Angles-Only Absolute and Relative Trajectory Measurement System (ARTMS)

Adam Koenig, Justin Kruger, and PI: Prof. Simone D'Amico, <u>damicos@stanford.edu</u>

Stanford's Space Rendezvous Laboratory (SLAB)

NASA POC: Dr. Howard Cannon

ARTMS Team at SLAB

Adam Koenig Postdoctoral Scholar

Justin Kruger Ph.D. Candidate

NASA POC: Dr. Howard Cannon Starling1 Project Manager

PI: Simone D'Amico Associate Professor

2

ARTMS Objective and Operating Principles

- ARTMS is intended to provide autonomous, self-contained navigation for future deep space missions conducted by smallsat swarms
 - Minimal requirements on ground interaction and data accuracy
- ARTMS is a software payload deployed on each of a team of cooperative observers equipped with lowcost optical sensors and a cross-link radio
 - Estimates absolute and relative orbits of all cooperative spacecraft and noncooperative RSO in a local cluster
 - → Target tracking using kinematic constraints on relative motion
 - Nonlinear batch/sequential estimation algorithms that overcome weak observability without translational maneuvers

A CubeSat-compatible star tracker. Credit: BCT

Angles-only range ambiguity.

ARTMS Architecture

→ ARTMS includes three modules:

- → Image Processing (IMP)
- → Batch Orbit Determination (BOD)
- ✓ Sequential Orbit Determination (SOD)
- ✓ IMP produces batches of bearing angles to each detected target
- BOD estimates state of local swarm using bearing angles and one orbit estimate
- SOD refines estimate using bearing angles from all observers

Data flow between ARTMS modules and external systems.

Image Processing (IMP)

- Goal: produce batches of bearing angles corresponding to each detected target using
 - 1) Coarse estimate of observer's orbit and uncertainty
 - 2) Images from onboard camera
- Approach: MHT with kinematic constraints
 - 1) Process images to obtain attitude and bearing angles
 - 2) Enumerate possible target tracks from measurements
 - 3) Apply domain-specific models of target kinematics to score candidate tracks
 - a) Determine if tracks contain a maneuver
 - 4) Select most likely measurement assignment candidate
 - 5) Prune lowest scoring tracks to reduce computation cost

Kruger J. and D'Amico S., "Autonomous Angles-Only Multi-Target Tracking for Spacecraft Swarms", AAS/AIAA Astrodynamics Specialist Conference (2020).

Example VBS image.

Target kinematics in observer RT (left) and RN (right) planes.

Batch Orbit Determination (BOD)

- Goal: compute orbit estimates for observer and all targets using
 - 1) Single estimate of observer's orbit and uncertainty
 - 2) Batch of bearing angles to each target
- Approach: Sampling-based range estimation
 - 1) Specify candidate values of mean along-track separation
 - 2) For each detected target:
 - 1) Compute one-dimensional family of candidate solutions including observer semimajor axis
 - 2) Select candidate state with smallest measurement residuals
 - 3) Compute state uncertainty using measurement residuals
 - 3) Assemble swarm state estimate

Koenig A. W. and D'Amico S., "Observability-Aware Numerical Algorithm for Angles-Only Initial Relative Orbit Determination", AAS/AIAA Astrodynamics Specialist Conference (2020).

Sequential Orbit Determination (SOD)

- Goal: continuously refine swarm state estimate provided by BOD using bearing angle measurements from all observers
 - → GNSS solutions used if available
- Approach: Novel unscented Kalman filter (UKF)
 - 1) Efficient dynamics with integration constants
 - 2) Exploitation of triangular structure for efficiency
 - 3) Adaptive process noise tuning
 - 4) Assignment of ISL measurements using Mahalanobis distance criteria
 - 5) Fault detection using BOD solutions

Status and Current Testing Results

- → ARTMS is at TRL 6 after hardware-in-the-loop testing and will advance to TRL 9 on NASA's Starling1 mission
- Software-only Monte Carlo simulations for C++ implementations of each ARTMS module
 - → IMP: >99% precision in LEO, eccentric orbits, and Mars orbit
 - BOD: Initial relative orbit estimates with <10km range error in presence of large absolute orbit uncertainty
 - SOD: Steady-state convergence to <1% range error in 5 orbits or less</p>
- High-fidelity hardware-in-the-loop simulations using SLAB's Optical Stimulator (OS) testbed
 - → Calibrated point source placement errors of <10arcsec</p>

rendezvou

Optical Stimulator testbed at the Space Rendezvous Laboratory.

Example Starling1 Autonomous Navigation Scenario

- ARTMS tested in most challenging experiment configuration planned in Starling1 mission
 - Starling1 includes 4 CubeSats launched into 200km formation in low earth orbit
 - Two observers are provided with a single orbit solution with GNSS-level errors, enabling IMP to start tracking targets
 - Once 2 orbits of measurements are collected, BOD for each observer computes a swarm state estimate using a-priori orbit solution
 - SOD refines swarm state estimate using bearing angles from both observers
- Ground truth data generated by high-fidelity numerical orbit propagator

Dace

rendezvou

Swarm configuration for test scenario.

Absolute orbit						
-	a (km)	$e_x(-)$	$e_{y}(-)$	$i(^{o})$	$\Omega(^o)$	$u(^{o})$
Observer	6978	0.0014	0.0014	98	40	105
Relative orbits						
ROE (m)	$a\delta a$	$a\delta\lambda$	$a\delta e_x$	$a\delta e_{y}$	$a\delta i_x$	$a\delta i_v$
Target 1	0.0	65000	0	3000	0	3000
Target 2	0.0	133000	0	2600	0	2600
Target 3	0.0	200000	0	1200	0	1200

Initial absolute and relative orbits.

9

Test Results: Starling1 Autonomous Navigation

Absolute navigation errors in local RTN frame.

pace

rendezvou

Relative navigation errors in local RTN frame.

Test Results: Translational Maneuver

Starling1 relative navigation results with 1m/s translational maneuver.

Test Results: Mars Orbit

Autonomous navigation test results in Mars orbit.

pace

rendezvou

Status Summary and Next Steps

→ Status

- ARTMS is a software payload at TRL 6 that provides autonomous, self-contained absolute and relative orbit determination using angles-only measurements
- ARTMS has been tested in software-only Monte Carlo simulations and high-fidelity sensor-in-the-loop simulations using the Optical Stimulator testbed
- Completed first demonstration of fully autonomous angles-only orbit determination using a single orbit estimate for each observer provided by the ground
- → Next steps
 - Comprehensive profiling on flight processor and verification/validation testing
 - ✓ Integration into Starling1 flight software and flight demonstration for TRL 9
 - → Generalize to more challenging orbit environments (e.g., Mars, cislunar, and deep space)
- → Address more challenging scenarios (e.g., maneuver detection, partial networks)

Angles-Only Absolute and Relative Trajectory Measurement System (ARTMS)

Adam Koenig, Justin Kruger, and PI: Prof. Simone D'Amico, <u>damicos@stanford.edu</u>

Stanford's Space Rendezvous Laboratory (SLAB)

NASA POC: Dr. Howard Cannon

