Multiscale Modeling to Enable Physics-Based Simulations of Plume-Surface Interactions with Quantified Uncertainty

Topic 3 – Rocket Plume-Surface Interaction Prediction Advancements

PI: Dr. Jesse Capecelatro **\ssistant Professor Department of Mechanical Engineering** University of Michigan

ENGINEERING UNIVERSITY OF MICHIGAN

Approach

Develop closure for gas-

particle microphysics by

spatially-filtering particleresolved numerical

simulations that capture

all relevant hydrodynamics

Integrate new models into

Eulerian-Lagrangian

simulation framework to

characterize particle-

interactions (erosion,

cratering, ejecta) and

particle and gas-particle

MICHIGAN

1. Microscale Propagate uncentainty Extract microscale physics from 2. Mesoscale particle-resolved simulations Isolate modeling errors in Eulerian— Lagrangian simulations that capture Near-filed (cratering) Far-field (ejecta) 3. Macroscale Integrate models into NASA-centric Eulerian codes

inform new constitutive models used in Eulerian-based codes

- \geq Use hierarchical Bayesian inference to estimate individual variations in modeling parameters at each scale over the span of relevant Mach numbers, ambient pressures, and engine thrusts
- Embed data-driven constitutive models with associated uncertainty into existing NASA codes

Research Objectives

Goal: Establish advanced physics-based models to enable predictive simulations of plume-surface interactions (PSI) with embedded uncertainty under relevant landing conditions

Key Innovations:

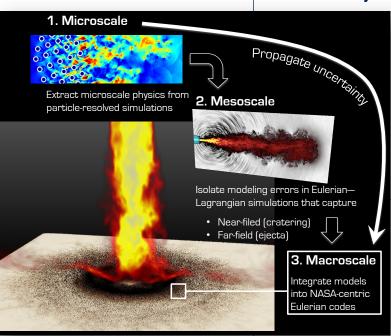
Address long-standing limitations in multiphase flow modeling at \succ finite Mach numbers and Reynolds numbers through a multiscale approach that connects flight-scale (macroscale) Eulerian models to twophase statistics at the microscale

Uncertainty in modeling parameters will be propagated

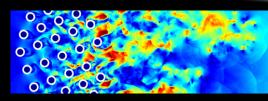
across scales using non-intrusive and scalable Bayesian inference techniques

Comparison to SOA: Constitutive models that capture gas-particle and particle-particle interactions in compressible flows do not exit

Start TRL 2: Numerical framework in place

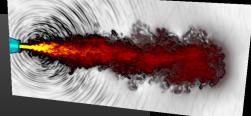

End TRL 3: Models validated against unit test cases and uncertainty quantified

Potential Impact


The success of future manned and robotic space exploration missions will require accurate modeling of rocket exhaust impingement during touchdown to design for risk and develop mitigation strategies

This ECF Award will enable large-scale predictive modeling capabilities to support NASA-centric Eulerian-based codes

- New Mach number-dependent drag coefficients, subgrid-scale \geq turbulence closure, and particle-phase constitutive models
- Quantified uncertainty of the modeling parameters under extreme \geq conditions relevant to landing events



1. Microscale

Extract microscale physics from **2. Mesoscale** particle-resolved simulations

Propagace uncertainty 2. Mesoscale

Isolate modeling errors in Eulerian— Lagrangian simulations that capture

- Near-filed (cratering)
- Far-field (ejecta)

3. Macroscale

Integrate models into NASA-centric Eulerian codes