NASA S3VI Webinar

5

Brandie Rhodes

April 15, 2019

Y

Collaborators: Dr. Paul Ronney (USC) Dr. Evan Ulrich (Embedded Control Systems, VSD) Dr. John DeSain (Propulsion Sciences, Tech & Lab Ops) **Dr. Brian Brady** (Propulsion Sciences, Tech & Lab Ops) Summer Intern [2] (Propulsion Sciences, Tech & Lab Ops) Dave Hinkley (Small Satellite, xLab) **Andrew Blackney** (Electromechanical Control, VSD) **Dr. Dan Erwin** (USC) **Dr. Mike Gruntman** (USC) Dr. GP Purohit (Propulsion, VSD) Lee Steffeney (Space Materials, Tech & Lab Ops) Hannah Weiher (Control Analysis, VSD) Jessica Byington (Embedded Control Systems, VSD) **Dr. Andrea Hsu-Schouten** (Propulsion Sciences, Tech & Lab Ops) Madison Piechowski (Computer Aided Engineering, Information Systems) **Aerospace Machine Shop**

2015 Small Satellite Market Observations, StratSpace

Most smallsats fly with no propulsion at all

You cannot maintain a set orbit

Limits flexibility and capabilities

You cannot increase altitude or change inclination

If we want to replace large, expensive satellites

We need to develop new propulsion systems

that work on a small scale

Flight Tested Small Satellite Propulsion Systems

	Prop. Type / Manufacturer	Propellant	Thrust	I _{sp}	Satellite
	Cold Gas / SFL	Sulfur hexafluoride	Sulfur hexafluoride 12.5-50 mN		CanX-2 & 5
	Cold Gas / Aerospace Corp	Xenon	100 mN	30 s	MEPSI-3
	Cold Gas / Microspace	Argon	1mN/nozzle	32 s	POPSAT-HIP1
Cold Gas	Cold Gas / TNO	Nitrogen	6 mN	69 s	Delfi-n3xt
	Cold Gas / Marotta	Nitrogen	2.4 N at 154 bar	70 s	NASA ST-5
	Warm Gas / Nanospace	Butane	1mN/nozzle	50-75 s	TW-1
	Warm Gas / SSTL	Butane	100 mN	45 s	SNAP-1
	Warm Gas / Aerospace Corp.	Water	3-5 mN	Not Reported	AeroCube OCSD
Soliu	Solid Motor / Pacific Scientific	Not Reported	>1N	210 s	PacSciSat
Electric Monopropellant	Pulsed Plasma / Busek [4]	PTFE	500 μN 700 s		Falcon-Sat 3
	Ion + Cold Gas / Univ. of Tokyo	Xenon	$300 \ \mu N$	1000 s	PROCYON & HODOYOSHI-4
	Vacuum Arc / GWU	Metal	$1\text{-}20\ \mu\text{N}$	3000 s	BRICSat-P
	FEEP / Enpulsion	Indium	$250 \ \mu N$	4000 s	Not Reported
	Monoprop / ECAPS	LMP-103S	1 N	225 s	SkySat

References on last slide

Hydrogen Peroxide Vapor Thruster

Green propellant

Controllable

low thrust

Low pressure

Low power

Continuous thrust and pulse options

Small overall package

Requirements:

- No phase separation 1.
- Liquid phase at ambient 2. conditions
- 3. Low vapor pressure
- Low health hazard 4.
- Low volatility in storage 5.

Liquid-Phase Propellant H_2O_2 Vapor-Phase **Propellant** $H_{2}O_{2}$ <u>Catalyst</u> Hot Product Gas

Hydrogen Peroxide Vapor Thruster

Controllable low thrust

Green propellant

Low pressure

Low power

Continuous thrust and pulse options

Small overall package

Objectives

- 1. Prove the concept.
- 2. Understand propellant and catalyst behavior.
- 3. Investigate the performance and its application as a small satellite propulsion system.

A AEROSPACE

Introduction to the H₂O₂ Vapor Thruster

Prototype 1 (of 3): Proof of Concept

Introduction to the H₂O₂ Vapor Thruster

Prototype 1: Test Results

Tank Temperature (^oC)

H2O2 Conc.

(by mass)

Test

Introduction to the H₂O₂ Vapor Thruster

Prototype 1: Test Results

H₂O₂ Vapor Mole Fraction > 0.5

Catalyst temperature > 130 °C

Hydrogen Peroxide Vapor Reaction Rates

Hydrogen Peroxide Vapor Diagnostic - Reprise

Reaction Rate Experiment

Hydrogen Peroxide Vapor Diagnostic - Reprise

Hydrogen Peroxide Vapor Reaction Rates

Experiment

80 Percentage Destruction 70 70 70 70 70 70 70 $\ln[[H_2O_2]/[H_2O_2]_0]$ • 2.35 mm 0 3.05 mm 0 • 3.43 mm • 3.76 mm 0 0.02 0.03 0 0.01 Residence Time (s)

Platinum Mesh

Silver Mesh

Platinum on Alumina Spheres

Ô AEROSPACE

Hydrogen Peroxide Vapor Reaction Rates

Model Assumptions

▷ Gas-only

Axisymmetric

AEROSPACE

Prototype 2 (of 3): Focus on Catalyst and Chamber Construction

Catalysts

- ▷ Silver Mesh
- Platinum Mesh
- Platinum on Alumina
 Spheres

Prototype 2: Stainless X Nozzle

60 °C Tank Temperature

	3 Sheets	7 Sheets	14 Sheets	Spheres			
Silver	139 °C	135 °C	98 °C				
Platinum	124 °C	131 °C		114 °C			
70 °C Tank Te	emperature						
Silver	182 °C	181 °C	130 °C				
Platinum	169 °C	176 °C		154 °C			
80 °C Tank Temperature							
Silver	231 °C	236 °C	170 °C				
Platinum	220 °C	224 °C		203 °C			

* \sim = CD = Converging Diverging

50

100

Time (s)

150

AEROSPACE

0

0

Prototype 2: Nozzle Construction

Nor A	Silver: 7 sheets							
	Nozzle	60 °C Tank	70 °C Tank	80 °C Tank				
	Stainless	135 °C	181 °C	236 °C				
	Macor 🔀	174 °C	239 °C	304 °C				

AEROSPACE

Small-Scale Hydrogen Peroxide Vapor Propulsion System:

AEROSPACE

Prototype 3 (of 3): Thrust Measurement

Prototype 3: Thrust Measurement

Prototype 3: Thrust Measurement

0

• 0.8 ml

1 ml

AEROSPACE

Comparison to Theoretical Nozzle

	Stainless Nozzle	Prop.	Tank Temp.	Reynolds Number	<i>ṁ</i> (Ex./Th.)	Thrust (Ex./Th.)	l _{sp} (Ex./Th.)
H.O.	(H_2O_2	60 °C	171	0.77	0.51	0.67
	\asymp	H_2O_2	70 °C	245	0.83	0.53	0.64
	\asymp	H_2O_2	80 °C	344	0.87	0.52	0.60
	\succ	H_2O_2	60 °C	176	0.78	0.70	0.90
	\succ	H_2O_2	70 °C	240 👓	0.83	0.73	0.87
	\succ	H_2O_2	80 °C	343	0.86	0.70	0.82
H ₂ O	\asymp	H ₂ O	30 °C	553	0.97	0.49	0.51
	\asymp	H ₂ O	40 °C	955	0.99	0.51	0.51
	\asymp	H ₂ O	50 °C	1479	1.00	0.52	0.52
				Viscosity "Stickiness"		Re (<i>ṁ</i> Ex./Th.)

Comparison to Theoretical Nozzle

	Stainless Nozzle	Prop.	Tank Temp.	Reynolds Number	<i>ṁ</i> (Ex./Th.)	Thrust (Ex./Th.)	l _{sp} (Ex./Th.)
H ₂ O ₂)(H_2O_2	60 °C	171	0.77	0.51	0.67
	\asymp	H_2O_2	70 °C	245	0.83	0.53	0.64
	\asymp	H_2O_2	80 °C	344	0.87	0.52	0.60
	\succ	H_2O_2	60 °C	176	0.78	0.70	0.90
	\succ	H_2O_2	70 °C	240 👓	0.3300	0.73	0.87
H ₂ O	\succ	H_2O_2	80 °C	343	0.86	0.70	0.82
	X	H ₂ O	60 °C	553	0.97	0.49	0.51
	\asymp	H ₂ O	70 °C	955	0.99	0.51	0.51
	\asymp	H₂O	80 °C	1479	1.00	0.52	0.52
				Viscosity "Stickiness"	>	Thrust a	and I _{sp} ↑ Th.)

Boundary Layer

Mach Number

5

4.5

4 3.5 3 2.5 2 1.5 **Model Conditions:**

80 °C Tank Temperature Flow only Adiabatic, no-slip walls Axisymmetric

1

Next Steps

Further performance improvements to the H_2O_2 vapor thruster design

- a. Thermal isolation
- b. Nozzle design

Flight!

- a. Safety testing
- b. Electronics and control
- c. Final packaging

Thank you for attending!

Questions?

Slide 9 References

Kristina Lemmer. "Propulsion for CubeSats". Acta Astronautica 134 (2017), pp. 231–243.

D. Tate Schappell et al. "Advances in Marotta Electric and Small Satellite Propulsion Fluid Control Activities". *AIAA/ASME/SAE/ASEE Joint Propulsion Conference*. Tucson, 2005.

C. Gibbon, D. and Underwood. "Low cost butane propulsion systems for small spacecraft". *AIAA/USU Conference on Small Satellites*. Logan, Utah, 2001.

Darren Rowen et al. "The NASA Optical Communications and Sensor Demonstration Program: Proximity Operations". *Annual AIAA/USU Conference on Small Satellites*. Logan, Utah, 2018.

Steven Nelson and Peter Current. "Modular Architecture Propulsion System (MAPS)". *AIAA Propulsion and Energy Forum*. Cincinnati, Ohio, 2018.

Haruki Takegahara et al. "Overview of Electric Propulsion Research Activities in Japan". *Joint Conference of 30th International Symposium on Space Technology and Science*. Kobe-Hyogo, 2015.

FEEP First Successful In-Orbit Demonstration of a FEEP Thruster. 2018. URL: https: //www.enpulsion.com/news/17-FEEP-First-Successful-In-Orbit-Demonstration-of-a-FEEP-Thruster.html (visited on 03/15/2019).

