
Rotating Detonation Combustion for Space Engines using Reduced Toxicity Hypergolic Propellants

Co-PI's: S. Heister and T. Pourpoint, School of Aeronautics and Astronautics **Purdue University**

> PURDUE RSITY

B. Austin, INSpace LLC

3 by demonstrating performance at simulated altitude conditions

High Pressure GOx/RP-2 RDE @ Purdue Zucrow Lab, April 2019

Approach/Statement of Work

- Task 1: Experimental Apparatus and Propellant System Design and **Fabrication**
- **Task 2: Combustion Chemistry and Performance Modeling**
- **Task 3: Sea-level Testing and Design Iterations**
- Task 4: Simulated Altitude Testing with Nozzle
- Task 5: System Performance Study
- Task 7: Reporting

Potential Impact

- Higher specific impulse and lower weight space engines for a variety of NASA missions
 - Orbital Maneuvering/Reaction Control Systems
 - **Planetary Descent/Ascent**
 - Deep Space Exploration
- Reduced operations costs using lower toxicity fuels

Research Objectives

- Optimize injector/chamber configurations for high performance
- Select high performance, low toxicity fuel for optimal detonation behavior
- Quantify system level benefits for a variety of missions
- Advance technology from TRL 1 to TRL