Distributed multi-GNSS Timing and Localization (DiGiTaL)

Vince Giralo, and PI: Prof. Simone D'Amico, damicos@stanford.edu

Stanford's Space Rendezvous Laboratory (SLAB)

NASA POC: Neerav Shah

Distributed Space Systems

Distributed Multi-GNSS Timing and Localization

rendezvou

- Navigation payload for swarms of N nanosatellites
- **0.5U** form factor for CubeSats
- Commercial-off-the-shelf hardware with "partial" flight heritage
- Decentralized architecture
- Cm-level real-time relative positioning through differential GNSS
 In-flight integer ambiguity resolution
- Demonstrated on CubeSat avionics

Hardware Architecture

Hardware Architecture

Swarm Navigation Strategy

- Differential GNSS
 - Share measurements between spacecraft
 - Singe-difference carrier-phase
 - Cancel common errors
- Computational cost grows with size of swarm
 - Based on Kalman filter measurement update
 - Grows with N^2
 - Large swarms become **too expensive**
- **Divide** swarm into smaller "local" pods
 - Perform **orbit determination** in pod
 - Fuse together in **swarm determination**

 $\rho^{ij} = \rho^i - \rho^j$

Software Architecture

Software Architecture

DiGiTaL Orbit Determination

 Multi-inertial estimation state Incorporates interdependency of states No need for explicit relative state Extendable to at most 3 states 	$\vec{x} = \begin{bmatrix} \vec{r}^1 & \vec{v}^1 & \vec{a}_{emp}^1 & \overline{c\delta t}^1 & \vec{N}^1 \dots \\ \vec{r}^2 & \vec{v}^2 & \vec{a}_{emp}^2 & \overline{c\delta t}^2 & \vec{N}^2 \end{bmatrix}^T$
 Reduced-dynamics estimation approach Extended Kalman Filter First-order Gauss-Markov process 	Force Model SettingValueSpherical Harmonic Gravity20 x 20 GGM01SEmpirical AccelerationYes
 Multi-GNSS measurement concept Group and phase ionospheric correction Single difference carrier-phase data types 	$\vec{y} = [\rho_{GR}^1 \rho_{GR}^2 \rho_{SDCP}^{21}]^T$
 Integer ambiguity resolution mLAMBDA method Discrimination Test, Success Rate Test, Resid 	$\min_{\mathbf{N}\in\mathbb{Z}^p}(\mathbf{N}-\hat{\mathbf{N}})^T\mathbf{P}_{dd}^{-1}(\mathbf{N}-\hat{\mathbf{N}})$ lual Test

pace

rendezvou

Software Architecture

DiGiTaL Swarm Determination

User Spacecraft	Partner Spacecraft	DOD Output by User
A	В	$\Delta \mathbf{x}_{BA}$, $\Delta \mathbf{P}_{BA}$
В	С	$\Delta \mathbf{x}_{CB}$, $\Delta \mathbf{P}_{CB}$
С	D	$\Delta \mathbf{x}_{DC}$, $\Delta \mathbf{P}_{DC}$
D	А	$\Delta \mathbf{x}_{AD}$, $\Delta \mathbf{P}_{AD}$

rendezvou

$$\Delta \mathbf{x}_{BA} = \mathbf{x}_B - \mathbf{x}_A$$
$$\Delta \mathbf{P}_{BA} = \mathbf{P}_A + \mathbf{P}_B - \mathbf{P}_{AB} - \mathbf{P}_{BA}$$

 $\frac{\text{Vector Algebra}}{\Delta \mathbf{x}_{CA} = \Delta \mathbf{x}_{CB} + \Delta \mathbf{x}_{BA}}$ $\Delta \mathbf{P}_{CA} = \Delta \mathbf{P}_{CB} + \Delta \mathbf{P}_{BA}$

$$\mathbf{x}(k+1) = \mathbf{F}\mathbf{x}(k) + \mathbf{v}(k)$$
$$\mathbf{F} = \begin{bmatrix} 1 & \Delta t & \frac{\Delta t^2}{2} \\ 0 & 1 & \Delta t \\ 0 & 0 & 1 \end{bmatrix}$$
$$\mathbf{Q} = \begin{bmatrix} \frac{\Delta t^5}{20} & \frac{\Delta t^4}{8} & \frac{\Delta t^3}{6} \\ \frac{\Delta t^4}{8} & \frac{\Delta t^3}{6} & \frac{\Delta t^2}{2} \\ \frac{\Delta t^3}{6} & \frac{\Delta t^2}{2} & \Delta t \end{bmatrix}$$

Swarm Test Scenario

Scenario Parameter	Value
Start Epoch (GPST)	September 21, 2019, 00:00:00
Simulation Time [hr]	6
Simulation Rate [Hz]	20
Numerical Integrator	Fixed-Step 4 th Order Runge-Kutta
GNSS Constellations	GPS L1

Absolute Orbital Elements	Satellite 1
Semi-Major Axis (a) [km]	6969.63
Eccentricity (e) [-]	0.0026
Inclination (i) [°]	97.98
Longitude of Ascending Node (Ω) [°]	25.85
Argument of Perigee (ω) [°]	252.38
Mean Anomaly (<i>M</i>) [°]	330.52
Chace	

rendezvou

HIL Testbed Setup

IFEN NavX Professional Multi-GNSS Signal Simulator

Tyvak Flatsat Development Platform with NovAtel 628 GNSS Receiver and UHF ISL

<u>G</u>NSS and <u>R</u>adiofrequency

Distributed Space Systems

Navigation Testbed for

Autonomous

(GRAND)

Large-Baseline Orbit Determination

- Miniaturized Distributed Occulter/Telescope
- Observe extrasolar debris disks
- Binary Formation
 - LEO
 - ~500 km max separations
- 2 cm relative navigation requirement
- Large inter-spacecraft separations
 - Differential GNSS assumptions breakdown

Illustration of nominal operations of mDOT

Navigation Filter Extensions

1. State Augmentation with Ionospheric Path Delay

 $\rho_{uw,cp}(t) = \rho_{u,cp}(t) - \rho_{w,cp}(t) = ||\mathbf{r}(t) - \mathbf{r}_s(t_{tr})||_{uw} + c\delta t_{uw}(t) - I_{uw}(t) + \lambda N_{uw} + \epsilon_{uw}$

$$I_{L1,uw} = I_{K,uw} + \Delta I_{uw}$$

Estimated differential ionospheric correction

- 2. Hybrid Extended/Unscented Kalman Filter
 - Leverage **nonlinear UKF** filter variant
 - Reduce computational load by Exploiting Triangular Structure
 - Further reduce computation by **only using UKF measurement update**

Large Baseline Test Case

Scenario Parameter	Value
Start Epoch (GPST)	March 1, 2018, 00:00:00
Simulation Time [hr]	12
Simulation Rate [Hz]	20
Numerical Integrator	Fixed-Step 4 th Order Runge-Kutta
GNSS Constellations	GPS L1, L2
Orbit Regime	LEO, sun-synchronous
Altitude	600km
Eccentricity	0.003
Nominal Separation	500km

Orbit Determination

Conclusions

- Developed a navigation payload for nanosatellite swarms
 - COTS hardware
 - Differential GNSS with IAR in real-time
 - **Centimeter-level** relative positioning accuracy
- Demonstrated on CubeSat avionics in HIL testbed
- Extended algorithms to account for differential ionospheric delay
 - Accurate up to hundreds of kilometers

Stanford GNSS Testbed with newly acquired third flatsat

Ways Forward

- DiGiTaL+ with NASA Small Business Technology Transfer (STTR) and Tyvak
- Expand swarm determination algorithms
 - Kinematic Kalman filter
 - Covariance intersection
 - Data fusion
- Expand hardware capabilities
 - To GEO and Cislunar
 - Full integration with Chip-Scale Atomic Clock
- Selected for following missions:
 - **DWARF** (2022)
 - VISORS (2024)

Dace

rendezvou

- SWARM-EX (offline) (2024)
- **mDOT** (Pre-Phase A)

Stanford GNSS Testbed with newly acquired third flatsat

List of Publications

- 1. V. Giralo, S. D'Amico, "Development of the Stanford GNSS Navigation Testbed for Distributed Space Systems," *Institute of Navigation, International Technical Meeting*, Reston, Virginia, January 29-February 1, 2018.
- 2. S. D'Amico, R. Carpenter, "Satellite Formation Flying and Rendezvous," In Parkinson, et al.: *Global Positioning System: Theory and Applications -* Chap. 50, 2018.
- 3. V. Giralo, S. D'Amico, "Distributed Multi-GNSS Timing and Localization for Nanosatellites," *Navigation*, 2019.
- 4. V. Giralo, M. Chernick, S. D'Amico, "Guidance, Navigation, and Control for the DWARF Formation-Flying Mission," 2020 AAS/AIAA Astrodynamics Specialist Conference, South Lake Tahoe, California, August 9-13, 2020.
- 5. V. Giralo, S. D'Amico, "Precise Real-Time Relative Orbit Determination for Large Baseline Formations Using GNSS," *Institute of Navigation International Technical Meeting*, Virtual Event, January 25-28, 2021.

Distributed multi-GNSS Timing and Localization (DiGiTaL)

Vince Giralo, and PI: Prof. Simone D'Amico, damicos@stanford.edu

Stanford's Space Rendezvous Laboratory (SLAB)

NASA POC: Neerav Shah

