,,I@,

-2
e ¥

\ oo

T CUBESAT

Software: The
Overlooked Glue that

Holds CubeSats Together ;

Dr. John M. Bellardo

—_ 8.2 About Me

* Director of Cal Poly’s CubeSat Laboratory
* Working with CubeSats for 10+ years

* Involved in |5+ launched CubeSat missions, including
7 in the past 12 months

* Help maintain the CubeSat Design Standard
* Host the Spring Developer’s Workshop at Cal Poly

* Professor of Computer Science and Software
Engineering at Cal Poly San Luis Obispo

* Doctorate in Computer Science and Engineering
from UC San Diego

6/26/20

Why Software N Siert

* All CubeSats require software

* Reasons for placing additional functionality in
software
* Favorable power / volume / mass tradeoffs

* Risk profile of CubeSat missions enables more
sophisticated software

* Enables advanced features, e.g., Artificial
Intelligence

Software Challenges

* Large software projects are non-intuitive

* PolySat has ~200k lines of in-house code, in addition to
Linux

* Large amount of custom tooling

* Tendency to get caught up with hardware
compatibility, not software compatibility

e Software lacks the intuitiveness found in other areas

of the spacecraft design MYTHICAL

* Software has a bad reputation for being behind MAN-MONTIH
schedule and over budget R — ‘

6/26/20

6/26/20

Best Practices

* Software challenges are not limited to
CubeSats

* Look to the software engineering community

for tools and solutions
* Try to avoid traditional aerospace specific
approaches

* Risk profile enables use of best practices that
have been shown to work well on large
terrestrial projects, despite lack of flight
heritage

—=_%2 Software Managers = . Sor

ESAT ""

* Strive to find managers with formal
software background to manage software

* Training and/or experience gives them much THATS NOT
better intuition HOW IT WORKS.

* Useful in determining when there is a problem

vs. development taking longer than anticipated

6/26/20

=2 Plan for Software

" TCUBESAT

* Include software team members in all your trade
studies and design decisions

* It can be difficult for people inexperienced in
software development to estimate time needed to
support a design decision

* Example: Camera Drivers
* Some camera vendors have robust tools and
documentation on how to configure the imager’s settings
* Perhaps 100 hours of development and testing
* Some vendor support is so poor people resort to guess-
and-check techniques
* 1000+ hours

6/26/20

Schedule

* Expect software schedules to take 3x more
than your original estimate

* Move software testing as early in your
schedule as possible
* Tendency to wait until flight hardware is available

* Inevitable slips in hardware readiness greatly
impact software testing

* Look to create infrastructure necessary for
early software testing

Prioritize prototype hardware the software team
can use

Leverage component specific development boards

Have enough copies of flight hardware that the
software team always has access

6/26/20

— E '_@\

Revision Control T St

/

* Use strong revision control from the beginning of 0 it
development g

* Git, svn are common in the development community

* Force team members to get through the learning
curve

* Use the revision control system as it was

intended
* Frequent commits
* Branches for exploratory or independent work
* Frequent pushes to the server

* Tag / mark all builds of flight software for full
traceability

SUBVERSION

6/26/20

Code Reviews

* All code should be reviewed prior to
being accepted by the project

* Small changes can be reviewed offline

* Larger changes require multi-hour
meetings

* Human nature tends to consider this a
poor use of productive time, but it is
necessary to ensure higher quality
software

6/26/20

’E‘A_“j‘:f;\ CollaborationTools = .Sor

* Use software specific collaboration
tools for software development

* Most combine revision control, code
review, continuous integration,
documentation, issue tracking, and
more

* Github, Atlassian, gitlab, etc

* The tools are not effective if team
members don’t use them

* Help your team get through the learning
curve

6/26/20

Documentation

e Strive to write documentation at the same time
as the code

* Make sure the documentation requirements are
reasonable
* E.g,, Don'’t institute an “every line needs a comment”
policy
* Review documentation during the code review,
and only accept the code when the
documentation is acceptable

* For larger teams, consider involving someone
whose primary role is assisting other developers
with documentation

6/26/20

__ E '_@\
" TCUBESAT

Knowledge Transfer @ Sor

Vi

* Create opportunities for knowledge
transfer outside of written
documentation

* Weekly seminars, both deep-dive and
overview

* In-person code reviews

* Group discussions of architectural
decisions prior to implementation

6/26/20

6/26/20

/

Manual Testing S St

 Understand that manual testing is
exceptionally ineffective for software

* Most software bugs are found in edge cases, not
the common case

* Manual testing tends to focus on the common case
because the testing itself is personnel constrained

* Know this SFOt check doesn’t really provide any
assurance of code performance

* A test showingbyour antenna deploys on time

uses software, but is primarily testing the
integration of the hardware and software, not
that the software works

* Limit testing / debugging to use commands
available on orbit

Unit Testing

* Use a unit testing tool / framework)
Software Testing

* Write unit tests! of individual components
* Require unit tests prior to code reviews

* Review unit tests, expected coverage, etc.,
during code reviews

* Pass all tests prior to accepting a code
change

* When fixing a bug, write a test that teases
out the bug prior to fixing the code

* Keep records of testing results

6/26/20

=% Integrated Testing

" TCUBESAT

* Most large software projects are composed of
many smaller modules with well-defined
interfaces

* Unit testing should include validation of interface
functionality

* Partial and full integrated testing validates
overall system behavior

* |deally performed automatically
* What about external input?

* How do | test without being on orbit? How do |
test on the hardware!?

* Takes time to develop good integrated test
framework

* Normally more code than what you are
actually testing

6/26/20

—__=_%2 Continuous Integration < .So7

* Continuous Integration (Cl) runs unit and
integration tests automatically as code is
committed

* Removes some of the time burden from
developers

* Typically supported by revision control tools

* Can serve as a gate for accepting code
changes

* Requires setup time and learning curve

6/26/20

B3 3rd Party Code

 Don’t be afraid to use 3" party code (e.g., open
source, etc.)

 Can save development, testing time

« Common 3™ party code (e.g., Linux) has many more
accumulated hours of operation than anything you
will develop

* Most performance characteristics are well ™
understood

e |t is typically faster to customize 3" party code Open SOurce

than develop it yourself from scratch
* Be cognizant of not-invented-here syndrome

6/26/20

. E ;@\

Software Updates

* Despite your best efforts some software bugs will make it to orbit

* Have a plan to address them
* In-flight software updates

* Ensure the process works prior to launching your spacecraft

=2 Summary

* CubeSats and software open up
phenomenal opportunities in space

* Embrace it, don’t run away from it

* Include software impacts in your
design-phase trade studies

* Favor terrestrial best practices over
legacy aerospace practices

* Plan extra time for testing and
developing testing infrastructure

* Have fun and be successful!

6/26/20

ALL READY FOR THE
HEARING? LET'S GO OVER
THINGS ONEl MORE TME.

AHEM

|
WHAT |5 THE MAIN REASON
TO FUND THIS MISSION?

IT WILL SIGNIFICANTLY ADVANCE. OUR LONG-
TERM GOAL OF BETTER UNDERSTANDING
THE FORMATION AND EVOLUTION OfF THE
SOLAR SYSTEM, WHILE FULFILLING OUR
MPNDATE To DEVELOP A NEW GENERATION
OF INTERPLANETARY SPACECRAFT.

GREAT,

AND BECAUSE
rl'"5 SPACE!
SI"HHHAA/'\CE.
PEL) PEL) PEW!
SPACEY

k DIALIT BA)CK.

* Dr.John M. Bellardo

* bellardo@calpoly.edu
* https://polysat.org

6/26/20

http://calpoly.edu

