LUNAR EXCAVATION SYSTEMS AT THE COLORADO SCHOOL OF MINES

Tue. 10/5/2010

Workshop for the Lunar
Applications of Mining and Mineral
Beneficiation

October 5-7, 2010

Montana Tech/University of Montana, Butte, MT

Christopher Dreyer Paul van Susante

- The ISRU community is composed of scientists and engineers in government, academia and industry.
- Varied institutional structures, contracting requirements, practices, skills, knowledge, etc...
- Each member of the community brings strengths and weaknesses to the problems.

Value of Student projects to the ISRU community

- Undergraduate student teams can introduce new ideas at low cost to the community.
- Increasing the volume of projects will enable the contribution from this group to grow.

Overall CSM Integrated Picture

FE / analytical work

Prototypes

Force Measurements

Trommel Sorter

Field testing

Science & System Engineering Inclusion

Bucketwheel

To function at 50 kg/hr \to auger \to directly into processing unit \to discard proceeds Problems with the auger, excavation and transport are separate systems

Tim Muff, CSM MS Engineering

Lead to the Lockheed Bucket Drum

Another CSM Senior Design Project: a system to move

Lockheed Bucket Drum off a lander

Bucketladder I, II

500 kg/hr, transport, dump into collection bin Combines excavation and transport into the same system

Bucketladder IIIa, b

- Bucketladder on a rover, 1500 kg/hr, transport, dump into collection bin, dump in processing unit using ramp
- Competed in the Centennial Challenge in '08 & '09
- Autonomy system in 2008 got it stuck in a corner
- In 2009 it got stuck on rocks and had inadequate sensing and imaging for the controllers to know how to get unstuck

Bucketladder IV, V

Lunabotics Competition

Integrated with rover, 1500 kg/hr, transport, dump into collection bin, dump in processing unit by lifting collection bin

Workshop for the Lunar Applications of Mining and Mineral Beneficiation, October 5-7, 2010

Dumping

Excavation Power Use

Backhoe Prototype

Integrated with rover true 'quick connect', 100 kg/hr, 1m depth, 30 in³ of material

Force Measurements

Testbed to measure x, and y forces

Tim Muff, Lee Johnson, Andrew Brewer, Faculty Advisor Bob King '09-'10 Senior Design: Modified testbed to fly on 1/6th gravity campaign '10-'11 Senior Design: working on improvements to testbed and hope to participate in NASA Microgravity University, client: KSC Surface Systems Group

Beneficiation: Regolith Sifter Trommel

- **ISRU**: Oxygen production Separate large fragments from fines. Civil Engineering Sort fines, coarse, etc... use for road bed, landing pad, high traffic areas, etc...
- Science: Apollo Rake samples were excellent source of variety: pristine crustal rocks, impact melt rocks, and basalts.¹

Fine Regolith Out

Objective to separate >2mm fragments from fines intended for 600 kg/hr rate of input regolith

Plan to mount sifter on excavator to sort simultaneous with excavation. Only the desired size fraction goes to the hopper.

Diameter = 25cm; Length = 50cm

^{1:} G. Lofgren, "Experience from Apollo and Challenges to Geology", presentation, OSEWG, Workshop on Robots Supporting Human Science and Exploration, Houston TX, August 2009.

Trommel Theory (Alter et al.):

Trommel Equation:

$$M = \psi g^{1/2} b \rho \beta R^{3/2}$$

where:

$$\psi = \sqrt{\sin \alpha} (\omega t \cos \alpha + \sin \alpha + \cos \delta)$$

g = Gravitational acceleration

b = thickness of material within trommel

$$\frac{\omega^2 R}{g} = \sin(\alpha)$$

ρ = density of material

 β = Angle of Inclination

R = Trommel Radius

 α = riding angle

 ω = angular frequency

 δ = angle of impingement

t = flight time

25cm diameter; 50cm length Steel woven wire cloth Square mesh 1.85 mm open width Inclination angle: 3° to 9.3°

Students:

- David Hall, BS Physics 2010
 Physics Senior Design Fall '09, Spr '10
- Stephanie Quintana, BS Evn Eng 2011
 CSM Space Internship Summer 2010
 Colorado Space Grant

Assuming several values in the trommel equation to size for 600kg/hr in lunar gravity

Simulants used

- Need a simulant with large particle size made two:
 - 1. Granite based by David Hall, Physics Senior Design From a local landscape supply yard, geological source unknown.
 - 2. Vesicular Basalt based

by Stephanie Quintana, CSM Space Internship Colorado Space Grant Grinding provided by Zybek Advanced Products

- Objectives: Excavation requires large quantities
 - Reasonable for excavation and mechanical testing
 - low cost commerical source material
 - Characterize the simulant

Vesicular Basalt (CSM-CL)

Colorado Lava, Inc; T.O. Mine

in Colfax County, New

Mexico, SE of Raton

Geological map location classified as "Basalt or basaltic andesite"

Crushing Process, Fines

 Zybek Advanced Products (ZAP) donated use of the Aerodynamic Impact Reactor (AIR)

scale represents 50 microns

Large fragments

- CSM Mining
 Department, Jaw and

 Roll crusher
- Ro-tap sifter for size

Workshop for the Lunar Applications of Mining and Mineral Beneficiation, October 5-7, 2010

Chromite

Client: Chris Dreyer Project Title: CSM-CL-S Survey Code: D0006M1A Date: 24 September 2010

Fig. 2: False-colored QEMSCAN image of representative particles (resolution 5 micron).

x-ray fluorescence measurements

Normative analysis: "extremely alkaline basalt"
Thanks to D. Stoeser and D. Rickman

Sample	SCM-CL-S
SiO2	47.9
Al2O3	17.2
TiO2	1.58
Fe2O3	11.7
MgO	6.44
MnO	0.24
CaO	8.93
Na2O	3.95
K20	2.42
P2O5	0.98
Total	101.34

Table 1: Modal mineral abundances (in volume %)

Minerals / Sample	CSM-CL-S	
Glass matrix	44	
Plagioclase (Ca-rich)	40	
K-Feldspar	2	
Olivine	8	
Clinopyroxene	4	
Quartz	tr	
Calcite	tr	
Ilmenite	1	
Chromite	tr	
Other	tr	

*tr = < 0.5 vol. %

Fig. 1: False-colored QEMSCAN image of a representative particle (resolution 2 micron).

Tests used the large size fraction only DG >2mm, CL 2-4mm split. Fines readily fell through the mesh.

Trommel Conclusions:

- 1) Fines fall through the mesh readily. Will this be true in lunar gravity?
- 2) Sorting rate is below the anticipated rate (600kg/hr in lunar gravity):
 - ~30kg/hr at best using CSM-CL-2 (2-4mm basalt-based simulant)
 - The >2mm fraction is <10% of lunar regolith, with the <2mm fraction added in the rate is ~300-600kg/hr. (assumes fines fall through readily)
 - Equivalent to 50-100kg/hr in lunar gravity

Thanks to STUDENTS

(Free (cheap) Labor)

Workshop for the Lunar Applications of Mining and Mineral Beneficiation, October 5-7, 2010

The faculty:

- Mike Duke Bucketwheel, early bucketladder, former CSR Director
- **Bob King** excavation force measurements
- Masami Nakagawa Faculty Advisor for the First Centennial Excavation Rover
- Paul van Susante Bucketladder, excavation force measurement modeling, Faculty
 Advisor to Senior Design Groups (via Adjunct teaching), NASA 2010 ESMD
 Summer Faculty Fellow at KSC Surface Systems Group
- Chris Dreyer Faculty advisor to 2nd Centennial Excavation Rover, Senior Design Client to Lunabotics Competition Teams (2010 and 2011)
- Angel Abbud-Madrid Funding from CSR, occasionally a Senior Design Client
- Bob Knecht EPICS projects, Colorado Space Grant, CSM Summer Space Internship
- **Joel Duncan** EPICS projects
- Jeff Andrews-Hanna Geophysics, CSM Summer Space Internship

The Funding

- Colorado Space Grant
- Center for Space Resources (CSR)
- Industrial Sponsors
- NASA Grants

Measuring Success Rate of student lead projects in terms of...

- Education all have been successful
 - a) Students learn lessons with hands on engineering projects that are often new to them.
 - b) Train future engineers/scientists in ISRU technology
- 2. Engineering R&D varied results
 - a) Few produce a result similar to professional projects.
 - b) Expect 1 in 3 to fail completely, 1 in 3 to be great and the rest to be somewhere in between.
 - c) Don't expect a stellar performance every time from any particular team.

Conclusions

- Undergraduate student project teams have value to the ISRU community; unique capabilities & limitations.
- The value is improved with quantity.
- → Competitions are a great way to do it: dozens of groups and universities work on the same problem.
- Focused projects with well defined objectives are necessary for good R&D value.

