Propagation Controlled Solid Fuel-Oxidant Reactions for the Generation of Harvestable Heat

PI: **Dr. Subith Vasu**, Department of Mechanical and Aerospace Engineering & Florida Space Institute

UNIVER SITY OF CENTRAL FLORIDA

Co-I: Dr. Richard G. Blair, Florida SpaceInstitute

Research Engineer: Dr. Anthony C. Terracciano, Mechanical and Aerospace Engineering

Approach

• Utilize self-propagating solid-solid reactions with high reaction enthalpies.

 $MgB_2 + Li_2O_2$

 \rightarrow MgO + B₂O₃ + 4Li₂O 2.83 kWh/kg

- Structure reaction blends and add diluent to control burn rate target 20 day burn.
- Produce a tortuous route burner to efficiently harvest reaction heat.

Research Objectives Develop slow propagating reactions

• Implement shapes for optimal energy harvesting

• Produce shaped reactant blends

Design Thermal Reactor
Construct and validate reactor

Potential Impacts

•High energy density heat source for short missions 900-3600 We•hr/kg

Increased safety

- Reusable and replenishable design will lower lifetime cost
- Enabling technology for short term missions with high power demands
- Elimination of need for radioisotope source on short missions

