

*jwconklin@ufl.edu

The Miniature Optical Communications Transceiver (MOCT)

John W. Conklin* UF team: Paul Serra, Nathan Barnwell, Tyler Ritz, Myles Clark, Danielle Coogan NASA Ames leads: Anh N. Nguyen, Belgacem Jaroux

> [This presentation contains no EAR- or ITAR-controlled information]

MOCT Development

CHOMPTT (2013-2021) Currently on orbit AFRL, NASA, FSGC

MOPFA seed laser SDPM prototype

2/13

CLICK tech demo, (2017-23) NASA SSTP

development of MOCT

SmartFusion2 FPGA development board

(2014-18), Low TRL

NASA Early Career Faculty grant

Some Results from CHOMPTT

- Despite S/C pointing (and other issues) preventing a successful time-transfer, CHOMPTT accomplished several things:
 - First ever measured performance of a CSAC in space (on any platform)
 - Optical tracking of CHOMPTT by an SLR facility via Sun reflections and CHOMPTT's laser beacons
 - Successful laser ranging to CHOMPTT
 - Demonstrated functionality and performance of all elements of the OPTI payload:
 - Photoreceivers
 - CSACs (two)
 - Timing electronics
 - Laser beacons
 - Thermal & Power
 performance

The Miniature Optical Communications Transceiver (MOCT)

- Concept: Laser communications transceiver for small satellites and/or for long-haul comms based on pulse position modulation (PPM) consuming <15 W
- Innovations:
 - Replace GHz slot clock with low power precision oscillator: 100 mW CSAC
 - Laser pulse timing generated within an FPGA with <10 ps precision
 - Use feedback control to continuously correct timing errors due to PVT
 - Power efficient gain-switched seed laser diode driver
 - Master oscillator power fiber amp to achieve optical link
- Performance goals:
 - ~100 Mbps & <100 ps timing
- Project does not focus on optical Master of font-end, acquisition, structural/thermal

John W. Conklin, STP EXPO, 24 May 2021

Original MOCT Concept

Software-Defined Pulse Modulator

- Generates electrical pulses with ~ps precision referenced to an external oscillator (CSAC)
- Pulse timing is based on a selectable signal propagation time through a delay chain within the FPGA
- Delay time is continually calibrated against the CSAC
 - U.S. patent (16/086,092) on this technology
 - See [Serra, Conklin, 2019]
- Demonstrated using COTS 80 FPGA (Smartfusion2) with flight ~equivalent (RTG4)
- Measured performance in a lab environment
 - 2 ps timing precision
 - 10 ps timing accuracy
 - 14 ns range

John W. Conklin, STP EXPO, 24 May 2021

Timing compensation circuit

100 ps Gain-switching Seed Laser Driver

- Fast Laser Advanced Switching High-Frequency Emitter (FLASHE)
- Capable for generating 500 mA pulses at 50 MHz
- Uses double FET configuration
 - One for laser ON, one for laser OFF separated by 100 ps
 - Transistors are 'slow', operated in linear mode to conserve power and eliminate the need for an RF amp

Triggered on CSAC reference oscillator

Triggered on measured rising edge

Pulse Detection and Timing

- Time-to-Digital Converter 2 (TDC-GPX2) used for time stamping
 - Measures rising and falling edges based on selected threshold
 - Consumes less power than a fast ADC, but ADC has better link margin with matched filtering
 - Data rate of 70 MS/s with 20 ps timing precision (<40 ps measured)
- Avalanche photodiode (APD) receiver
 - Selectable reverse bias for gain control
 - Active thermal control for stable breakdown voltage
 - Minimum received power: 100 nW
 - Measured timing jitter: 50 ps

MOCT APD photo receiver (left) and mechanical enclosure (center)

MOCT Breadboard

Measured Performance in the Lab

- EDFA output attenuated by an amount equivalent to LEO-to-Earth link
 - Tx peak power: 1.4 W
 - Rx peak power: 180 nW
- Pulse modulation scheme
 - 32 PMM
 - Pulse width: 2.5 ns
 - Guard time: 50 ns
 - Slot width 0.4 ns
- Uncorrected BER: 10^{-2.6}
- Data rate: 78 Mbps
- See
 - [Barnwell et al. Aerospace, 2018]

ITTUF CLICK: CubeSat Laser Infrared CrosslinK

- NASA-MIT-UF CLICK B/C mission will demonstrate CubeSat space-to-space laser comms
 - CLICK A is a space-to-ground laser comm risk reduction mission for B/C, launching later this year
- Elements of MOCT will fly on CLICK B/C
 - FPGA modulator with CSAC frequency reference
 - Operated in a different way than the SDPM
 - APD photoreceiver
 - Time-to-digital converter
 - ADC-based receiver also flown for comparison
- B/C launch: 2022-23

- Pair of **1.5 U, ~1700 g, <25 W** payloads
- 200 mW avg. Tx, 70 μrad divergence
- 2.5 cm receive aperture
- 500 mW beacon at 976 nm for PAT
- Full-duplex **PPM** crosslinks 1537/1565 nm
 - 50 Mbps, 4-PPM, <450 km
 - 25 Mbps, 16-PPM, <920 km
- 200 ps timing accuracy & time transfer
- Primary success criteria:
 - >20 Mbps full-duplex @ 580 km
 - <0.5 m ranging w/o GPS @ 580 km</p>

Credit: P. Serra

Conclusions

- CHOMPTT/OPTI
 - Ground → space time-transfer to <200 ps
 - <5 W
 - ~0.3U without redundancy
 - Partial flight demo; ongoing

- MOCT
 - ~10s Mbps laser comm
 - <200 ps time-transfer</p>
 - Ideal for long haul or small sats
 - More easily scalable to longer links but not higher data rates
 - ~15 W, ~1.5U
 - Lab demo only

- CLICK B/C
 - ~10s Mbps laser comm
 - <200 ps time-transfer</p>
 - More easily scalable to higher data rates
 - ~25 W, ~1.5U
 - Near future flight demo

