Microstructure and defect informed predictions of damage tolerance and durability of materials and structures, including verification and uncertainty quantification

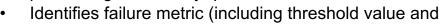
BORE

• Michael D. Sangid

- School of Aeronautics and Astronautics
- Purdue University

Approach

- Holistic framework to predict microstructurally sensitive fatigue crack initiation & propagation
- Applicable to a general class of structural


Manufacturing HEDM Experiment Predict Fatigue Behavior Cycles to Failure Uncertainty Microstructure Crystal Plasticity Model **Experimental Validation: Identifying Failure Metric:** Experiment Model $\Delta \varepsilon = 1.2\%, R_{\varepsilon} = -1$ **Model Predictions** Probability 0.95 0.05 0.05 0.05 ² (a) ▲Experimental data OF CONTRACTOR (%) Predicted life from 9 SEMs ange (Log-normal mean of predicted life Bayesian Network 10^{5} 10^{3} 10^{7} 10^{6} 10^{4} 10^{5} 10 Capturing short fatigu Cycles to failure Cycles to failure crack growth

Research Objective

Overall

Framework:

• Automates creation of crystal plasticity model for deformation, through identifying appropriate constitutive relationships, calibrating the model parameters, and performing uncertainty quantification

σ33 (MPa)

Modeling Deformation

and Environmental

Damage: 对

uncertainty) through Bayesian network, using minimal test data

In situ HEDM experiments provides abundance of validation data at the appropriate length scale for each test

Potential Impact

Next generation fatigue methods reduce the reliance on large-scale coupon testing, saving time and cost

polycrystals, loading scenarios, and environments

- (i) Develops statistically equivalent microstructures with manufacturing defects, (ii) Employs crystal plasticity for combined mechanical and environmental loading, (iii) Identifies fatigue failure through a Bayesian network, (iv) Validates the model via in situ high energy x-ray diffraction microscopy (HEDM) experiments, and (v) Scales to component analysis through hierarchical modeling
- Compared to classical approaches, proposed models account for: (i) manufacturing defects, (ii) microstructure variability, (iii) environmentally damage, and (iv) component features of similar length-scale as the material's microstructure
- High fidelity and precise models will reduce level of mission risk and reliably assess the safety of NASA spacecraft vehicles
- Project starts at TRL 1 and will finish at TRL 3