Highly mobile, self-anchoring robots for coordinated, high-force environmental interaction Elliot W. Hawkes (PI) Assistant Professor of Mechanical Engineering Hawkeslab.com UC SANTA BARBARA engineering	Research Objectives I. Advance state of knowledge in (TRL 1-2): 1. Mechanics of jumping 2. Root-like anchoring and burrowing in low gravity 3. Load-sharing for heterogenous anchoring strength II. Develop new hardware (TRL 3): 1. Jumper 2. Burrowing and anchoring device for low gravity soils 3. Load-sharing mechanism III. Integrate and evaluate (TRL 4) 1. Integrate subcomponents into working robot team
self- righting high mobility an	heterogenous load sharing weak anchor choring strong anchor
Approach <u>Phase I:</u> Test hypotheses and models via controlled experiments, including using regolith-like soils <u>Phase II:</u> Design, prototype, test, analyze and iterate to create sub- component hardware <u>Phase III:</u> Integrate sub-components to create functional robots; demonstrate and evaluate team of coordinated robots performing representative task (rolling a boulder)	 Potential Impact Will enable robots capable of both: high mobility to traverse extreme terrain, and high force environmental interactions to move heavy objects. Will advance space science and exploration: mobility opening access to new locations, burrowing enabling sampling of subsurface soils, force-application enabling tasks that involve heavy objects. Fundamental knowledge created during this work will enable future space applications that involve jumping, anchoring/burrowing, and load sharing.