
National Aeronautics and Space Administration

Save Your Breath

www.nasa.gov

Save Your Breath
Agenda

• Introductions and NASA Content Overview

• Applying Design Thinking to a Making Activity

• Building a Sensing System

• Programming the Microcomputer

• Save Your Breath - Building the Test Apparatus

• Save Your Breath – Using CT to Modify the System

• Conclusion
2

Share Your NASA Experience
Share your NASA experiences, pictures and videos
• Facilitators participating at NASA professional development workshops
• Students using NASA content
• Your organization connecting with NASA Subject Matter Experts

@NASAGRC_Edu – NASA Glenn Office of STEM Engagement on Twitter

@NASAGlenn official accounts:

@NASAedu – NASA Office of STEM Engagement official Twitter account

• Be sure to use the hashtag #NASAGlennSTEM
3

https://twitter.com/nasaglenn
https://www.facebook.com/NASAGlenn/
https://www.youtube.com/channel/UCjwomG9UlE6H0xqpJcmAsQw
https://www.instagram.com/nasaglenn/
https://www.flickr.com/photos/nasaglenn/

Save Your Breath
• Students build and test a data-collection

system consisting of a sensor, microcontroller,
and transmitter that could be used during lunar
exploration.

• Students will then use computational thinking
practices to modify their system to detect
carbon dioxide in model spacesuit helmets and
signal an alert if CO2 exceeds acceptable
levels.

• Students will test their system through a
simulated CO2 build-up incident.

4

The Student Journal

• This document will help students
organize their thoughts and track their
progress through the challenge.

• Instructions on the left-side pages;
student work on the right-side pages.

5

Working in Teams
Making projects are all about individual creativity, however the best ideas rarely come from
just one person. For this project, it is highly encouraged to have students work in teams of
two or more.

Assign roles to team members or have students select their own roles.

• Design Engineer – sketches, outlines, patterns, or plans the ideas the team generates
• Technical Engineer – assembles, maintains, repairs, and modifies the structural

components of the design
• Operations Engineer – sets up and operates the prototype to determine what parts work

like they should and what can be improved.
• Technical Writer/Videographer – records and organizes information, data, and prepares

documentation, via pictures and/or video to be reported and published.

6

Design Your Mission Patch
• Establish a mission/project name – Many NASA missions

are named based on the work they do.

• Design a mission patch – Scientists and engineers that
work on NASA missions and spacecraft are unified under
mission patches that are designed with symbols and
artwork to identify the group’s mission.

• Create a vision statement – This is a short inspirational
sentence or phrase that describes the core goal of the
team’s work. NASA’s current vision statement is:

• “We reach for new heights and reveal the unknown for the
benefit of humankind.”

7

NASA’s Past, Present
and Future at the Moon

Past Present Future

• On October 15, 2019, NASA unveiled
its designs for their new Exploration
Extravehicular Mobility Unit (xEMU) suit
and the Orion Crew Survival System
(OCSS).

• The xEMU suit improves on the suits
from the Apollo era and spacewalks
outside the International Space Station.

• They will be will be worn by first woman
and next man as they explore the Moon
as part of the agency’s Artemis
program.

• The Artemis 1 mission, the first
integrated test flight of NASA’s new
Orion spacecraft and the Space Launch
System rocket.

• Artemis I will be an uncrewed flight test
that will demonstrate capabilities to
extend human existence to the Moon
and beyond.

• It is currently planned to launch in
November 2021.

• On April 30, 2020, NASA announced
the selection of three U.S. companies
selected to design and develop human
landing systems for the moon.

• One of these systems will be chosen as
the vehicle to land the first woman and
next man on the moon, planned for
2024.

• NASA is returning to the Moon for
scientific discovery, economic benefits,
and inspiration for a new generation.

Developing New Spacesuits

9

https://www.nasa.gov/feature/what-are-the-next-generation-spacesuits

https://www.nasa.gov/feature/what-are-the-next-generation-spacesuits

The Design Thinking Process

• This process can be used
to solve any problem that
requires designing and
making a solution.

• Adapted for student use
from Design Thinking for
Educators
https://designthinkingforeducators.com/design-
thinking/.

10

Discover
• I have a challenge. How do I approach it?

Interpret
• I learned something. How do I interpret it?

Ideate
• I see an opportunity. What do I create?

Experiment
• I have an idea. How do I build it?

Evolve
• I tried something. How do I evolve it?

The
Design

Thinking
Process

https://designthinkingforeducators.com/design-thinking/

Discover
• To make a great solution, first you have to understand the

problem.

• Make a list of challenges that need to be solved. These are
questions that need answers. (How can…? How would…? How
does…?)

• Next, brainstorm any criteria, constraints, and barriers that are part
of this problem.

• Criteria are things your solution has to be able to do.
• Constraints are things your solution must not do.
• Barriers are things that could prevent you from finishing your solution.

11

Discover
• I have a challenge. How do I approach it?

Discover

• Student teams plan how to use carbon
dioxide sensors inside a helmet to keep
astronauts safe.

• They program sensors to alert the user
to dangerous or borderline-dangerous
levels.

12

Discover
• I have a challenge. How do I approach it?

Discover

• Students will insert their carbon dioxide
sensors into model astronaut helmets.

• They must determine how to alert a user
to a dangerous level of carbon dioxide
in either one or both helmets.

13

Discover
• I have a challenge. How do I approach it?

Discover
• Students will build a sensor-microcontroller-transmission

system using COTS parts.

14

Discover
• I have a challenge. How do I approach it?

Ambient
Light Sensor

Carbon Dioxide
Sensor

LED Traffic
Light

Microcontroller Bluetooth Radio

Discover
Some examples of challenge questions:

• Organization of Electronic Components
• How should parts be arranged?
• How can it stay organized and easy to follow?

• Programming the computer
• How can we keep the program organized and easy to understand what is going

on?
• How can we test each step along the way?
• How can we use code efficiently for duplicate sensors?
• How will we send data to and receive data from the sensor system?

• Transmission of Data
• What amount of CO2 should be used as a threshold?
• How will we send data to and receive data from the sensors?

15

Discover
• I have a challenge. How do I approach it?

Interpret
• To begin solving this challenge, you will need to find answers

to the criteria, constraints and barriers you listed.

• Brainstorm resources you could use to get more facts about
your challenge. You could use books, experts or trustworthy
sources on the Internet.

• Access the sources you listed. Write down the key ideas that
you learned. Think about how those ideas should affect your
solution.

16

Interpret
• I learned something. How do I interpret it?

NASA Resources for This Activity
Sample of NASA Resources

• https://www.nasa.gov/specials/artemis/
• https://www.nasa.gov/suitup
• https://www.nasa.gov/feature/spacewalk-spacesuit-basics
• https://www.nasa.gov/content/life-support-systems

17

https://www.nasa.gov/specials/artemis/
https://www.nasa.gov/feature/spacewalk-spacesuit-basics
https://www.nasa.gov/feature/spacewalk-spacesuit-basics
https://www.nasa.gov/content/life-support-systems

NASA Resources for This Activity
• A sheet of NASA website resources has been provided for you.

• Review these resources and determine which will be most helpful
for your students. Things to consider:

• What problems are your students trying to solve? Do the sources help
answer their questions?

• Are they at an appropriate reading level for your students? Will you have
to help them through?

• NASA has a lot of information, but also consider additional
resources from other reputable sources

18

Ideate
• Use the things you learned to create a sketch of your solution.

Label all major parts.

• Describe how it works.

19

Ideate
• I see an opportunity. What do I create?

Experiment
• Build your solution for the first time. This model is called a

prototype.

• Think about what materials you need to make each part of
your model.

• Take a picture of your model. Add it to your journal.

20

Experiment
• I have an Idea. How do I build it?

Experiment
Resources can come from a variety of places.

Six Suggested Starter Categories for an
Elementary Makerspace (Fontichiaro, 2016)

21

Experiment
• I have an Idea. How do I build it?

Craft Engineering Code Circuits (&
Computing)

Digital Design Needle &
Thread

• Origami
• Modeling Clay
• Wikki Stix
• Scrapbooking
• Junk Box

creations
• Recycled

Materials
• Challenges

• Tinkertoys
• LEGO
• K’Nex
• BuildWithChrome.com

Robots:
• Dash & Dot
• Sphero
• Ozobot
Animation:
• Scratch
• Blockly
• Hour of Code
Apps:
• Hopscotch
• Scratch Jr.
• Daisy the

Dinosaur

• Arduino
• Raspberry Pi
• Lego Mindstorms
• Snap Circuits
• Squishy Circuits
• littleBits
• K’Nex with

electrical
components

• Circuit blocks

• Canva.com
• Picmonkey.com
• Makebeliefcomix.com
• Pixton.com
• 3-D printers
• Laser cutters

• Hand sewing
• Machine sewing
• Knitting
• Crochet
• Fashion Hacking
• Embroidery
• Cross Stitch

Building a Sensing System
• For the purposes of this project, we will build and program a

sensor array from a starter kit. We start with a single sensor.
• Students are encouraged to:

• Expand the build - add more controls or indicators
• Modify it – use a different programming sequence
• Customize it – use a different system altogether!

• Since this is a making activity, you should feel open to make
changes based on what works for you.

22

Humans and Robots - Not so Different

23

Step 1: Brain directs
eye to open and look

towards flashlight.

Step 2: Flashlight shines
concentrated light into eye.

Step 3: Eye passes data
to brain. Brain responds

by signaling pupil to
contract.

Humans and Robots - Not so Different

24

Step 1: Central Processing
Unit (CPU) on Arduino
directs light sensor to

accept data.

Step 2: sensor data passes
through port on Arduino

Step 3: Port passes data
to CPU for analysis. CPU

responds with further
instructions.

Human
• Blood vessels:

• Arteries take blood to cells

• Veins return blood to source

• Nerves
• Motor nerves send command

signals from the brain to the body.
• Sensory nerves take data from the

body to the brain

Robot
• Power Wires:

• Connected to 5V, give electricity from
the source

• Connected to GND, take electricity
back to the source

• Signal Wires
• Connected to Digital terminals, give

start/stop commands to various parts
of the robot

• Connected to Analog terminals, take
ranged data from sensors

25

Humans and Robots - Not so Different

Building Circuits With Breadboards
A breadboard is a convenient way to connect everything.

You can’t see them, but there are lots of wires inside it
26

Building Circuits With Breadboards
The two top and two bottom rows are connected across the board.

All of the numbered channels are connected a-e and f-j with a gap
in the middle. This gap can be bridged with compatible components.

27

Step 1: Connect 5V and GND
These 5-volt (5V) and Ground (GND) terminals are for things
that are always powered (like the Bluetooth radio).

28

Step 2: Connect a Light Emitting
Diode (LED) with Resistor

An LED is an easy way to test if your circuit is working. These
LEDs come with a built-in resistor to prevent it from
overheating.

29

Step 2: Connect a Light Emitting
Diode (LED) with Resistor

An LED is an easy way to test if your circuit is working. These
LEDs come with a built-in resistor to prevent it from
overheating.

30

Step 3: Move the LED
to Control the Light

Now we will move the light to the other side of the board. We
will use pin #8 today, but any pin 2-13 could be used.

31

Step 3: Move the LED
to Control the Light

Rather than be “always on”, this will allow us to control the light
with a program we will install on the Arduino.

32

Step 4: Add Bluetooth Transmitter

• We chose this module because it has a ready-made
app for both Android and iOS and doesn’t require
resistors with an Arduino.

• There is a small physical switch on the module. Set
it to Universal Asynchronous Receiver/ Transmitter
(UART).

• This module has several pins. The ones we will use
are:
• Voltage In (VIN) – Powers the radio
• Ground () – Powers the radio
• Receive In (RXI) – Gets data from robot
• Transmit Out (TXO) – Sends data to robot
• Clear-to-Send (CTS) – Allows radio to control the robot

33

Step 4: Add Bluetooth Transmitter

The pins on the Bluetooth radio are designed to fit right into the
breadboard. Connect the power and signal wires. Be sure to
connect “Transmit” on the Arduino to “Receive” on the Bluetooth
and vice versa.

34

Step 5: Add the Light Sensor
• We chose this sample sensor because it is an

easy to program and calibrate sensor.

• It has only 3 pins:
• 5V – Power in
• GND – Power out
• Output – Analog signal out

• As the ambient light changes around the sensor,
it sends a different amount of voltage out of the
output pin. We can convert this voltage to a
percent of intensity value.

35

Step 5: Add the Light Sensor
The sensor has a ribbon that can be connected to the
breadboard. Connect the power wires the same as before.
Connect the signal wire to pin A0.

36

Step 6: Add a Traffic Light

• Add a traffic light to the breadboard.

• This part is just 3 LEDs wired together with a
single common GND pin.

• R = Red
• Y = Yellow
• G = Green

37

Step 6: Add a Traffic Light

Connect the Red, Yellow, Green pins using a four-wire ribbon to
D2, D3, and D4 respectively. Use the fourth wire to connect the
GND pin to the GND on the breadboard.

38

Complete Wiring Diagram

39

Programming the Sensor
• A program will follow the instructions it has been given.

• It does exactly what it has been instructed to do – no more, no
less – even if those instructions are destructive to the system.

40

Programming the Sensor

Human Computer

41

Programming the Sensor:
Blink Codes

It can be hard to tell what is going on inside the Arduino.
Blinking an LED can be a simple way to know what is going on.

For example:
• On for a second, off for a second = “Everything is fine.”
• Two quick blinks = “Something important just happened.”
• Three long blinks = “Something went wrong.”

42

Programming the Sensor
Block code helps to visualize the sequence of code more easily than text.

Block programming can’t do as much, but what it can do is easier!
43

Step 1: Install Coding Software
If you have not yet done so:

1. Download and install the Arduino software:
https://www.arduino.cc/en/Main/Software

2. Download the latest version of Ardublock-all-master from here:
https://github.com/taweili/ardublock/releases

3. Follow the Ardublock installation guide here:
http://blog.ardublock.com/engetting-started-
ardublockzhardublock/

44

https://www.arduino.cc/en/Main/Software
https://github.com/taweili/ardublock/releases
http://blog.ardublock.com/engetting-started-ardublockzhardublock/

The Ardublock Interface

45

The Ardublock Interface:
Block Categories

Control - What to do, how often, and in
what order
Pins – Working with digital output or
analog inputs
Tests - Limits actions to certain
conditions
Math Operators - Various arithmetic/
trigonometric calculations
Variables/Constants - Storing,
remembering, or changing values
Generic Hardware - Motors and other
common hardware

– Transmitting and
receiving signals
Custom blocks to operate specific
hardware from common suppliers.

46

The Ardublock Interface:
Finding Blocks

47

If you are looking for a yellow block, it is most likely in
the yellow Control category. Likewise cyan blocks
are most likely to be in the cyan Pins category

Note that not every block in the Control category is
yellow.

Blocks with “sockets” on the right side will need
another block that has a matching “plug” shape on
the left side.

Some sockets can take more than one shape of plug.
Experiment!

Step 2: Start Building the Program

48

• By default the loop block is on every new
Ardublock sketch.

• Drag off the “loop” block, then go to the
Control menu, then drag the “program” block
onto the sketch.

• The program block is the umbrella into which
everything goes.
• “Setup” happens once at the beginning
• “Loop” happens over and over until the

program is stopped.

• Blocks are processed top to bottom.

Step 3: The System Blinks Alive

• The “Toggle digital pin” block is found
in the Pins category. It toggles a
Digital Output from HIGH to LOW
and vice-versa. Our LED was
connected to pin D8.

• Normally, the loop runs as fast as the
Arduino can manage. The “delay
MILLIS” block is found in the Control
category. It tells the program to wait for
a set amount of time before doing
anything else. Set it to 1000.

49

Step 3: The System Blinks Alive

• Connect your Arduino to the computer via USB to
upload your program. The computer can also power the
Arduino through USB but not enough for motors or
other higher-power hardware.

• The Arduino uses the same data connections to
communicate with the computer via USB and anything
connected via TX/RX. Temporarily disconnect the
TX/RX wires when uploading code to the Arduino.

• Always reboot the Arduino with the RESET button after
uploading a new program.

More info at: https://www.arduino.cc/en/Guide/ArduinoUno
50

https://www.arduino.cc/en/Guide/ArduinoUno

Step 3: The System Blinks Alive
Programming your Arduino

• When you “Upload to Arduino,” Ardublock will convert your block code to
text code. Then, Arduino will attempt the upload.

• Status of the upload is listed at the bottom of the Arduino IDE window.
• Your LED should be slowly blinking now. If so, congratulations!

51

Create a new
program.

Save this
program.

(Save often!)

Open a
saved

program

Send this
program to
the Arduino

Watch
serial.print() over
USB instead of

Bluetooth

Status
Window

Step 4: Programming the Sensor
• Many sensors use semi-conductive materials to detect changes in

properties around them. The way current that passes through them
changes when temperature, light, or humidity changes around the
sensor.

• The PT550 photoreceptor produces a number from
0 to 1023 based on the amount of light and the
maximum voltage available to it.

• We’ll build code to report out a percent of intensity from 0% to 100%.

52

Step 4: Programming the Sensor

• Add a “serial print” from the
category.

• “Message” shows what string of
characters are going to be sent (for
now, through the USB cable).

• Pull off the extra “message” block.
• “New line” is asking if you want the

message to end by moving to the
next line.

53

Step 4: Programming the Sensor

• Add a “glue” block from the
category.

• “Glue” allows you to send a number
value as a series of characters in a
message.

54

Step 4: Programming the Sensor

• Add a calculation block from the
Math Operators category.

• If necessary, change the operation to
“÷”.

• Add a decimal value (starts as
3.1415927) from the Variables/
Constants category.

• Change the value to 10.23. This is
the same as dividing by 1023 and
multiplying by 100 to get a percent.

55

Step 4: Programming the Sensor

• Find the “Analog Ambient Light
Sensor” in the DFRobot category.
Connect it to the ÷ operation.

• Remember that we connected the
sensor to analog pin# 0. Change the
value if necessary.

• The program will now take the value
from the sensor, and turn it into a
percent.

• No light = 0%
• Full light = 100%

56

Step 4: Programming the Sensor
Real-time Output with Serial Monitor

• Upload the latest program to your Arduino then click here to open
the Serial Monitor. After a moment, numbers should start
appearing. Use a light to test your sensor.

57

Step 5: Providing Visual Feedback

• We want the system to not just provide
numerical data, but also a warning
indicator.

• We’ll test that out with the traffic light.

58

Step 5: Providing Visual Feedback

Since we will be using the sensor
value for two things now (the
displayed value and determining the
traffic light), we’ll store the value as
a variable.

• Add a “set decimal variable” block
from the Variables/ Constants
category.

• Name it something meaningful like
“LightValue”

59

Step 5: Providing Visual Feedback

• Pull off the default number value.

• Grab the blocks that take the light
sensor data and convert it to a
percent, and move them to the
variable value.
(Now we can use the same LightValue
variable any time we need it!)

• Right click the LightValue block,
clone the variable, and replace it
on the “serial print” command.

60

Step 5: Providing Visual Feedback

Next we will use an “if/else”
statement to switch the traffic light
based on LightValue.
• Add an if/else block from the

Control category.

• Next, we will compare the
LightValue and either shine red or
green based on if it is above or
below a given value.

• Add a “<” block from the Tests
category.

61

Step 5: Providing Visual Feedback

• Clone the LightValue variable
again, and put in in the first test
position.

• For now, get an integer constant
from the Variables/ Constants
category and put it in the second
test position. Change the value to
50.

• If LightValue is below 50, it will follow
commands in the “then” area.

• If LightValue is above 50, it will
follow commands in the “else” area.

62

Step 5: Providing Visual Feedback

• Add two “set digital output” blocks
from the Pins category to the “then”
area.

• The first block will be for pin D4. We will
set it to “High”.

• The second pin will be for D2. We will
set it to “Low”

• Copy the two “set digital output”
blocks from the “then” area into the
“else” area.

• Switch the pin outputs for the two pins.

• Save and upload the program to the
Arduino.

63

• Now your system will signal any
LightValue under 50 as a green
light and any LightValue 50 or
over as a red light.

• Test it out with a light source.

64

Step 5: Providing Visual Feedback

Step 6: Adding the Bluetooth Radio
Install the Bluefruit Connect App

The main features you’ll want to explore are UART (which works
like the Serial Monitor in the Arduino program) and the Serial Plotter
(which graphs data received from the Arduino, if formatted properly)

https://learn.adafruit.com/bluefruit-le-connect
65

https://learn.adafruit.com/bluefruit-le-connect

Step 6: Adding the Bluetooth Radio

• Now you can receive the output from the
light sensor straight on your phone!

• What if you wanted to change the value
for making the traffic light switch?

66

Step 6: Adding the Bluetooth Radio

Now we’ll add the code to get input from the Bluetooth radio.
• Add a “while” block from the Control category. Use a “serial data available”

from the category. This will test if there is data coming from
the Bluetooth radio.

• Add a “set integer variable” from the Variables/Constants category. Name the
variable something helpful like “BlueToothInput” and the value must be set to
the “serial parseInt” block.

67

Step 6: Adding the Bluetooth Radio

• Computers commonly use ASCII
code to represent letters,
numbers and symbols.

• The “serial read” block in
Ardublock would see an input of
“28” as “50” then “56” based on
the decimal ASCII codes for 2
and 8, respectively.

• We need the “serial parseInt”
block to read an input of “28” as
an actual “28”.

68

Step 6: Adding the Bluetooth Radio

• By default, the serial input from your
device will send a timeout “null” code
after your last input.

• The computer will translate this to a “0”,
so we need to account for that in the
program.

69

Step 6: Adding the Bluetooth Radio

We will start with a default Threshold of 50.
Then, we test if BlueToothInput > 0. If it is,
that will become our new Threshold.
Otherwise, it will be ignored.

• Add a “set integer variable” from the
Variables/ Constants category into the
“setup” area at the top of the program.

• Name this variable “Threshold.”

• Assign it a value of 50. After the program
begins, we will allow that value to
change.

70

Step 6: Adding the Bluetooth Radio

We will start with a default Threshold of 50.
Then we test if BlueToothInput > 0. If it is,
that will become our new Threshold.
Otherwise, it will be ignored.

• Add an “if” block from the Control
category.

• Add a “>” block from the Tests category.

• Clone the BlueToothInput variable on the
left side of the test.

• Add a “0” constant on the right side for
the test.

71

Step 6: Adding the Bluetooth Radio

We will start with a default Threshold of 50.
Then we test if BlueToothInput > 0. If it is,
that will become our new Threshold.
Otherwise, it will be ignored.

• Add a “set integer variable” from the
Variables/Constants category into the
“then” area.

• The new variable will be called
“Threshold”. The value will be a cloned
“BlueToothInput”.

72

Step 6: Adding the Bluetooth Radio

It’s helpful to get a message that
the input was received. Let’s use
our green LED to blink twice quickly
when it gets new data.
• Right click the “Toggle Digital Pin”

command to clone it. It will clone
the delay command as well.

• Change the delay from 1000
milliseconds to 250.

• Clone it 3 more times. Move them
all into the “while” block.

73

Step 6: Adding the Bluetooth Radio

Finally, we’ll use the newly stored
“Threshold” variable to change
the traffic light threshold.

• Right click the “Threshold”
variable to clone it.

• Replace the 50 integer with our
variable.

74

Step 6: Adding the Bluetooth Radio

Congratulations! Your light
sensor program is complete.

75

Experiment
• Now that you have the basic sensor assembled and

programmed, it will be up to the students to determine how to
use multiple LEDs to show different sensor values.

• How can the light sensor system be converted to CO2 sensors
instead?

• Which lights on the traffic light will be used?
• What values could be considered too high or too low?
• What will the data output look like?

76

Experiment
• I have an Idea. How do I build it?

Building the CO2 Test Apparatus

77

Building the CO2 Test Apparatus

1. Connect CO2 Tubing.
Distributor

|
1 ft. Tube

|
Y ball Valve
/ \
2 ft. Tubes
| |

Helmet Straws
78

Building the CO2 Test Apparatus

2. Use electrical tape to attach a CO2 sensor to the bottom of
each helmet “lid”. Slide the wires through the straw hole.

79

Building the CO2 Test Apparatus

3. Reinsert straws back into helmet. Use care sliding along
the wires.

80

Building the CO2 Test Apparatus

4. You can use a regular box to hold up the helmets and
conceal which ones are getting CO2.

81

Building the CO2 Test Apparatus

5. Poke holes through the box for the wires of each sensor to
connect to the microcomputer.

82

Building the CO2 Test Apparatus

6. Use the Y ball valve, to open
or close the flow to each
helmet.

• Knob facing the same way as
the tube = open

• Knob facing across the tube =
closed

83

Building the CO2 Test Apparatus

7. Make sure the distributor is
completely closed. Add a CO2
cartridge to the distributor. Screw
until the cartridge is tight.

This will poke a hole in the cartridge
seal. Once the cartridge is started, it
cannot be resealed.

84

Building the CO2 Test Apparatus

8. When the system has been
connected to the helmets and is
up and running, slowly turn the
distributor knob to “increase”. A
little flow should cause a
well-calibrated system to spike
very quickly.

85

Evolve
• Look at your prototype, both the hardware and the code. Think

about how it will evolve to operate CO2 sensors instead.
• What parts you want to keep?
• What parts can be improved?
• Should anything be added?
• Should anything be removed?

• Discuss your plan with other creators. What do they think
could be improved?

86

Evolve
• I tried something. How do I evolve it?

Evolve
• Make changes and take pictures of each finished model.

These are called iterations.

• Your pictures should show how your model improved from the
first to the last iteration. You will use these pictures on your
presentation board

87

Evolve
• I tried something. How do I evolve it?

Step 7: Add a Carbon Dioxide Sensor

• It has 4 pins (we will use 3):
• AO – Analog signal output
• DO – Digital signal output
• GND – Power out
• VCC – Power in

We will only use the Analog signal output for our
system

• As the air quality around the sensor changes, it
sends a different amount of voltage out of the
output pin. We can convert this voltage to a
value of parts per million.

88

Step 7: Add a Carbon Dioxide Sensor

Remove the light sensor and its ribbon. Replace it with an MQ-135
sensor and a matching color ribbon. Change the signal wire to pin
A1.

89

Step 8: Add a Second Carbon
Dioxide Sensor

Connect a second carbon dioxide sensor to the 5V and
connections on the breadboard. Connect the second signal wire
to pin A2.

90

Step 9: Add a Second Traffic Light

Connect the Red, Yellow, Green pins using a four-wire ribbon to D5,
D6, and D7 respectively. Use the fourth wire to connect the GND
pin to the GND on the breadboard.

91

Complete Wiring Diagram

92

Using Computational Thinking to
Enhance the System

Students can use computational thinking skills to expand the original light
sensor system to modify the system for multiple CO2 sensors.

• Decomposition - Breaking problems down into smaller parts

• Pattern recognition - Iteration, symbolic representation, and logical
operations

• Abstraction - Logically organizing and analyzing data, removing
unimportant details to make problems easier

• Algorithm design – determining the appropriate steps to create a set of
instructions that solves similar problems the same way.

93

Decomposition
What are the major steps for the light sensor problem?

1. Initiate the system
2. Set up the sensor(s)
3. Determine the threshold for alert
4. Collect data
5. Convert data to meaningful measurements
6. Transmit the measurements
7. Send alerts as necessary
8. Repeat steps 3-7

94

Pattern Recognition
To get sensor data:

95

Light Sensor

Send 5V to the sensor.

Connect to GND to complete
the circuit.

Detect how much voltage is
returning via the Analog pin.

Convert that value to an
understandable number –

Intensity (%).

CO2 Sensor

Send 5V to the sensor.

Connect to GND to complete
the circuit.

Detect how much voltage is
returning via the Analog pin.

Convert that value to an
understandable number –
Parts Per Million (PPM).

Abstraction
• There are some rather complicated mathematics, such as logarithmic

functions, to get the CO2 sensor data to make sense as a PPM readout.

• These are beyond the scope of typical 5th-9th grade students. So we will
simplify the process down and provide code that will do the calculations and
return a relatively accurate value.

96

Do not use these systems to measure
air quality for human safety!

Algorithm Design
• Next, we will return to our block

program and modify it to acquire
CO2 data instead.

• Until this point, every command
was in a single sequential line.
This was ok for a simple program,
but as we get more complex, it will
get more confusing.

• We need a way to break down our
algorithm. We need subroutines!

97

Step 7: Testing the Traffic Lights

We’ll start with a simple one. Let’s
test all the bulbs by turning them all
on and off. This will also tell us that
the program has been reset.

• Add an invoke “Subroutine” block
from the Control category into the
“setup” area of the main program.

• Rename it “TestPins”
98

Step 7: Testing the Traffic Lights

Now, we define what the
subroutine does.

• Add a define “Subroutine” block
from the Control category away
from your main program.

• Rename it “TestPins” exactly like
the other block.

99

Step 7: Testing the Traffic Lights

Now, we define what the
subroutine does.
• Add a “set digital output” block

from the Pins category and set
the D2 pin to “HIGH”.

• Clone this block for each pin,
D2-D7.

100

Step 7: Testing the Traffic Lights

Now, we define what the
subroutine does.

• Add a “delay MILLIS” block from
the Control category. Set it to
2000.

• Clone the “set digital output”
blocks for pins, D2-D7. Set them
all to “LOW” for this copy.

101

Step 8: Setting the Default Variables

Next, let’s make a subroutine for
setting up several necessary
variables.

• Add an invoke “Subroutine”
block from the Control category
into the “setup” area of the main
program.

• Rename it “SetVars”

102

Step 8: Setting the Default Variables

Now, define what the subroutine
does.

• Add a define “Subroutine” block
from the Control category away
from your main program.

• Rename it “SetVars” exactly like
the other block.

• Move the “set integer variable”
block for the “Threshold” into this
subroutine.

103

Step 8: Setting the Default Variables

Now, define what the subroutine does.

• Add 5 “set decimal number variable”
blocks from the Variables/ Constants
category.

• Name them the following and assign
them the proper values:

• AvgVRL = 0
• VoltConst = 5.0
• LoadResist = 30000
• VoltLoadResist = 0
• SensorInput = 0

104

Step 9: Getting Sensor Data
• When the system boots up, we need a baseline sensor reading in

ambient air to compare from.

• We’re going to create a subroutine called “GetSensor1”

• This routine is going to get the value from the
Analog Output pin of the CO2 sensor (between 0
and 1023) and compare it to the voltage going
into the sensor.

• Single data reads are subject to data fluctuation, so we will take 10
readings over the course of a second and average them out.

105

Step 9: Getting Sensor Data

• Create a new subroutine called
GetSensor1

• Add a “repeat” block from the
Control category. Have it repeat
10 times.

106

Step 9: Getting Sensor Data

• Add a “set decimal number variable” block for the
“VoltLoadResist” variable.

• Use operator blocks from the Math Operators category.

Volt Load Resist = VoltConst × (Data from pin A1 ÷ 1023)

107

Step 9: Getting Sensor Data

• Take the “VoltLoadResist” and add it to the “AvgVRL” each
time we take the data.

(new)AvgVRL = (old)AvgVRL + VoltLoadResist

• Add a 100 millisecond delay to finish the “repeat” block.

108

Step 9: Getting Sensor Data

• Calculate the average Volt Resistance Load
(new)AvgVRL = (old)AvgVRL ÷ 10

• Next, we calculate the Resistance of the Sensor, which will
lead us to getting PPM.

ResistSensor = ((VoltConst ÷ AvgVRL) – 1) × LoadResist

109

Step 9: Getting Sensor Data

• A quick housekeeping step, we need to reset the AvgVRL
variable back to 0 to be ready for the next sensor data pull.

110

Step 10: Completing the Program
Setup
• Back in the “setup” area of the

main program, evoke the
GetSensor1 subroutine.

• Set a decimal number variable
named “ResistOrigin1” and set it
equal to the current value of
“ResistSensor” that was just
calculated from the GetSensor1
subroutine.

111

Step 10: Completing the Program
Setup
This is where pattern recognition and algorithmic
thinking come in handy.

• We need to do all the same work for the other
CO2 sensor.

• Rather than start over again from scratch. We
can copy the whole subroutine!

• Clone both the full “GetSensor1” subroutine of
commands as well as the call for it in the setup
area.

• Also clone the set decimal variable command
that follows and change its name to
“ResistOrigin2”

112

Step 10: Completing the Program
Setup

This is where pattern recognition and algorithmic thinking come in
handy.
• Change the name to “GetSensor2” in both, and remember to

change the sensor input from Pin A2

113

Step 11: Calculating PPM
• Create a new subroutine called “GetPPM1”

• Calculate the ratio of the current Resistance of Sensor 1 compared to the
Original Resistance of the same sensor.

RSRO1 = ResistSensor ÷ ResistOrigin1

• To get PPM1, use the RSRO1 variable in this exponential equation:
PPM1 = (116.6 x RSRO1-2.769) x 4)

114

Step 11: Calculating PPM
• Again, we can simply clone the subroutine and call it “GetPPM2”.

• Change the first variable to RSRO2. Calculate the ratio of the current
Resistance of Sensor 2 compared to the Original Resistance of the same
sensor.

RSRO2 = ResistSensor ÷ ResistOrigin2

• To get PPM2, change to the RSRO2 variable in the same exponential equation:
PPM2 = (116.6 x RSRO2-2.769) x 4)

115

Step 11: Calculating PPM
Finish the heavy math portion of the main
program by calling the subroutines you created:
• GetSensor1
• GetPPM1
• GetSensor2
• GetPPM2

Use them to replace the command where you
pulled data from the Light Sensor.

(If you would like to keep the Light Sensor
programming, just pull it off the main program.)

116

Step 12: Transmitting Data
Much like we did with the Light Sensor, the
CO2 program will need to report out the
data received.

• Replace the “serial print” command
directly following “GetPPM2”

• Change the message to identify
“Sensor 1: ”

• Then glue the PPM1 variable to the
message.

(Again, if you would like to keep the Light
Sensor “serial print” command, just pull it
off the main program.)

117

Step 12: Transmitting Data
Much like we did with the Light Sensor, the
CO2 program will need to report out the
data received.

• Add a second “serial print” command
under the one you just placed.

• Change the message to identify
“Sensor 2: ”

• Then glue the PPM2 variable to the
message.

Now the serial monitor will print out the
values of both sensors every time the
program takes a set of measurements.

118

Step 12: Transmitting Data

While we are working on sending
and receiving data, let’s also work
on sending the Threshold.

• Pull the commands out of the
while block and place them into
a subroutine called
“SetThreshold”.

119

Step 12: Transmitting Data
Since the sensors can only reasonably
measure up to 3000 PPM, we need to
add another test.

• Add an “and” block from the Tests
category.

• Put the “BlueToothInput > 0” test in the
“and” along with a
“BlueToothInput <=3000” test.

• You can also add a “serial print”
command to acknowledge the new
value.

120

Step 12: Transmitting Data

We will wrap up the program by
finishing up the traffic light
indicators.

• Pull the if/else that tests the
Threshold and add it to a blank
subroutine called “Traffic1”.

• Replace the LightValue variable
with a cloned PPM1.

121

Step 12: Transmitting Data
• Change the test to calculate a value

that is 80% percent of the Threshold
to serve as a warning.

• Add an additional set digital output
command for the yellow light pin.

• Change the pins to the proper traffic
light:

• Green = D7
• Yellow = D6
• Red = D5

• Add a second nested if/else block to
test the full Threshold.

122

Step 12: Transmitting Data
• Now, if the PPM value calculated

from Sensor 1 is less than 80% of
the Threshold,
Traffic Light 1 = green

• Otherwise, if the PPM value is less
than the full Threshold,
Traffic Light 1 = yellow

• Otherwise,
Traffic Light 1 = red

123

Step 12: Transmitting Data

• Clone the subroutine and name
it “Traffic2”.

• Replace the test variable to
“PPM2”.

• Change the pins to Traffic Light 2
• Green = D4
• Yellow = D3
• Red = D2

124

Step 12: Transmitting Data
• To finish the program, be sure to

evoke the “Traffic1” and “Traffic2”
subroutines.

• Also, remove the final delay
milliseconds block. It already takes 2
seconds to take the CO2 data.

Congratulations! You have
completed the full program.

Save the program. Upload to the
Arduino, and connect the CO2 sensors.

125

The Completed Program

126

Share Your Story
• Create a presentation board to present your project.

• Be sure to include:
• Your original problem
• What you learned from research
• Your brainstorm ideas
• Your first sketch
• Photos of your prototype
• Notes from what you improved
• Photos of all iterations
• Your final solution model

• Practice presenting your project to others. Be ready to answer
questions based on your experience.

127

Sample Making Project Rubric
UNSATISFACTORY COMPETENT PROFICIENT DISTINGUISHED

TECHNIQUE/
CONCEPTS

Work lacks understanding of
concepts, materials and skills.

Work shows some understanding
of concepts, materials and skills.

Work reflects understanding of concepts
and materials, as well as use of skills
discussed in class.

Work shows a mastery of skills and reflects a
deep understanding of concepts and materials.

HABITS OF MIND

Student passively attempts to fulfill
assignment without much
thought or exploration of
possibilities. Student refuses to
explore more than one idea.

Developing exploration of possible
solutions and innovative thinking.
Student has more than one idea but
does not pursue.

Student explores multiple solutions and
innovative thinking develops and
expands during project.

Consistently displays willingness to try
multiple solutions and ask thought provoking
questions, leading to deeper, more
distinctive results. Student fully explores
multiple ideas and iterations.

REFLECTION &
UNDERSTANDING

Student shows little awareness of
their process. The work does
not demonstrate understanding of
content.

Student demonstrates some self-
awareness. Work shows some
understanding of content, but
student cannot justify all of their
decisions.

Student shows self-awareness. Work
demonstrates understanding of
content and most decisions are
conscious and justified.

Work reflects a deep understanding of the
complexities of the content. Every decision is
purposeful and thoughtful.

CRAFTSMANSHIP
Work is messy and craftsmanship
detracts from overall
presentation.

Work is somewhat messy and
craftsmanship detracts somewhat
from overall presentation.

Work is neat and craftsmanship is solid. Work is impeccable and shows extreme care
and thoughtfulness in its craftsmanship.

RESPONSIBILITY

Frequent illegal absences, tardiness,
disrespect for classmates and
teacher. Disregard for materials and
work such as refusal to clean up or
throwing out work.

Student is sometimes illegally
absent, tardy, or disrespectful.
Must be persuaded to assist in
clean up and to take work home.

Student is most often present, on time,
and respectful. Usually participates
willingly in clean up and takes pride in
work.

Student is consistently present, punctual, and
respectful of classmates and teacher. Self-
directed clean up and ownership of work.

EFFORT

Work is not completed in a
satisfactory manner. Student
shows minimal effort. Student
does not use class time
effectively.

Work complete but it lacks finishing
touches or can be improved with a
little effort. Student does just enough
to meet requirements.

Completed work in an above average
manner, yet more could have been
done. Student needs to go one step
further to achieve excellence.

Completed work with excellence and
exceeded teacher expectations. Student
exhibited exemplary commitment to the
project.

128Created by Lisa Yokana, https://www.edutopia.org/blog/creating-authentic-maker-education-rubric-lisa-yokana

https://www.edutopia.org/blog/creating-authentic-maker-education-rubric-lisa-yokana

Thank You for Participating!

129NP-2020-068-GRC

	Save Your Breath
	Save Your Breath
	Share Your NASA Experience
	Save Your Breath
	The Student Journal
	Working in Teams
	Design Your Mission Patch
	NASA’s Past, Present �and Future at the Moon
	Developing New Spacesuits
	The Design Thinking Process
	Discover
	Discover
	Discover
	Discover
	Discover
	Interpret
	NASA Resources for This Activity
	NASA Resources for This Activity
	Ideate
	Experiment
	Experiment
	Building a Sensing System
	Humans and Robots - Not so Different
	Humans and Robots - Not so Different
	Humans and Robots - Not so Different
	Building Circuits With Breadboards
	Building Circuits With Breadboards
	Step 1: Connect 5V and GND
	Step 2: Connect a Light Emitting Diode (LED) with Resistor
	Step 2: Connect a Light Emitting Diode (LED) with Resistor
	Step 3: Move the LED �to Control the Light
	Step 3: Move the LED �to Control the Light
	Step 4: Add Bluetooth Transmitter
	Step 4: Add Bluetooth Transmitter
	Step 5: Add the Light Sensor
	Step 5: Add the Light Sensor
	Step 6: Add a Traffic Light
	Step 6: Add a Traffic Light
	Complete Wiring Diagram
	Programming the Sensor
	Programming the Sensor
	Programming the Sensor:�Blink Codes
	Programming the Sensor
	Step 1: Install Coding Software
	The Ardublock Interface
	The Ardublock Interface:�Block Categories
	The Ardublock Interface:�Finding Blocks
	Step 2: Start Building the Program
	Step 3: The System Blinks Alive
	Step 3: The System Blinks Alive
	Step 3: The System Blinks Alive�Programming your Arduino
	Step 4: Programming the Sensor
	Step 4: Programming the Sensor
	Step 4: Programming the Sensor
	Step 4: Programming the Sensor
	Step 4: Programming the Sensor
	Step 4: Programming the Sensor�Real-time Output with Serial Monitor
	Step 5: Providing Visual Feedback
	Step 5: Providing Visual Feedback
	Step 5: Providing Visual Feedback
	Step 5: Providing Visual Feedback
	Step 5: Providing Visual Feedback
	Step 5: Providing Visual Feedback
	Step 5: Providing Visual Feedback
	Step 6: Adding the Bluetooth Radio�Install the Bluefruit Connect App
	Step 6: Adding the Bluetooth Radio
	Step 6: Adding the Bluetooth Radio
	Step 6: Adding the Bluetooth Radio
	Step 6: Adding the Bluetooth Radio
	Step 6: Adding the Bluetooth Radio
	Step 6: Adding the Bluetooth Radio
	Step 6: Adding the Bluetooth Radio
	Step 6: Adding the Bluetooth Radio
	Step 6: Adding the Bluetooth Radio
	Step 6: Adding the Bluetooth Radio
	Experiment
	Building the CO2 Test Apparatus
	Building the CO2 Test Apparatus
	Building the CO2 Test Apparatus
	Building the CO2 Test Apparatus
	Building the CO2 Test Apparatus
	Building the CO2 Test Apparatus
	Building the CO2 Test Apparatus
	Building the CO2 Test Apparatus
	Building the CO2 Test Apparatus
	Evolve
	Evolve
	Step 7: Add a Carbon Dioxide Sensor
	Step 7: Add a Carbon Dioxide Sensor
	Step 8: Add a Second Carbon Dioxide Sensor
	Step 9: Add a Second Traffic Light
	Complete Wiring Diagram
	Using Computational Thinking to Enhance the System
	Decomposition
	Pattern Recognition
	Abstraction
	Algorithm Design
	Step 7: Testing the Traffic Lights
	Step 7: Testing the Traffic Lights
	Step 7: Testing the Traffic Lights
	Step 7: Testing the Traffic Lights
	Step 8: Setting the Default Variables
	Step 8: Setting the Default Variables
	Step 8: Setting the Default Variables
	Step 9: Getting Sensor Data
	Step 9: Getting Sensor Data
	Step 9: Getting Sensor Data
	Step 9: Getting Sensor Data
	Step 9: Getting Sensor Data
	Step 9: Getting Sensor Data
	Step 10: Completing the Program Setup
	Step 10: Completing the Program Setup
	Step 10: Completing the Program Setup
	Step 11: Calculating PPM
	Step 11: Calculating PPM
	Step 11: Calculating PPM
	Step 12: Transmitting Data
	Step 12: Transmitting Data
	Step 12: Transmitting Data
	Step 12: Transmitting Data
	Step 12: Transmitting Data
	Step 12: Transmitting Data
	Step 12: Transmitting Data
	Step 12: Transmitting Data
	Step 12: Transmitting Data
	The Completed Program
	Share Your Story
	Sample Making Project Rubric
	Thank You for Participating!

