Controllable Combustion of Metal Fuels for Space Power Systems

Evgeny Shafirovich (PI) The University of Texas at El Paso

Vladimir Volpert (Co-I/Institutional PI) Alvin Bayliss (Co-I) Northwestern University

Northwestern

Approach

- Kinetic studies of Li and Mg reactions with O₂, CO₂, and O₂/CO₂ mixtures
- Combustion experiments with Li and Mg fuels in O₂, CO₂, and O₂/CO₂ environments
- **Modeling** of combustion wave propagation over metal fuel at coflow and counterflow feed of oxidizer

Research Objectives

- Innovation: Controllable use of the high energetic potential of metal/perchlorate mixtures in a system with a solid fuel oxygen generator and a metal combustor
 - Objective: Characteristics and mechanisms of combustion wave propagation over Li and Mg fuels in O₂ and CO₂ environments
 - Start TRL: 1-2
 - End TRL: 3

Potential Impact

- Specific energy: by several times higher than for the best batteries
- Optional addition of *in situ* CO₂ further increases specific energy
- High energy density
- Non-toxic, solid components
- Unlimited lifetime

Metal Combustor Coupled with O₂ Generator