamic network status
- Metrics include:
 - Pairwise performance parameters: received signal strength indicator (RSSI), percentage of dropped packets, data rate, last time of spacecraft repositioning, angle of arrival, or flux of traffic
 - Node-specific parameters: battery strength indicators, average data rate, and average RSSI

Mobile Ad-hoc Routing

- Mobile Ad-hoc Routing (MANET) protocols are routing protocols for selforganizing mobile networks
- Works by forwarding route discovery messages throughout network
- Two main approaches:
 - Proactive: Always maintain routing information
 - Reactive: Only update routes when needed

Mobile Ad-hoc Routing

- Ad-hoc On Demand Distance Vector (AODV)^[1]: MANET routing protocol
- AODV maintains routing table, updates on-demand
 - Forwards route discovery messages when needed
 - Based on number of hops

[1] C.E. Perkins ; E.M. Royer, "Ad-hoc On-Demand Distance Vector Routing" in ACM Workshop on Mobile Computing Systems and Applications (WMCSA), February 1999

Development of Integrated Simulation

Integrated Simulation Setup

- Generated orbits using Monte Carlo orbit generator to maximize data collection with homogenous sensors
- 7 spacecraft
- Physical layer: IEEE 802.11n Wi-Fi
- Network status monitored:
 - Total data returned to carrier
 - Packet loss

Two Approaches Compared

- multi-hop ad-hoc network: UDP + AODV + Receiver-Based AutoRate (RBAR) MAC protocol ^[2]
 - Uses RTS/CTS messages to avoid network congestion and adaptive data rates
- single-hop network: TCP + Single-hop routing + CSMA MAC protocol
 - Probes network to determine optimal support data rate

[2] Holland, Gavin, Nitin Vaidya, and Paramvir Bahl. "A rate-adaptive MAC protocol for multi-hop wireless networks." In Proceedings of the 7th annual international conference on Mobile computing and networking, 2001

Sample Planned Orbits

Data collected over varying orbit durations

- Tested with 6 hours of storage capacity
- Average increase in data collected: 240.21%
- Average data lost with AODV: 13.12%
- Average data lost with Single-hop: 72.54%

Future Work

Publications

1) Gerald Henderson, Qi Han, Distributed Learning Automata based Data Dissemination in Swarm Robotic Systems, Master's Thesis, Colorado School of Mines, August 2018

- 2) Josh Rands, Regression-based Network Monitoring in Swarm Robotic Systems, Undergraduate Research Honors' Thesis, Colorado School of Mines, May 2019
- 3) Gerald Henderson, Qi Han, Distributed Learning Automata based Data Dissemination in Networked Robotic Systems International Conference on Mobile Computing, Applications, and Service (MobiCASE), June 2019. Best Paper Award.
- 4) Josh Rands, Qi Han, Regression-based Network Monitoring in Swarm Robotic Systems, Proceedings of International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services (Mobiquitous), November 2019
- 5) Sam Friedman, Qi Han, Request and Share then Assign (RASTA): Task Assignment for Networked Multi-Robot Teams, Proceedings of IEEE International Conference on Mobile Ad-hoc and Smart Systems(MASS), December 2020
- 6) Federico Rossi, Saptarshi Bandyopadhyay, Mark Mote, Jean-Pierre de la Croix, Amir Rahmani, "Communication-Aware Orbit Design for Small Spacecraft Swarms Around Small Bodies", 2020 AAS/AIAA Astrodynamics Specialist Conference, AAS 20-603.

7) Optimization code is finalized and released as open source <u>https://github.com/nasa/icc</u>

8) Integration of 42-NS3 high fidelity simulation platform; available at open source project <u>https://github.com/AeroNexus/42</u>

Questions?

- Contact person: Qi Han, <u>qhan@mines.edu</u>
- The presented material has been internally reviewed by the Colorado School of Mines' Research Compliance Officer and Associate General Council.

