
6/26/20 1

Software: The
Overlooked Glue that

Holds CubeSats Together
Dr. John M. Bellardo

6/26/20 2

About Me

• Director of Cal Poly’s CubeSat Laboratory
• Working with CubeSats for 10+ years
• Involved in 15+ launched CubeSat missions, including

7 in the past 12 months
• Help maintain the CubeSat Design Standard
• Host the Spring Developer’s Workshop at Cal Poly

• Professor of Computer Science and Software
Engineering at Cal Poly San Luis Obispo
• Doctorate in Computer Science and Engineering

from UC San Diego

6/26/20 3

Why Software

• All CubeSats require software
• Reasons for placing additional functionality in

software
• Favorable power / volume / mass tradeoffs
• Risk profile of CubeSat missions enables more

sophisticated software
• Enables advanced features, e.g., Artificial

Intelligence

6/26/20 4

Software Challenges

• Large software projects are non-intuitive
• PolySat has ~200k lines of in-house code, in addition to

Linux
• Large amount of custom tooling

• Tendency to get caught up with hardware
compatibility, not software compatibility
• Software lacks the intuitiveness found in other areas

of the spacecraft design
• Software has a bad reputation for being behind

schedule and over budget

6/26/20 5

Best Practices

• Software challenges are not limited to
CubeSats
• Look to the software engineering community

for tools and solutions
• Try to avoid traditional aerospace specific

approaches

• Risk profile enables use of best practices that
have been shown to work well on large
terrestrial projects, despite lack of flight
heritage

6/26/20 6

Software Managers

• Strive to find managers with formal
software background to manage software
• Training and/or experience gives them much

better intuition
• Useful in determining when there is a problem

vs. development taking longer than anticipated

6/26/20 7

Plan for Software

• Include software team members in all your trade
studies and design decisions
• It can be difficult for people inexperienced in

software development to estimate time needed to
support a design decision
• Example: Camera Drivers

• Some camera vendors have robust tools and
documentation on how to configure the imager’s settings
• Perhaps 100 hours of development and testing

• Some vendor support is so poor people resort to guess-
and-check techniques
• 1000+ hours

6/26/20 8

Schedule

• Expect software schedules to take 3x more
than your original estimate

• Move software testing as early in your
schedule as possible
• Tendency to wait until flight hardware is available
• Inevitable slips in hardware readiness greatly

impact software testing

• Look to create infrastructure necessary for
early software testing
• Prioritize prototype hardware the software team

can use
• Leverage component specific development boards
• Have enough copies of flight hardware that the

software team always has access

6/26/20 9

Revision Control

• Use strong revision control from the beginning of
development
• Git, svn are common in the development community
• Force team members to get through the learning

curve

• Use the revision control system as it was
intended
• Frequent commits
• Branches for exploratory or independent work
• Frequent pushes to the server

• Tag / mark all builds of flight software for full
traceability

6/26/20 10

Code Reviews

• All code should be reviewed prior to
being accepted by the project
• Small changes can be reviewed offline
• Larger changes require multi-hour

meetings
• Human nature tends to consider this a

poor use of productive time, but it is
necessary to ensure higher quality
software

6/26/20 11

Collaboration Tools

• Use software specific collaboration
tools for software development
• Most combine revision control, code

review, continuous integration,
documentation, issue tracking, and
more
• Github, Atlassian, gitlab, etc

• The tools are not effective if team
members don’t use them
• Help your team get through the learning

curve

6/26/20 12

Documentation

• Strive to write documentation at the same time
as the code
• Make sure the documentation requirements are

reasonable
• E.g., Don’t institute an “every line needs a comment”

policy

• Review documentation during the code review,
and only accept the code when the
documentation is acceptable
• For larger teams, consider involving someone

whose primary role is assisting other developers
with documentation

6/26/20 13

Knowledge Transfer

• Create opportunities for knowledge
transfer outside of written
documentation
• Weekly seminars, both deep-dive and

overview
• In-person code reviews
• Group discussions of architectural

decisions prior to implementation

6/26/20 14

Manual Testing

• Understand that manual testing is
exceptionally ineffective for software
• Most software bugs are found in edge cases, not

the common case
• Manual testing tends to focus on the common case

because the testing itself is personnel constrained
• Know this spot check doesn’t really provide any

assurance of code performance
• A test showing your antenna deploys on time

uses software, but is primarily testing the
integration of the hardware and software, not
that the software works
• Limit testing / debugging to use commands

available on orbit

6/26/20 15

Unit Testing

• Use a unit testing tool / framework
• Write unit tests!
• Require unit tests prior to code reviews
• Review unit tests, expected coverage, etc.,

during code reviews
• Pass all tests prior to accepting a code

change
• When fixing a bug, write a test that teases

out the bug prior to fixing the code
• Keep records of testing results

6/26/20 16

Integrated Testing

• Most large software projects are composed of
many smaller modules with well-defined
interfaces
• Unit testing should include validation of interface

functionality
• Partial and full integrated testing validates

overall system behavior
• Ideally performed automatically

• What about external input?
• How do I test without being on orbit? How do I

test on the hardware?
• Takes time to develop good integrated test

framework
• Normally more code than what you are

actually testing

6/26/20 17

Continuous Integration

• Continuous Integration (CI) runs unit and
integration tests automatically as code is
committed
• Removes some of the time burden from

developers
• Typically supported by revision control tools
• Can serve as a gate for accepting code

changes
• Requires setup time and learning curve

6/26/20 18

3rd Party Code

• Don’t be afraid to use 3rd party code (e.g., open
source, etc.)
• Can save development, testing time
• Common 3rd party code (e.g., Linux) has many more

accumulated hours of operation than anything you
will develop

• Most performance characteristics are well
understood

• It is typically faster to customize 3rd party code
than develop it yourself from scratch
• Be cognizant of not-invented-here syndrome

6/26/20 19

Software Updates

• Despite your best efforts some software bugs will make it to orbit
• Have a plan to address them

• In-flight software updates

• Ensure the process works prior to launching your spacecraft

6/26/20 20

Summary

• CubeSats and software open up
phenomenal opportunities in space
• Embrace it, don’t run away from it

• Include software impacts in your
design-phase trade studies
• Favor terrestrial best practices over

legacy aerospace practices
• Plan extra time for testing and

developing testing infrastructure
• Have fun and be successful!

6/26/20 21

Questions?

• Dr. John M. Bellardo
• bellardo@calpoly.edu
• https://polysat.org

http://calpoly.edu

