

NASA SmallSat Technology Partnerships 2021 Technology Exposition

Co-Hosted by NASA Small Spacecraft Technology Program & NASA Small Spacecraft Systems Virtual Institute

May 24, 2021 Hosted Virtually over WebEx

9:00AM – 2:25PM All Times are Pacific Daylight Time

Welcome and Perspectives		Speaker, Institution		
9:00AM PDT	Welcome and Introduction	James J. Cockrell		
		Chief Technologist, Small Spacecraft		
		Technology Program		
	Space Technology Mission Directorate (STMD)	Christopher E. Baker		
		Program Executive,		
		Program and		
		Flight Opportunities Program		
	Science Mission Directorate (SMD) SmallSat	Florence W. Tan		
	Technology	Deputy Chief Technologist,		
		Science Mission Directorate,		
		Chair, Small Spacecraft Coordination		
		Group		
	Liuman Exploration and Onerations Mission			
	Directorate (HEOMD)	Andres Martinez		
	Directorate (HEOND)	Advanced Exploration Systems (AES)		
		Human Exploration and Operations		
		Mission Directorate (HEOMD)		
SmallSat Technology Partnerships Presentations				
9:20AM PDT	Move to Talk, Talk to Move: Tightly Integrated	Dr. Qi Han		
	Communication and Controls for Coordinated	Colorado School of Mines		
	Swarms of Small Spacecraft – [2018]	<u>qhan@mines.edu</u>		
	Tight integration of communication and controls to			
	enable a network of self-organizing small			
	spacecraft to collaboratively monitor time-varying,			
	aistributed phenomena.			

9:40AM PDT	Active Thermal Architecture for Cryogenic	Lucas Anderson, Dr. Charles
	Optical Instruments (ATACOCI) – [2018]	Swenson
		Litah State University
	Advanced thermal control system consisting of a	ls anderson@aggiemail.usu.edu
	deployable solar radiator, ratational fluid joint	charles swopsop@usu edu
		<u>chanes.swenson@usu.euu</u>
	and thermal isolation system for miniature	
	cryogenically-cooled instruments hosted on	
	CubeSats.	
10:00AM PDT	Angles-only Absolute and Relative Trajectory	Dr. Adam Koenig, Justin Kruger,
	Measurement System (ARTMS) - [2019]	Dr. Simone D'Amico
		Stanford University
	Software enables spacecraft to estimate orbits of	adamkoenig90@gmail.com
	external objects based on visible bearing angle	jjkruger@stanford.edu
	measurements	damicos@stanford.edu
	Autonomous Nanosatellite Swarming using	Kaitlin Dennison Dr. Simone
10.20/1011 01	Rationomous Nanosatellite Swaming Using	D'Amico
		D Allico Stanford Linivariati
	- [2019]	Staniord University
		<u>kaenn@stantora.edu</u>
	Distributed Dynamics, Guidance, Navigation and	<u>damicos@stanford.edu</u>
	Control system with cm-level RF and optical	
	relative nav with efficient on-orbit propagation of	
	satellite relative motions. Enables swarms/clusters	
	to cooperate for wide range of Earth or planetary	
	observations.	
10:40-10:50AM	Break	
10:50AM PDT	Miniature Optical Communications	Dr. John Conklin
	Transceiver (MOCT) – [2016]	Liniversity of Florida
		iwconklin@ufl.edu
	An optical communication system consisting of a	<u>Iwconkinedn.cou</u>
	software defined pulsed modulator laser system	
	software defined pulsed modulator, laser system,	
	and avalanche photodetection system designed	
	for SmallSat/CubeSat communication.	
11:10AM PDT	SPRINT: Scheduling Planning Routing	Juliana Chew, Mary Dahl,
	Intersatellite Network Tool – [2018]	Dr. Kerri Cahoy
		Massachusetts Institute of
	Open-sourced software tool to plan and schedule	Technology
	remote observations, data crosslink, and downlink	<u>jlchew@mit.edu</u>
	activities. Enables large constellation of resource-	marydahl@mit.edu
	constrained SmallSats to maximize data downlink	kcahoy@mit.edu
	for global, real-time science.	
11:30AM PDT	High Specific-impulse Electrospray Explorer	Dr. Paulo Lozano
	for Deen-space (HiSPEED) = [2018]	Massachusetts Institute of
		Technology
	A multi-staged ion Electrophysic Brenulsien	nlozano@mit edu
	A multi-staged ion Electrospray Propulsion	piozanownii.euu
	System extends thruster litetime and enables	
	deep-space exploration with small satellites.	
11:50AM PDT	Distributed multi-GNSS Timing and	Vince Giralo, Dr. Simone D'Amico
	Localization system (DiGiTaL) – [2016]	Stanford University
		vairalo@stanford.edu
		vgnalo@stamora.cou
	Multi-GNSS unit for navigation and timing enables	damicos@stanford.edu
	Multi-GNSS unit for navigation and timing enables decentralized relative navigation with centimeter	damicos@stanford.edu

12:10PM PDT	Development of New Low-Resource	Dr. Mark Moldwin
	Magnetometers for Small Satellites – [2016]	University of Michigan
		mmoldwin@umich.edu
	Reduced SWAP+C magnetometer mounts internal	
	to CubeSats without requiring external booms.	
	Uses precision AC and DC magnetic	
	measurements and novel algorithms to achieve	
10.00 10.40014	high precision.	
12:30-12:40PM	Break	Dr. Timothy Sottorfield
	Coded aperture imager for passive, dense	Dr. Timothy Setterneid
	depth sensing with low size, weight, and	timethy p setterfield@inl pass gov
	power – [2016]	<u>umotny.p.settemeid@jpi.nasa.gov</u>
	Time-windowed, efficient smoothing software	
	based on coded aperture visible imaging to	
	estimate relative poses and volocities between	
	spacecraft.	
1:00PM PDT	Distributed Attitude Control and Maneuvering	Steven Pugia, Dr. Alina Alexeenko
	for Deep Space SmallSats – [2018]	Purdue University
		<u>spugia@purdue.edu</u>
	Combines film-evaporation MEMS tunable array	<u>alexeenk@purdue.edu</u>
	(FEMTA) technology with microscale fluid surface	
	tension effects; electrothermal shutters enable	
	low-power tunable thrust and thermal control.	Du Dura Daffa alla
	Nano-Enabled Space Power System – [2016]	Dr. Ryne Ramaelle Rechaster Institute of Technology
	Nanomatorial components for power systems	rorsps@rit.edu
	(quantum dot/well solar cells: CNT wire harpesses:	<u>ipisps@iii.edu</u>
	CNT-enhanced Li-ion batteries) increase	
	capabilities at reduced weight.	
1:40PM PDT	Omnidirectional Inter-satellite Optical	Dr. Ozdal Bovraz
	Communicator – [2016]	University California of Irvine
		oboyraz@uci.edu
	A high bandwidth, full duplex, omnidirectional	
	optical communication module for optical	
	communication of spacecraft constellations at	
	100's km separations.	
2:00PM PDT	Leverage NASA Patented Technology for Your	Jay Singh
	Business	Technology Transfer Office
		ARC-TechTransfer@mail.nasa.gov
	Learn now to use NASA patented technologies to	
	Closing Remarks	Jamos I. Cookroll
	Closing Remarks	James J. COCKIEII Chief Technologist Small Spacesreft
		Technology Program
	1	i echihology Flogrann