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Atom Interferometry for Detection of Gravitational Waves 
1. Introduction 

Gravitational wave (GW) detection promises to open an exciting new observational frontier in 
astronomy and cosmology. In contrast to light, gravitational waves are generated by moving masses 
– rather than electric charges – which means that they can tell us about objects that are difficult to 
observe optically. For example, binary black hole systems (which might not emit much light) can be 
an ample source of gravitational radiation. In addition to providing insights into astrophysics, observa-
tions of such extreme systems test general relativity and might influence our understanding of gravity. 
Cosmologically, since GWs are poorly screened by concentrations of matter and charge, they can see 
places other telescopes cannot – even to the earliest times in the universe, beyond the surface of last 
scattering.

In principle, GWs can be observed by monitoring the distance between two “test masses” separated 
by some large baseline, but direct detection has remained elusive because GWs are incredibly weak. 
Existing detectors such as LIGO (Laser Interferometer Gravitational-Wave Observatory) use laser light 
to simultaneously measure the lengths of two baselines pointing in different directions, usually at right 
angles. This trick exploits the fact that GWs are quadrupolar: when one baseline direction is stretched, 
the perpendicular baseline is compressed. By combining the signals from its perpendicular baselines, 
LIGO and other interferometric detectors cancel laser noise that would otherwise spoil the measure-
ment, while still maintaining sensitivity to the anisotropic stretch of GWs. 

1.1 NIAC Phase 1 Study Concept 
The concept described in this report is a fundamentally new GW detection method based on atom 

interferometry.[1, 2, 3] Critically, we suggest using freely-falling atoms as the “test masses” in place 
of the macroscopic references currently in use or envisioned (e.g., LIGO’s mirrors). This potentially 
avoids several limitations of optical detectors 
and lets us exploit the powerful techniques that 
have recently led to dramatic improvements in 
atomic timekeeping[4] and inertial measure-
ment.[5, 6] An Atomic Gravitational wave In-
terferometric Sensor (AGIS) could operate in 
frequency ranges that are conventionally inac-
cessible, and could reach the same level of GW 
sensitivity as other proposed detectors, but with 
a dramatic reduction in the length of the re-
quired baseline. Tantalizingly, an AGIS detec-
tor would also circumvent the need for multiple 
baselines, opening up a new “single-arm” detec-
tor design paradigm that may have advantages 
in cost and flexibility. 

The proposed atom-based GW antenna (see 
Fig. 1.1(a)) is similar to well-established atom 
interferometric gravity gradiometers.[7] Dilute 
clouds of ultracold atoms at either end of the 
baseline act as inertial test masses, and laser 
light propagates between the atoms. To imple-
ment atom interferometry, the lasers from 
sources S1 and S2 are briefly pulsed a number 
of times during each measurement cycle. The 
paths of these light pulses appear as wavy lines
in Fig. 1.1(b). The two diamond-shaped loops 
represent the atom interferometers. Interaction 
with a light pulse transfers momentum lk to the
atom and toggles the atomic state between the 
ground and the excited states. As a result, the 
light pulses act as beamsplitters and mirrors for 
the atom de Broglie waves, dividing them into a 
quantum superposition of two paths and even-

Figure 1-1: Gravitational wave detection using atoms. (a) Dilute clouds 
of atoms (black circles) at either end of a long baseline act as inertial test 
masses. Laser light (red) propagates between the atoms from sources S1 
and S2. (b) Space-time diagram of the trajectories of both atom inter-
ferometers, showing the ground (blue) and excited (red dashed) atomic 
states. Short laser pulses (wavy lines) traveling from alternating sides 
of the baseline are used to divide, redirect, and recombine the atom de 
Broglie waves, yielding atom interference patterns that are highly sensi-
tive to any modulation of the light travel time caused by gravitational 
radiation. The spatial extent of the atom interferometers relative to the 
baseline has been exaggerated.. 
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Atom Interferometry for Detection of Gravitational Waves 
tually recombining them. Similar to an atomic clock, the phase shift recorded by each atom interfer-
ometer depends on the time spent in the excited state, which here is directly tied to the light travel time 
(L/c) across the baseline. GWs can be detected because they modulate the light travel time. 

An essential feature of the AGIS detector is that it incorporates a differential measurement between 
two atom interferometers to cancel laser frequency noise that would otherwise overwhelm the GW sig-
nal. Since each laser pulse interacts with both atom interferometers, the imprinted laser noise is a com-
mon mode, and taking the differential 
phase Δϕ = ϕ1 −ϕ2 between the two in-
terferometers eliminates this noise while 
retaining the GW signal. This differential 
measurement protocol enables an atom-
based detector to use only a single arm,
avoiding the need for perpendicular base-
lines. 

Figure 1.2 shows the GW strain sensi-
tivities possible for a terrestrial and a sat-
ellite AGIS detector compared to LIGO 
and the proposed space-based LISA 
(Laser Interferometer Space Antenna). 
Note that the intrinsic seismic isolation 
provided by freely-falling atoms would 
allow for substantially lower frequency 
detection on Earth than LIGO. In space, 
an AGIS detector could achieve sensitiv-
ity comparable to LISA while using a 1000
times shorter baseline. Additionally, AGIS 
is insensitive to many mechanical noise 
sources,[1] thus dramatically reducing sat-
ellite acceleration noise requirements – a 
key technical challenge faced by LISA. 

1.2 NIAC Phase 1 Project Summary 
This report presents the results of the 2012-2013 NASA Institute for Advanced Concepts (NIAC) 

Phase 1 “Atom Interferometry for Detection of Gravitational Waves” project. The origin of this GW 
detection concept using atoms can be traced to theoretical work that first appeared in 2008 [2] and 
also to a satellite mission-focused followup study that was done in 2011 [3]. The goal of the current 
project was to explore both theoretical and technical issues surrounding the implementation of this 
idea, as well as to begin performing proof-of-concept experiments to validate critical aspects of the 
proposal. 

The top level trade space for the detector design is driven by the strategy employed to mitigate laser 
frequency noise, which, if uncontrolled, can mask GW signatures. One of the advantages of the atom 
interferometric approach is the possibility of single baseline detection (Fig. 1.1), even in the presence 
of laser noise. This is enabled by the differential measurement between the two ensembles of atoms, 
which can result in substantial laser noise suppression. The details of this suppression depend on the 
atomic physics techniques used to implement the atom interferometry. Specifically, we considered the 
effect on noise suppression that results from using traditional two-photon Raman transitions (with 
alkali atoms) and also single-photon transitions (with alkaline earth-like atoms). 

The interferometers shown in Fig 1.1(b) take advantage of single-photon transitions (as opposed 
to traditional Raman transitions) because using light pulses from one direction at a time allows for 
near perfect common-mode cancellation of laser phase noise, even for long baselines.[1] This calls for 
the use of atomic transitions with an (ideally large) optical energy level difference with a long (> 1 s) 
lifetime, such as high-  transitions routinely used for optical atomic clocks in species like Sr, Ca and 
Yb. Notably, large momentum transfer (LMT) atom optics[8] – and the sensitivity enhancement they 
confer – can still be realized by simply adding additional pairs of alternating pulses to each beamsplit-
ter process.[1] Section 3 reports on the theoretical work we performed to justify this GW detection 
protocol using single-photon transitions. This approach represents a new method for GW detection 

Figure 1-2: Example strain sensitivity curves for proposed terrestrial (red 
dashed) and satellite (blue solid) atom GW detectors. Terrestrial parameters: 
L = 4 km, 1000hk atom optics and T =1.4 s; Satellite parameters: L = 103 km, 
100hk atom optics (recently demonstrated[8]) and T = 100 s. Both assume 108 

atoms/s shot-noise limited phase detection. LIGO and LISA sensitivity curves 
(gray thin) are shown for reference. 
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Atom Interferometry for Detection of Gravitational Waves 
using atoms that is distinct from the original proposal from 2008. 

At the system level, we evaluated three architectures, each of which implements a different solution 
to the laser frequency noise issue. The first two designs are based on two-photon Raman transitions 
with Rb atoms. One of these is a three-satellite, multiple baseline design while the other is a two-satel-
lite, single baseline design. The third proposal is a two-satellite, single baseline design that uses single-
photon transitions with Sr atoms. These three architectures are described in more detail in Section 2. 

There are a number of known technical issues that we have started to address using ground-based 
experiments. These issues include atom technology development needs such as, for example, lower 
ensemble temperature requirements and large momentum transfer (LMT) atom optics. To this end, 
we have built a 10-meter scale atom drop tower[9, 10] where we can perform proof-of-principle dem-
onstrations of the proposed AGIS detector in an environment that permits more than 2.5 seconds of 
free-fall time. This facility allows for demonstration of atom interferometry with long interrogation 
time (seconds) and large atom wavepacket separation (meters), which is the regime required for GW 
detection at scientifically interesting levels. 

Sections 4 and 5 describe the results of these experiments. Section 4 describes the demonstration of 
an atom interferometer at high contrast with a record interrogation time of 2T =2.3 seconds, as well 
as a new technique for evaluating and controlling velocity dependent systematic phase shifts that typi-
cally cause inhomogeneous broadening that reduces interferometer contrast. Section 5 is a discussion 
of a new interferometer phase readout procedure that we developed. This new technique, called Phase 
Shear Readout (PSR) allows the phase and contrast of the interferometer to be measured with a single 
shot. PSR has the potential to offer a dramatic reduction in a variety of noise requirements for the GW 
detector, including satellite rotation stability and optical wavefront aberrations. 

2. System Architectures 
We explored three system architectures to address laser phase noise. One of the central design factors 

in this analysis is the atom optics process used to implement the atom interferometers. As discussed 
in detail in Section 3, atom optics based on single-photon transitions can have superior laser phase 
noise rejection than two-photon atom optics. However, the choice of atom optics is tied to the choice 
of atomic species. Alkaline-earth like atoms possess narrow optical transitions with very long lifetime 
that are compatible with single-photon atom optics. Alkali atoms, on the other hand, are traditionally 
manipulated using two-photon atomic optics (Raman or Bragg transitions) to avoid decoherence from 
the decay of the generally short-lived excited states of available optical transitions. 

Here we consider two example atomic species as representative of these categories: Rb for the two-
photon case and Sr for the single-photon case. We emphasize that the choice of these atoms for this 
discussion should not be taken to mean that we have ruled out other species. In fact there are a number 
of promising choices in each category that present a variety advantages that require careful consider-
ation. Rather, we frame this discussion in terms of Rb and Sr because they are well studied in the atom 
interferometry and atomic clock communities, and because they serve as specific, viable solutions tech-
nologically. Nevertheless, the selection of the optimal atom remains a subject of ongoing investigation. 

2.1 Three Satellite Rb 
The first system architecture uses Rb atoms with interferometry based on two-photon atom optics. 

To reject residual laser frequency noise, this configuration uses a conventional multiple baseline ar-
rangement. The baselines are established between a constellation of three satellites, with laser light con-
necting each pair of satellites to form three baselines in the shape of a triangle. Each baseline contains 
two atom interferometers, one at each end, in a manner identical to Fig. 1.1. In a way analogous to 
LISA, laser phase noise is shared among the baselines and can be rejected as a common mode. 

The system level diagram for this architecture is shown in Fig. 2.1. Atom interferometry is imple-
mented between each pair of satellites by means of laser light that originates in each satellite and that 
is directed towards the opposing satellites. Within each satellite, light from a low noise master laser 
oscillator is split into two paths that are ultimately used to implement the atom interferometry in the 
two baselines that connect to the satellite. This master light is amplified and then delivered to the in-
terferometer regions by a pair of telescopes that point towards the other satellites. The design is such 
that the phase noise present on the master laser is delivered to both baselines, so a comparison of the 
signals derived from these baselines can be used to reject the common noise. 

The satellites also include onboard accelerometers to address the effect of satellite acceleration noise 

PROPRIETARY INFORMATION: Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this proposal. 1–3 
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Atom Interferometry for Detection of Gravitational Waves 
on the detector. Vibration of the satellite leads 
to frequency noise on the interferometer laser 
beams because of the Doppler effect. By mea-
suring the instantaneous local acceleration of 
the satellite, it is possible to account for this 
noise effect if the accelerometer is sufficiently 
precise. Here we call for atom interferometric 
(AI) accelerometers (distinct from the atom 
interferometers used to detect the GW sig-
nal). 

Atom Interferometry AI accelerometers can provide sufficient 
precision and can be accommodated using 
the same infrastructure already in place to 
implement the main atom interferometers 
used to detect the GW signal. 

2.2 Two Satellite Rb 
Atom Interferometry The second architecture is also based on 

Rb interferometry, but here in a single-base-
line, two satellite arrangement. Reducing 
the design to a single baseline is motivated 
by a desire to reduce cost and system-level 
risk associated with formation flying of three 
satellites. However, without the benefit of 
multiple baselines to help reject laser noise, 
this design requires a new approach to la-
ser noise mitigation. The solution here is to 
measure the instantaneous phase noise of the 
laser with a local phase meter. If the phase 
meter has sufficient precision, then the phase 
measurements can be used to reject the phase 
noise from the GW data stream (the noise 
can be subtracted from the signal channel). 

The phase meter consists of a high stabil-
ity atomic frequency reference and an optical 
frequency comb (see Fig. 2.2). The frequency 
reference is based on the narrow clock transi-

Atom Interferometry 

Figure 2-1: System diagram for three satellite Rb detector. tion in (for example) atomic strontium (5s2 1S0
→ 5s5p 3P0). This atomic transition can serve as 

a phase reference because the transition is insensitive to environmental perturbations and, in part since 
it is an optical transition, it can be interrogated with sufficient precision. 

When performing Rb interferometry to detect GWs, each time the interferometer laser is pulsed it 
will imprint its phase noise on the Rb atoms, contaminating the GW data with this noise. Once again, 
the protocol of this design is to measure the phase of the interferometer laser each time it is pulsed 
by comparing it to the Sr phase reference. Since the Sr reference transition has a different wavelength 
than the Rb interferometer laser, this comparison must be facilitated by an optical frequency comb. 
The frequency comb can be used to transfer the stability of the Sr reference to a wavelength near the 
Rb interferometer laser so that the interferometer laser phase can be measured. 

As in the three satellite Rb design, this two satellite architecture is also sensitive to satellite accelera-
tion noise, which results in laser frequency noise via the Doppler effect. This additional phase noise 
cannot be measured by the local Sr phase reference. As before, this noise is addressed by measuring the 
acceleration of the satellite using an AI accelerometer on each satellite. 

2.3 Two Satellite Sr 
The third architecture is a single-baseline, two satellite arrangement using interferometry based 

on single-photon transitions in Sr. The phase noise immunity offered by the single-photon transi-

PROPRIETARY INFORMATION: Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this proposal. 1–4 
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Figure 2-3: System diagram for two satellite Sr detector. 

tion technique (see Section 3) results in 
a substantial simplification of the overall 
design, because any noise on the laser is
naturally rejected in the differential mea-
surement between the two interferometers 
along the single baseline. Each satellite
contains a master laser that is stabilized 
to the Sr transition. This light is amplified 
and delivered by a telescope to the atom 
interferometer region between the two 
satellites (see Fig. 2.3). 

Once again, satellite vibration noise 
gets imprinted on the laser via the Dop-
pler shift. However, unlike the previous 
two designs, this noise is largely rejected 
by the differential measurement between 
the Sr interferometers, and so local accel-
erometers are not required. 

Although the use of single-photon atom
optics leads to a substantial suppression 
of the influence of laser and other noise 
sources, these effects are not perfectly re-
jected if there is a nonzero velocity be-
tween the atom ensembles on opposite 
sides of the baseline. The residual, leading 
order susceptibility in this design to kine-
matic disturbances (such as satellite accel-
eration noise) and laser noise is discussed
in Section 3.4. 

3. Single photon gravitational 
wave detection 

3.1 Introduction 
The observation of gravitational waves 

will open a new spectrum in which to 
view the universe [11]. Existing detec-
tion strategies are based on long-baseline 
optical interferometry [12, 13], where 
gravitational waves induce time-varying 
phase shifts in the optical paths. Spurious 
phase shifts arising from laser frequency 
and phase noise are suppressed through 
multi-arm configurations which exploit
the quadrupolar nature of gravitational ra-
diation to separate gravitational wave in-
duced phase shifts from those arising from 
laser noise. In the absence of such noise, 
a single baseline optical interferometer, 
e.g. a Fabry-Perot interferometer, would 
suffice for gravitational wave detection. In 
these detectors, stringent constraints are 
also placed on the mechanical motion of

the interferometer optics in order to avoid optical path length fluctuations which would otherwise 
obscure the gravitational wave signals. 

PROPRIETARY INFORMATION: Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this proposal. 1–5 



 

 

 

 

 

   

	
  

Atom Interferometry for Detection of Gravitational Waves 
We propose a new approach, based on re-

cent advances in optical frequency control 
and atom interferometry, which directly 
avoids laser frequency noise and naturally 
mitigates mechanical noise sources. The ap-
proach draws on the development of light-
pulse gravity gradiometers, where Doppler-
sensitive two-photon optical transitions are 
used to measure the differential accelera-
tion of two spatially separated, free-falling, 
laser cooled atomic ensembles [7, 14, 15].
For these sensors, the optical interrogation 
is configured so that the same laser beams 
interrogate both ensembles of atoms along 
a common line-of-sight. This significantly 
suppresses laser frequency noise, but does 
not remove it completely due to the time 
delay introduced by the travel time of the 
light between ensembles and the need for 
each of the two counter-propagating laser 
beams to temporally overlap (in order to Figure 3-1: A space-time diagram of our proposed LMT beamsplitter with drive the two-photon transitions) [14, 16]. N = 3. The solid (blue) lines indicate the motion of an atom in the ground For shorter baseline instruments (e.g. 1 m state, the dashed (red) lines indicate the atom in the excited state. Light gravity gradiometers), this noise source is pulses from the primary and secondary lasers are incident from the left relatively benign. For longer-baseline gravi- (dark gray) and the right (light gray) respectively. Dots indicate the vertices tational wave detectors (e.g. 10 km -1000 km at which the laser interacts with the atom. baseline AGIS proposals described in Refs. 
[2, 3]), it becomes a dominant noise source 
[17]. It also places stringent limits on knowledge of residual accelerations of the laser platform, which 
manifest themselves as Doppler shifts on the frequency of the light in the inertial frame of the atoms. 

Laser noise would nearly disappear if the atomic transitions were driven with a single laser pulse 
since the laser frequency noise in each pulse would be common to both atom interferometers and 
would cancel in the differential measurement. This follows from the relativistic formulation of atom 
interferometry in Ref. [18] since the laser phase of a pulse is set when the pulse is emitted and does 
not change as it propagates along the null geodesic connecting the laser to the atoms. We propose a 
laser excitation protocol which is based solely on single photon transitions in order to exploit this noise 
immunity and which is capable of achieving scientifically interesting strain sensitivities. In an optical 
interferometric gravitational wave detector, the relative phases of the interfering optical fields serve as 
proxies for the propagation time of the light along the interferometer arms. In the proposed approach, 
gravitational waves are instead sensed by direct measurement of the time intervals between optical 
pulses, as registered by atomic transitions which serve as high stability oscillators. 

3.2 A New Type of  Atom Interferometer 
Due to atomic momentum recoil in the absorption and stimulated emission of photons during 

optical interactions, the proposed pulse sequence, detailed below, can be understood as a variant of a 
light-pulse de Broglie wave interferometer in a Mach-Zender configuration [19, 20, 21]. A prototypi-
cal excitation sequence can be described as a combination of beamsplitter and mirror segments. 

For the beamsplitter, the lasers are pulsed as in Fig. 3.1. The primary laser is taken to be at x = 0, 
the left side of the figure, the secondary laser is taken at x = L, the right side of the figure. The atom 
begins at x = x0 in the ground state. The initial pulse at time t = 0 isa π/2 pulse which splits the atom’s 
wavefunction in two (for simplicity, we neglect spontaneous emission from the excited state). Some 
time after this reaches x = L,a π pulse is fired from the secondary laser which is Doppler tuned to inter-
act only with the half of the atomic wavefunction which was originally excited. In Fig. 3.1 the second 
pulse is taken to leave at the time L/c when the first pulse arrives at x = L, but in fact it is only necessary 
that the second pulse leaves after this time. After the initial pair of pulses, to make a large momentum 
transfer (LMT) beamsplitter N − 1 more pairs of π pulses are sent, each pair having the first pulse from 

PROPRIETARY INFORMATION: Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this proposal. 1–6 



 

 

 

 

 

 

 

Atom Interferometry for Detection of Gravitational Waves 
the primary laser and the second from the 
secondary laser. The frequency of these pulses 
are tuned so they interact only with the faster 
half of the atom. This is shown in Fig. 3.1 for 
N = 3. This leaves half of the atom’s wave-
function in the ground state with unchanged 
momentum (the left solid line in Fig. 3.1) 
and gives a momentum of 2Nhk to the other 
half of the atom, where k is the wavevector 
of each pulse. This sequence makes an LMT
beamsplitter using only single-photon atomic
transitions. Note that according to the stan-
dard rules which govern the laser/atom in-
teractions, the phase of the laser field is read 
into the atomic coherence during each of the 
atomic transitions. 

The basic mirror sequence is three π pulses, 
alternately from the primary and secondary 
lasers as shown in the middle of Fig. 3.2. In 
general, there are several ways to realize this Figure 3-2: A space-time diagram of the proposed configuration of a sequence. It can begin either from the pri-differential measurement between two atom interferometers beginning at mary laser (as shown in Fig. 3.2) or from the positions χ1 and χ2. The lines are as in Fig. 3.1. For clarity the beamsplitters 
secondary laser. The pulses are tuned using a shown are not LMT, i.e. here N = 1. 
modulator on an extremely stable laser to in-
teract only with certain halves of the atom, as 

indicated by the dots in Fig. 3.2. To make the entire LMT mirror pulse, N − 1 pairs of laser pulses are 
added before the basic mirror sequence to slow down the fast half of the atom, the exact opposite of 
the initial beamsplitter. Similarly N − 1 pairs are added after the basic mirror sequence to accelerate the 
other half of the atom. This reverses the momenta of the two incoming halves of the atom’s wavefunc-
tion. The slow half gets a momentum kick of 2Nhk, the fast half loses 2Nhk. 

Using a beamsplitter-mirror-beamsplitter sequence allows the atom interferometer to close, so that 
the two halves of the atom’s wavefunction overlap at and can be interfered by the final beamsplitter. 
The phase difference is read out by measuring the atom populations in the interferometer output ports. 
The mirror pulse is started at time t = T and the final beamsplitter is started at time t =2T + . This is 
shown in each half of Fig. 3.2. 

This type of atom interferometer acts effectively as an accelerometer. If the atom does not accelerate, 
the time spent in the excited state is the same for each half of the atom’s wavefunction and there is no 
phase difference. However if the atom accelerates, this time is not the same. Since the atom accumu-
lates phase faster in the excited state, this gives rise to a phase shift proportionally to the acceleration. 
Interestingly, the phase shift is read in to the atom during the relatively short beamsplitter and mirror 
sequences themselves, not during the large interrogation time ∼ T between them. Nevertheless, these 
phase shifts scale proportionally to T since they depend on the change in the light travel time across 
the baseline between the beamsplitter and mirror sequences. The phase shift (or sensitivity) of this type 
of atom interferometer also scales with N. The leading order phase shift in a local gravitational field is 
∼ NωagT 2/c where ωa is the atomic energy level difference and g is the acceleration due to gravity (here 
assumed constant in space and time). The phase shift due to a gravitational wave is approximately the 
same with g replaced by the acceleration caused by the gravitational wave. Intuitively the factor of N 
arises because the signal comes from the extra time spent in the excited state [the dashed (red) lines in 
Fig. 3.2)] which increases linearly with N. 

These leading order phase shifts are proportional to the atomic energy difference ωa, not to the laser 
frequency ω = kc. This is a known difference between atom optics based on two-photon Raman or 
Bragg transition (where ωa « 1 eV), and a single-photon transition (where ωa is large, ∼ 1 eV) [18]. In 
practice the laser must be tuned so that ω is close to ωa in order to drive the atomic transition. 

3.3 A Differential Measurement 
A single interferometer of the type described above will have laser noise, but this can be removed 

by a differential measurement between two such interferometers (similar to the scheme proposed in 
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Atom Interferometry for Detection of Gravitational Waves 
Refs. [22, 2, 3]). The primary and secondary lasers are separated by a large distance L, with atom 
interferometers operated near them. The atom clouds are initially prepared as described in [2]. These 
two widely separated atom interferometers are run using common laser beams (see Fig. 3.2) and their 
differential phase shifts measured. Importantly, for any given interogation, the same laser beam drives 
both interferometers. For example, the pulse from the primary laser at time t = 0 triggers the initial
beamsplitter for both interferometers and the pulse from the secondary laser at time t = L/c completes
this beamsplitter, again for both interferometers. We will show that the differential phase shift between 
these interferometers contains a gravitational wave signal proportional to the distance between them. 
However, since the same laser pulse operates both interferometers, the differential signal is largely im-
mune to laser frequency noise. This idea has some similar features to the proposal described in Ref. 
[23], where a single laser only is used to interrogate two spatially separated atomic ensembles. 

To see the effect of a gravitational wave on the differential phase between the two interferometers, 
assume that one interferometer is at χ1 = 0 in Fig. 3.2 while the other is at χ2 = L and T » L/c. In the 
absence of a gravitational wave, each arm spends a time L/c in the excited state leading to a null result in 
each interferometer. Note though that the arms of the interferometer at χ1 spend time L/c in the excited 
state in the beginning and the middle of the interferometer, while the arms of the interferometer at χ2 
spend time L/c in the excited state in the middle and end (see dashed lines in Figure 3.2). In the pres-
ence of a gravitational wave of strain h and frequency ω, the distance between the atom interferometers 
oscillates in time. This affects the laser pulse travel time which in turn affects the relative time spent by 
each atom interferometer arm in the excited state (see Fig. 3.2). When T ~ 1/ω the distance changes by 
~ h L in time T (assuming ωL/c « 1). Hence, the two interferometers spend a slightly different amount 
of time ~ h L/c in the excited state. This leads to a differential phase shift between the interferometers 
of ~ ωahL/c. For an LMT sequence with N pulses, the phase shift is enhanced by N since it adds during
each pulse. A fully relativistic calculation following the formalism of [18] yields the differential phase 
shift to be 

proportional to the baseline χ1 − χ2 ≈ L. ϕ0 in this expression is the phase of the gravitational wave at the 
start of the experiment, whose change (ϕ0 = ωt0) causes a time dependent phase shift in the experiment. 
This phase shift is measured by operating successive interferometers at a rate higher than the Nyquist 
frequency necessary to measure the signal [22, 2, 3]. 

The gravitational wave signal is due to the oscillation of the laser ranging distance between the two 
interferometers. The atoms effectively measure the light travel time across the baseline. Thus, the la-
sers do not serve as a clock and so do not need a highly stable phase evolution. Remarkably, only the 
constancy of the speed of light across the baseline is relevant. This is an important change from all 
other interferometric gravitational wave detection schemes, where the laser serves the role of a phase 
reference, thus requiring additional noise mitigation strategies (e.g. additional measurement baselines). 

3.4 Backgrounds 
We will now discuss possible noise sources for the proposed scheme. We distinguish between two 

classes of noise: intrinsic laser noise and kinematic noise. Intrinsic laser noise refers to jitters in the 
phase and frequency of the laser while kinematic noise is caused by the acceleration noise of the laser 
platform and jitter in the timing between the interferometer pulses. The phase of a laser pulse does not 
evolve during its propagation in vacuum from the laser to the location of the atom1. Hence the atoms 
record the phase of the laser which exists at the emission time of the pulse. Since both interferometers 
are operated by the same laser pulses, the intrinsic laser noise read by both interferometers is identical 
and will cancel in the differential phase. The kinematic sources of noise affect both the imprinted laser 
phase and the amount of time spent by the arms of the interferometer in the excited state. Again, the 
noise from the imprinted laser phase will completely cancel in the differential measurement since the 
same laser pulses are used to drive both interferometers. However, any kinematic difference such as a 
relative velocity Δv between the two interferometers will result in differences in the time spent in the 
excited state between the two interferometers, leading to a differential phase shift suppressed by . 

1 Noise can arise from fluctuations in the refractive index n of the medium of light propagation. For space-based detectors, fluctuations δnp in the solar plasma density np give an effective strain of h ~ (n–1) 
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Table 3-1: AA list of dominant noise terms, the control required to achieve a sensitvity of h~  , and the scaling of this requirement withHz 
frequency ω We assume an example satellite-based configuration with a baseline of 1000 km so the relative velocity between the two atom 
interferometers is Δν <~1 cm (see e.g. [25]). We take T ≈ 50 s, Δτ ≈10 ms and N ≈ 300. All requirements are at a frequency ofs
10 mHz. These requirements are several orders fo magnitude easier to achieve tha the state-of-the-art. 

Following the formalism of [18] we calculate the differential phase shifts (shown in Table 3.1) caused
by platform acceleration noise δa, jitter δT in the time between pulses, and laser frequency jitter δk2 

. Each of the resulting error terms has its origin only in an initial velocity mismatch Δv between the 
two atomic sources, and is thus suppressed by Δv/c <~ 3 × 10−11 . Also included in the analysis are 
corrections related to the finite duration Δτ of the laser pulses [26]. The frequency dependence is esti-
mated from the condition ωT ∼ π [see Eq. (3.1)], which determines the low-frequency corner of the 
antenna response [2]. We note that this differential measurement scheme does not remove noise from 
wavefront aberration [27, 28], since after diffraction aberrations are not generally common to both in-
terferometers. However, straightforward noise mitigation schemes suggested in [29, 3] can successfully
address these issues. Finally, ellipse specific methods [15, 30, 31] can be used to extract the differential 
phase shift in the presence of the common-mode laser phase noise. 

3.5 Atomic Implementation 
The proposed LMT scheme requires a two-level system with a large (optical) energy difference ωa 

and a long excited state lifetime τ . To maintain interferometer contrast, the total time ∼ NL/c that 
the atom spends in the excited state during the interferometer sequence cannot exceed τ. Taking τ = 
NL/c as an upper bound, we can write the peak phase sensitivity in Eq. 3.1 in terms of the quality fac-
tor Q = ωaτ of a given atomic transition, resulting in Δϕmax =4ωa(NL/c)h =4Qh. This suggests that the
same atoms typically selected for optical clocks because of their high Q transitions are also appropriate
for this proposal. An optical transition with mHz linewidth has Q> 1017 which could support a strain 
sensitivity h< 10−21/√Hz assuming atom shot-noise limited phase noise δφ = 10−4/√Hz. For gravita-
tional wave detection with N = 300 and baseline L = 1000 km we have 2NL/c = 2 s, requiring at least
a sub-Hz linewidth clock transition. 

The alkaline earth-like atoms (e.g. Sr, Ca, Yb) are promising candidates. Consider, for example, the
clock transition in atomic strontium (5s2 1S0 → 5s5p 3P0). In 87Sr this transition is weakly allowed with 
a linewidth of 1 mHz and a saturation intensity of 0.4 pW/cm2 [32]. The low saturation intensity
enables long-baseline configurations (> 10 km) for suitably cold atomic ensembles3. In addition to its 
high Q, this transition is also desirable because it exhibits manageable sensitivity to environmental 
backgrounds. For example, the blackbody shift has a temperature coefficient of −2.3 Hz(T/300K)4[33].
At T = 100 K, this implies a temperature stability requirement of ; <3 mK/√Hz for a strain sensitivity
of h = 10−20/√Hz at 10 mHz. For magnetic fields, simultaneous or interleaved interrogation of each
of the linear Zeeman sensitive transitions, as described in Ref. [33], results in a residual quadratic Zee-
man coefficient of −0.23 Hz/G2 [33] and also enables measurement of the residual magnetic field. This
coefficient is significantly more favorable than that of the Rb interferometers previously analyzed [3].
In principle a second atomic species could be used to independently characterize these shifts in order 
to provide further suppression. AC Stark shift related backgrounds appear to be negligible. Many other
backgrounds are similar to those discussed in Refs. [2] and [3]. 

3.6 Discussion 
This configuration enables a high precision measurement of the relative acceleration between two 

inertial atom clouds. The high Q atomic transition provides the necessary time reference. The laser is 
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Atom Interferometry for Detection of Gravitational Waves 
not used as a clock and thus laser frequency noise does not affect the measurement, unlike all other 
interferometric gravitational wave detection schemes. Furthermore, an atom is an excellent inertial 
proof mass. A neutral atom’s level structure is universal and is significantly less sensitive to environmen-
tal perturbations than conventional macroscopic references such as a laser or a drag-free proof mass, 
whose physical parameters (thermal and electrodynamic properties) can vary significantly. As we have 
shown this type of atom interferometer would allow detection of gravitational waves with the same 
sensitivity as in the proposals described in Refs. [22, 2, 3] but with significantly reduced requirements 
on laser and platform stability (as in Table 3.1), enabling single-baseline gravitational wave detection. 

4. Point Source Interferometry 
Light-pulse atom interferometry enables precision tests of gravity [15, 18, 9] and electrodynamics 

[34] as well as practical applications in inertial navigation, geodesy, and timekeeping. Phase shifts for 
light-pulse atom interferometers demonstrate sensitivity to the initial velocity distribution of the atom 
source, often resulting in inhomogeneous dephasing that washes out fringe contrast [35]. In this sec-
tion, we show that use of spatially resolved imaging in combination with an initially spatially localized 
atomic source allows direct characterization of these phase shifts. We refer to this technique as point 
source interferometry (PSI). 

The contrast loss associated with such inhomogeneous dephasing is not fundamental, but is a con-
sequence of atom detection protocols that average over velocity-dependent phase shifts. With PSI we 
establish a correlation between velocity and position and use spatially-resolved detection to form an 
image of the ensemble that reveals its velocity-dependent phase structure. A simple way to realize this 
correlation is through ballistic expansion of the ensemble. In the limit that the ensemble size at detec-
tion is much larger than its initial size, each atom’s position is approximately proportional to its initial 
velocity. Consequently, any initial velocity-dependent phase shift results in a spatial variation of the 
interferometer phase, yielding a position-dependent population difference between the two output 
ports of the interferometer. 

An important example of velocity sensitivity is due to rotation of the interferometer laser beams [36, 
9]. Rotation at a rate Ω leads to a phase shift (Table 4.1, term 2) that depends on (vx,vy), the initial
transverse velocity of the atom. In a rotating frame, this effect may be interpreted as a Coriolis accelera-
tion. PSI also allows observation of longitudinal velocity-dependent phase shifts in asymmetric atom 
interferometers [37] (e.g., Table 4.1, term 3). 

To demonstrate PSI, we induce a velocity-dependent phase shift in a 87Rb Raman light-pulse atom
interferometer. We launch cold atoms from the bottom of a 10-meter tall vacuum enclosure (Fig. 
4.1a) and apply a three-pulse accelerometer sequence (π/2− π − π/2) [21]. The first pulse serves as an 
atom beamsplitter, coherently driving the atoms into a superposition of states F = 1; p| ) and F = 2; p + 
hk

|
eff) with momentum difference hkeff =2hk. Over the subsequent T =1.15 s interrogation interval, the 

two parts of the atom’s wave function separate 
vertically by hkeff /m T =1.4 cm (Fig. 4.1b), at 
which time a mirror pulse reverses the relative 
momenta and internal states. After an identical 
drift time, a final beamsplitter pulse interferes 
the atom wave packets. We then image the atom 
fluorescence using a pair of CCD cameras locat-
ed below the interferometry region (Fig. 4.1c). 
By the time of imaging, 2.6 s after launch, the 
50 nK atomic source has expanded to 30 times 
its original size, establishing the position-veloci-
ty correlation necessary for PSI. 

We imprint a velocity-dependent phase shift 
by rotating the atom interferometer laser beam 
axis at a tunable rate δΩ. Figure 4.2 shows 
typical detected atom distributions for several 
different values of δΩx. 

The velocity-dependent phase gradient we ob-
serve in Fig. 4.2 is proportional to the applied 
rotation rate (Fig. 4.3). For faster rates, the phase 

Table 4-1: Velocity dependent phase shifts and their sizes as-
suming the following: keff = 2k =2 · 2π/780 nm, T =1.15 s, initial 
velocity spread vi = 2 mm/s (50 nK), initial positions χi = 200 
µm, |Ω| = 60 µrad/s, gravity gradient tensor components Tzi = 
3075 E, interferometer pulse timing asymmetry δT = 100 µs, and 
wavefront curvature α =(λ/10)/cm2. Note that for Tzx,Tzy = 50 E 
the size of term 5 is significantly smaller. The acceleration (term 
1) and gravity curvature (term 4) phase shifts are shown for refer-
ence. 
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Figure 4-1: (a) Schematic diagram of the apparatus, viewed from the side. The atom cloud (red circle) is cooled and launched from below 
the magnetically-shielded interferometry region. The two interferometer output ports are imaged by both perpendicular cameras (CCD1 
and CCD2). All interferometry pulses are delivered from the top of the tower and are retroreflected off a mirror (at angle θ(t)) resting on a 
piezo-actuated tip-tilt stage. (b) Image of the ensemble after a beamsplitter pulse showing the separation between two halves of the atomic 
wavepacket. For this shot we launched the atoms with extra velocity to reach CCD3. (c) Top view of the tip-tilt stage and lower cameras with 
the direction and magnitude of the Earth rotation ΩE and an (arbitrary) applied counter-rotation ΩC. 

shift is large enough that multiple fringe periods appear across the ensemble. Without spatially re-
solved detection, averaging over these fringes would yield negligible contrast. With PSI, we realize 
record duration atom interferometry, even in the presence of large rotation rates

To create the cold atomic source, we load 4 × 109 atoms from a magneto-optical trap into a plugged 
quadrupole trap, where we evaporate with a microwave knife [39, 40]. A magnetic lensing sequence 
in a time-orbiting potential (TOP) trap collimates the atom source in 3D, cooling and expanding the 
cloud while maintaining high phase space density1 . The final cloud contains 4 × 106 atoms at 50 nK 
with an initial radius of 200 µm. Alternatively, we can produce clouds at 3 nK with 105 atoms and an 
initial radius of 30 µm by evaporating in a TOP trap with a microwave knife prior to the magnetic 
lensing sequence.

A microwave pulse transfers the ultracold atoms into a magnetically-insensitive Zee-man sublevel. 
They are then coherently launched with an optical lattice [43], which transfers 2386 photon momenta 
with a peak acceleration of 75 g. They enter the in¬terferometer region, a 10 cm diameter, 8.7 m long 
aluminum vacuum tube. A solenoid wound around the tube provides a bias magnetic field, and three 
layers of magnetic shielding suppress the environmental field to < 1 mG [44]. 

A small fraction of the atoms are launched into ±2lk momentum states. We purify the ensemble’s 
vertical momentum with a 135 µs Raman π-pulse, which transfers a 25 nK 

(0.1 hk) subset of the ensemble into |F =1). A short pulse resonant with |F =2)→ |F' =3) blows away 
atoms that did not transfer. 

A pair of fiber-coupled 1 W tapered amplifiers (TAs) generate the retroreflected interferometer puls-
es. The seeds for the two TAs are derived from a common source cavity-stabilized to a linewidth of < 1 
kHz and detuned 1.0 GHz blue from the 780 nm D2 line (|F =2)→|F' =3)). The seed for one TA passes 
through a fiber phase modulator that generates the 6.8 GHz sideband necessary for Raman interfer-
ometry. An acousto-optic modulator (AOM) chirps the other seed to correct for the atoms’ Doppler 
shift. The output of the TAs are combined on a polarizing beamsplitter cube, and the copropagating 
beams are diffracted by an AOM that acts as a fast optical switch. The beamsplitter and mirror pulses 
are 35 µs and 70 µs in duration, respectively. The beams have a 2cm 1/e2 intensity radial waist. The
relative power of the two beams is chosen empirically to suppress intensity-dependent detunings by 
balancing AC Stark shifts (to < 2 kHz). 
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Figure 4-2: Spatial fringes on the atom population observed on CCD2 versus rotation rate offset δΩx. Blue versus red regions show anti-
correlation in atom population. The second output port, with fringes π rad out of phase, is not shown. Each image is the second-highest 
variance principle component arising from a set of 20 measurements [38].  

Figure 4-3: Fringe spatial frequency (blue squares, solid line) and contrast versus applied rotation for the data in Fig. 4.2. The fitted slope 
of the fringe spatial frequency is consistent with term 2 of Table 4.1 to < 10%. Fringe contrast is observed over a wide range of rotation rates 
(red triangles, dotted line Gaussian fit), while the contrast from integration detection decays rapidly (black circles, dashed line Gaussian fit).. 

Prior to detection, we spatially separate the output ports by applying a short pulse (∼ 50 photon
recoils) resonant with |F =2)→|F' =3). We wait 50 ms before simultaneously halting and imaging the 
atoms with a 2 MHz red-detuned beam. The atoms are nearly at rest after the first 300 µs of the 5 ms 
imaging time. The scattered light is collected by two orthogonal CCD cameras, each with a numerical 
aperture of 0.25 (Fig. 4.1c). The time from initial atom loading to the final image is 20 s. 

We precisely control the direction of the interferometer beams with an in-vacuum, piezo-actuated 
tip-tilt stage onto which the retroreflection mirror is kinematically constrained. The stage has 1 nrad 
measured precision and a range of 400 µrad. The stage platform is secured kinematically to three 
nanopositioners (Nano-OP30; Mad City Labs) by stiff springs. The nanopositioners are bolted to the 
vacuum enclosure, which is anchored to the vibrationally-quiet (10−8 g/√Hz) concrete floor. 

The rotation of the Earth is a significant source of velocity-dependent phase shifts. At our latitude in 
Stanford, California, the effective rate is ΩE = 57.9 µrad/s, which induces fringes of periodicity similar
to the highest rotation rate in Fig. 4.2. With the tip-tilt stage we apply a compensating rotation of 
equal and opposite magnitude (ΩC = −ΩE) to eliminate these phase shifts [35, 9, 45]. We implement 
this rotation by incrementing the mirror’s angle in discrete steps between each interferometer pulse. In 
Figs. 4.2 and 4.3 we add a variable rotation rate δΩx to this nominal rotation compensation vector. 

Figures 4.4a and 4.4b show images of both output ports for a rotation-compensated interferometer 
using two atom source temperatures. The interferometer in Fig. 4.4a (3 nK) has an integrated inter-
ferometer contrast of 80% while that in Fig. 4.4b (50 nK) shows a contrast of 48% 2 . The contrast is 
reduced for the hotter source because of Rabi pulse area inhomogeneities due to larger horizontal cloud 
diameter (with respect to the spatially nonuniform laser beam intensity) and larger Doppler width. 

With PSI, we maintain spatial fringe contrast even in the presence of large net rotation rates (Fig. 
4.3). By comparison, the conventional integrated contrast for the same data decays rapidly with in-
creasing rotation rate because a spatial average over the fringe pattern washes out the interference. 
The reduction in the PSI fringe contrast at higher rotation rates is not fundamental, but results from 
heating during imaging and imperfect alignment between the applied rotation δΩ and the camera 
line-of-sight. 
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Figure 4-4: Images of the interferometer output ports using (a) 3 nK and (b) 50 nK atom sources with rotation compensation (ΩC = −ΩE).
The upper (lower) port consists of N1 (N2) atoms in state F|  =1) (|F =2)). Each pair of images represents the two extremes in the observed 
population ratio, N1/(N1 +N2) (open circles in (c) and (d)). Population ratio variations between trials re¬

¬
flect interferometer phase variations 

caused by vibration of the retroreflec tion mirror. Also shown in (a) and (b) are the atom densities integrated horizontally for the two images 
(black and red curves), with the shaded regions used to determine the port atom numbers, Ni. The lower port has been optically pushed, 
resulting in a hotter cloud with fewer peak counts. Both ports are heated by a 5 ms imaging pulse. This heating is most evident for 3 nK clouds. 

To compute spatial fringe contrast in Fig. 4.3, we divide the fitted amplitude of the population 
fringes by the fitted amplitude of the underlying cloud [38]. While fringes are visible on each raw im-
age, we use Principal Component Analysis (PCA) as a filter to isolate the population fringe from the 
cloud shape in a model-independent way for more robust fits [46]. The fitted fringe frequency provides 
the magnitude of the phase gradient.

We also measure the rotation rate of the Earth. After coarsely compensating for the Earth’s rotation 
with the tip-tilt stage, we tune the applied rate by adding a small rotation δΩE ≡ ΩC − ΩE along the
nominal direction of true North (ϕC ≈ ϕE + π). We observe the resulting phase gradient simultaneously 
on CCD1 and CCD2. The magnitude of the observed phase gradient depends on the projection of 
the net rotation rate onto each camera (see Fig. 4.1c). To detect small phase gradients that generate 
less than 2π radians of phase across the ensemble, we extract the differential phase ΔΦLR by splitting 
each image about a vertical line and analyzing the left and right halves as independent interferometers. 

Figure 4.5a shows ΔΦLR as a function of δΩE as observed on CCD1 and CCD2. Each measure-
ment is the result of 20 interferometer cycles. We parametrically plot the population ratio of the left 
half versus the right (e.g., Fig. 4.5b) and extract the differential phase and contrast using an ellipse 
fitting procedure [30]. Occasional trials (< 5%) that display no interference appear at the center of the 
ellipses and are rejected. The horizontal intercept of a linear fit to this data provides a measurement of 
Earth’s rotation rate with a precision of 200 nrad/s. 

The difference in the intercepts observed by the two cameras indicates that the ro¬tation compen-
sation direction ϕC is slightly misaligned from true North ϕE such that Δϕ ≡ ϕC − (ϕE + π) ≠ 0. This 
results in a spurious rotation (Δϕ ΩE sin ϕE)ˆx imprints a phase gradient visible on CCD2 (see Table 
4.1, term 2) independent of δΩE . Likewise, a spurious rotation (−Δϕ ΩE cos ϕE)Ŷ imprints a phase 
gradient visible on CCD1. The slopes for the two cameras in Fig. 4.5 are different because of unequal 
projection of ΩE and small differences in the projected widths of the ensemble. 

Although the mean interferometer phase is dominated by seismic noise contributions at long T, 
we can infer an acceleration sensitivity using the observed differential phase noise between different 
parts of the imaged cloud. We divide the output port images using a checkerboard grid and study the 
differential phase between the combined even and combined odd grid squares. Varying the grid size s 
in this analysis reveals correlated phase noise at different spatial scales 3 . Analyzing 280 trials with ΩC 
≈−ΩE, we find the differential even-odd phase noise is 2.0 mrad per shot for grid sizes below s = 3 mm. 

Combined with the acceleration response (Table 4.1, term 1), this implies an acceleration sensitivity 
of 6.7 × 10−12g in one shot4, an improvement of more than two orders of magnitude over previous lim-
its [47]. By comparison, the atom shot-noise limit for the 4 × 106 atoms used in this interferometer at 
50% contrast is ∼ 4 × 10−12g in one shot. Note that this grid analysis rejects low spatial frequency varia-
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Figure 4-5: (a) PSI dual-axis gyroscope. We extract the differential phase ΔΦLR between the left and right sides of the ensemble as a func-
tion of the rotation rate δΩE, as measured on cameras CCD1 (black, dashed) and CCD2 (red, solid). (b) Sample ellipses emerging from the 
right-versus-left population ratios of CCD2 (upper) and CCD1 (lower), corresponding to the open circles of part (a). 

tions of the phase across the cloud that originate, for example, from fluctuations in initial kinematics. 
The results are applicable to measurements where these effects are expected to be common, such as for 
overlapped ensembles of two species of atoms in an equivalence principle test. 

PSI does not require a 10-meter apparatus. A dual-axis gyroscope with shot-noise limited rotation 
noise of 100 µdeg /√hour hour can be realized with 106 atoms prepared at 3 mK in an interferometer 
with T = 10ms and 4hk atom optics cycling at 25 Hz (with atom recapture). 

PSI can measure the interferometer beam optical wavefront in situ. This is desirable in precision 
atom interferometry applications, including gravitational wave detection [3]. Each atom in an expand-
ing ensemble samples the laser phase at three locations, thereby measuring wavefront aberrations. Term 
6 of Table 4.1 models the interferometer response to a parabolic wavefront curvature of the form kα 
(χ2 + y2)/2. Our measured phase noise implies a wavefront sensitivity of α ∼ λ/500/cm2 in one shot. 

Finally, PSI allows measurement of multiple components of the gravitational gradient tensor (Table 
4.1, term 5). The sensitivity we report is also sufficient to observe the gravity curvature induced phase 
shift (Table 4.1, term 4) [48]. Such sensitivity enables precision tests of the equivalence principle and 
general relativity [9, 18]. 

5. Enhanced Atom Interferometer Readout through the Application of
Phase Shear 

Light-pulse atom interferometers use short optical pulses to split, redirect, and interfere freely-falling 
atoms [49]. They have proven widely useful for precision metrology. Atom interferometers have been 
employed in measurements of the gravitational [15, 31] and fine-structure [34] constants, in on-going 
laboratory tests of the equivalence principal [9] and general relativity [10, 50], and have been proposed 
for use in gravitational wave detection [2, 1]. They have also enabled the realization of high perfor-
mance gyroscopes [35], accelerometers [6], gravimeters [36], and gravity gradiometers [14]. 

Current-generation light-pulse atom interferometers determine phase shifts by recording atomic 
transition probabilities [49]. These are inferred from the populations of the two atomic states that 
comprise the interferometer output ports. Due to experimental imperfections, interference contrast 
is not perfect – even at the extremes, the dark port does not have perfect extinction. This results in 
the need to independently characterize contrast prior to inferring phase. Typically, this is done with a 
sequence of multiple shots with different phases, such that the population ratio is scanned through the 
contrast envelope [51]. Such an experimental protocol relies on the stability of the contrast envelope. 
In many cases, the contrast varies from shot to shot, introducing additional noise and bias in the phase 
extraction process. 

We present a broadly applicable technique that is capable of resolving interference phase on a single 
experimental shot. This is accomplished through the introduction of a phase shear across the spatial 
extent of the detected atom ensemble. The shear is manifest in a spatial variation of the atomic tran-
sition probability, which, under appropriate conditions, can be directly observed in an image of the 
cloud [Fig. 4.1(b)]. Using this phase shear readout (PSR), it is no longer necessary to vary the phase 
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Atom Interferometry for Detection of Gravitational Waves 
over many shots to determine the contrast envelope. Instead, the contrast of each shot can be inferred 
from the depth of modulation of the spatial fringe pattern on the atom ensemble. The interferometer 
phase is directly determined from the phase of the spatial fringe. 

The analysis of PSR fringes reveals rich details about atom interferometer phase shifts and systematic 
effects, much as the analysis of a spatially varying optical interference pattern yields information about 
the optical system and its aberrations. The intentional application of a phase shear is analogous to the
use of an optical shear plate, where a large applied phase shear highlights small phase variations across 
a laser beam. 

In this work, we show that beam pointing can be used to introduce shear in a way that is broadly 
applicable to existing interferometer configurations. In particular, this method does not require Bose-
Einstein condensed or ultra-cold atomic sources. We demonstrate the power of PSR by implementing 
a precise atom interferometer gyrocompass. We also show how laser beam pointing and atom-optics 
pulse timing asymmetry can be combined to provide arbitrary control over the phase shear axis in the 
limit where the atoms expand from an effective point source. 

The apparatus and methods are similar to those of our previous work [52]. Using evaporative cool-
ing followed by a magnetic lens, we obtain a cloud of 4 × 106 87Rb atoms with a radius of 200 µm and
a temperature of 50 nK. These atoms are prepared in the magnetically insensitive |F =2,mF =0) state, 
and then launched vertically into an 8.7 m vacuum tube with a chirped optical lattice. The atoms fall 
back to the bottom after 2.6 s, and we then use a vertical 

Figure 5-1: (a) Schematic diagram of the appara-
tus, showing beam-tilt phase shear readout. Atoms are 
cooled and launched upward into an interferometer re-
gion, not shown. Once they fall back to the bottom, the 
wavepackets are overlapped and an interference pattern 
(blue fringes) is imaged by two perpendicular cameras 
(CCD1,2). An additional optical pulse is used to separate 
the two output ports (F = 1 and F = 2) by pushing the 
F =2 atoms downwards. All atom optics pulses are per-
formed by lasers incident from above and retroreflected 
off of a piezo-actuated mirror. Tilting this mirror by an 
angle δθ for the third atom optics pulse yields a phase 
shear. (b) A fluorescence image of the atomic density 
distribution taken with CCD2 after interference. Spatial 
fringes result from a third-pulse tilt δθ = 60 µrad about 
the x-axis. The pushed F = 2 atoms are heated, yielding 
reduced apparent contrast, and we ignore the F = 2 out-
put port in subsequent analysis. 

fluorescence beam to image them onto two perpendicular CCD cameras (Fig. 5.1). 
While the atoms are in free-fall in a magnetically shielded region [44], we perform light-pulse atom 

interferometry with a π/2 −π −π/2 acceleration-sensitive configuration with an interferometer dura-
tion of 2 T =2.3 s. The atom optics pulses are applied along the vertical axis using two-photon Raman 
transitions between the F =2,| mF =0) and F =1,| mF =0) hyperfine ground states (the lasers are detuned 
1.0 GHz blue of the |F =2)→|F' =3) transition of the D2 line). The atom optics light is delivered from 
above and retroreflected off of an in-vacuum piezo-actuated tip-tilt mirror. 

The effective wavevector keff of the Raman transitions is determined by the pointing direction of 
the retroreflection mirror [9], which is set by the piezo stage for each atom-optics pulse with 1 nrad 
precision. We compensate for phase shifts arising from the rotation of the Earth by applying additional 
tilts to each of the three pulses, as described in Refs. [9, 52], but the mirror angle can also be used to 
induce shear for PSR. 

To generate a controlled phase shear, we tilt the mirror for the final π/2 pulse by an angle δθ with 
respect to the initial two pulses (in addition to the tilts needed for rotation compensation). In the semi-
classical limit, the phase shift for a three-pulse interferometer is ΔΦ = k1 · x1 − 2k2 · x2 + k3 · x3, where 
ki ≡ keff,i is the effective propagation vector at the time of the ith pulse and xi is the classical position 
of the atom [51, 49]. For example, tilting k3 by an additional angle δθ about the x-axis yields a phase
ΦH = keff δθ y3 across the cloud, where y3 is the horizontal position at the third pulse [Fig. 5.1(a)]. This 

PROPRIETARY INFORMATION: Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this proposal. 1–15 



 

 

   
 

 

 

 

 

 
  

 

	
  

Atom Interferometry for Detection of Gravitational Waves 
phase shear is independent of the details of the previous atom-laser interactions and of the implemen-
tation of the atomic source (in particular, its spatial extent, temperature, and quantum degeneracy). 

Figure 5.1(b) shows an image of the interferometer output that results from this horizontal phase 
shear, with δθ = 60 µrad. An optical “pushing” pulse, 5 µs long and resonant with the |F =2)→|F ' 
=3) transition, separates the interferometer output ports. Complementary fringes appear across each 
port, corresponding to the spatial variation of the atomic transition probability that results from phase 
shear. For linear shears, the atom distribution at each port is modulated by an interference term P (r)=
1/2+C/2 sin(κ · r + ϕ0), where C is the contrast, ϕ0 is the overall interferometer phase, and κ is the 
wavevector of the spatially varying component of the phase. 

Since the retroreflection mirror can be tilted about an arbitrary horizontal axis, beam-tilt PSR can 
yield fringe patterns with κˆanywhere in the xy plane, orthogonal to the laser beam axis [see Fig. 
5.1(a)]. For instance, it is possible to choose a tilt axis parallel to the line-of-sight of either of the CCD 
cameras (which are perpendicular), in which case we see a spatial fringe pattern with one camera, but 
no contrast with the other. Hereafter, we tilt about the x-axis, yielding fringes on CCD2.

The spatial frequency κ of beam-tilt PSR fringes is set by the tilt angle δθ. Figure 5.2(b) shows the 
expected linear dependence, and it is apparent that by appropriate choice of the shear angle, the period 
of the shear can be tuned to an arbitrary value. While high spatial frequencies are desirable, in practice 
spatial frequency is limited by the depth of focus of the imaging system. Because we detect the atoms 
at a final drift time td =2.7 s that is later than the third pulse time t3 =2.5 s (both measured from the 
time of trap release), we must correct for the continued motion of the atoms. In the limit where the 
initial size of the atomic source is much less than the final spatial extent of the atomic cloud (point 
source limit [52, 53]), the position at td of an atom with velocity vy is y ≈ vytd ≈ y3 td/t3. The detected 

Figure 5-2: Horizontal fringes resulting from beam-tilt PSR in a 2 
T =2.3 s interfer¬ometer. (a) Spatial fringes observed on CCD2 with 
third-pulse tilt angles δθ = −80, −40, 0, +40, +80 µrad (from left 
to right). Red versus blue regions show anti-correlation in atom pop-
ulation. Each image is the second-highest variance principal compo-
nent arising from a set of 20 fluorescence images [52]. (b) Measured 
fringe spatial frequency |κH |, resulting from images filtered using 
principal component analysis [52]. We bin the images vertically and 
fit a Gaussian modulated by the interference term P (r). The curve is 
a theoretical prediction with no free parameters. 

horizontal fringe spatial frequency is then κH ≡ ∂yΦH = keff δθ t3/td. 
To demonstrate single-shot phase readout, we implement a short interferometer sequence (2 T = 50 

ms) near the end of the drift time. In this case, the atom cloud has a large spatial extent for the entire 
pulse sequence. For each shot, we set the interferometer phase with an acousto-optic modulator and 
read it back using beam-tilt PSR with δθ = 60 µrad. Figure 5.3 shows the expected correspondence 
between the applied and measured phases. The spread in the measured phase is due to technical noise 
associated with spurious vibrations of the optics for the laser beams that drive the stimulated Raman 
transitions. 

As an example of how PSR can enable a precision measurement, we implement an atom interfero-
metric gyrocompass in a long interrogation time (2T =2.3 s) configuration. In this case, the Raman 
laser axis is rotated to compensate Earth’s rotation, keeping this axis inertially fixed throughout the in-
terrogation sequence. At the latitude of our lab in Stanford, California, this corresponds to an effective 
rotation rate of ΩE = 57.9 µrad/s about an axis along the local true North vector, which we take to be 
at angle ϕE with respect to the x-axis. However, a small misalignment δϕE « 1 between the rotation axis 
of the retroreflection mirror and true North results in a residual rotation δΩ ≈ δϕE ΩE (sin ϕE − cos 
ϕEyˆ) that leads to a Coriolis phase shift ϕC =2keff ·(ϕΩ × v) T2 that varies across the cloud. As before, in 
the point source limit vy ≈ y/td, so the Coriolis phase gradient is κC,y ≡ ∂yΦC =2keffT2δϕEΩE sin ϕE/td. 
To realize a gyrocompass, we vary the axis of applied rotation by scanning δϕE, and identify true North 

PROPRIETARY INFORMATION: Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this proposal. 1–16 



 

 

 
 

 

 
 

	
  

Atom Interferometry for Detection of Gravitational Waves 

Figure 5-3: Demonstration of single-shot phase readout with a 2 T = 50 ms interferometer. (a) Measured phase versus the applied phase 
of the final atom-optics pulse for 96 shots. A line with unity slope is shown for reference. The measured phase is fit from images like those in 
(b). The measurement scatter at each phase step is dominated by technical noise introduced by vibration of the Raman laser beam delivery 
optics. (b) Five sample interferometer shots [open circles in (a)], separated in measured phase by ∼ π/2 rad. All images are filtered with 
principal component analysis. 

with the angle at which κC,y = 0. 
It can be challenging to measure small phase gradients with spatial frequencies κ « 1/σ, where σ 

is the width of the atom ensemble. In this limit, there is much less than one fringe period across the 
cloud, so the fringe fitting method shown in Fig. 5.2(b) cannot be used. Instead, the gradient can be 
estimated by measuring phase differences across the ensemble (e.g., with ellipse fits [30]), but this pro-
cedure can be sensitive to fluctuations in the atomic density distribution (width, position, and shape). 

To circumvent these issues, we take advantage of PSR by applying an additional phase shear that 
augments the residual Coriolis shear ΦC . An additional tilt of δθ = ±60 µrad about the x-axis is added
before the final interferometer pulse. This introduces a horizontal shear ΦH with approximately 2.5 
fringe periods across the cloud, visible on CCD2. Depending on the sign of the tilt angle, this shear 
adds to or subtracts from C . The combined phase gradient is then κ± ≡ keff |δθ| t3/td ± κC,y and is large
enough to use fringe fitting to extract the spatial frequency. This technique of shifting a small phase 
gradient to a larger spatial frequency is analogous to a heterodyne measurement in the time domain. 
In both cases, the heterodyne process circumvents low frequency noise. By alternating the sign of the 
additional 60 µrad tilt, a differential measurement is possible whereby systematic uncertainty in the 
applied shear angle is mitigated: Δκ ≡ κ+ − κ− =2κC,y, independent of the magnitude of δθ. 

Figure 5.4 shows the expected linear scaling of the differential spatial frequency Δκ as a function of 
the applied rotation angle δϕE. A linear fit to the data yields a horizontal intercept that indicates the 
direction of true North with a precision of 10 millidegrees. We note that an apparatus optimized for 
gyrocompass performance could achieve similar or better precision in a more compact form factor. 
Also, this method does not require a vibrationally stable environment since the measurement rests on 
the determination of the fringe period, not the overall phase. 

Finally, we show how combining beam tilts and interferometer timing asymmetries provides nearly 
arbitrary control over the spatial wavevector κ of the applied shear. While a beam tilt applies a phase 
shear with spatial wavevector in the plane transverse to the interferometer beam axis, interferometer 
timing asymmetry yields a phase shear parallel to the beam axis (κ I keff) in the point source limit [37]. 
To create an asymmetric interferometer, we offset the central π pulse by δT/2 such that the time be-
tween the first and second pulses (T + δT/2) is different from the time between the second and third 
pulses (T − δT/2). The resulting phase shift, ΦV = keff vzδT , depends on the atoms’ Doppler shift along 
the direction of keff. The phase shear at detection is then κV = ∂zΦV = keff δT/td. Figure 5.5(a) shows 
the resulting vertical fringes, which are orthogonal to those from beam tilts seen in Fig. 5.2(a) and are 
simultaneously visible on both CCD cameras. The fitted fringe frequency shown in Fig. 5.5(c) exhib-
its the expected linear dependence as a function of δT , deviating at low spatial frequency due to the 
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Atom Interferometry for Detection of Gravitational Waves 

Figure 5-4: Gyrocompass using the phase shear method. Each Δκ point is the coronation of 40 trials, 20 at each of the two applied tilt values 
(δθ = ±60 µrad). The horizontal intercept of a linear fit gives the direction of true North. . 

difficulty of fitting a fringe with κ ∼ 1/σ. 
For these vertical fringes, we find that the imaging pulse reduces the detected spatial frequency by 

stretching the cloud vertically. We independently characterize this stretch by measuring the vertical 
fringe period as a function of imaging duration τ and then extrapolating to τ = 0. The results indicate 
a fraction stretch rate of α =0.12 ms−1 . The modified prediction for the spatial frequency is κ8V = κV 
/ (1 + ατ ). With the τ = 2 ms imaging time used, this agrees well with the measurements of Fig. 5.5(c) 
with no free parameters. 

By combining beam tilt shear κH with timing asymmetry shear κV , we can create spatial fringes at 
arbitrary angles. The composite phase shear is at an angle Θ = arctan (κV /κH ) = arctan [δT/ (δθ t3)].
Figures 5.5(b) and (d) show the fringe images and extracted angles using a δθ = 40 µrad beam tilt
combined with a range of timing asymmetries. To find the angles, we apply Fourier and principal com-
ponent filters and fit with a two-dimensional Gaussian envelope modulated by an interference term P 
(r). Because the vertical stretch imparted by the imaging beams modifies the measured angle, we again 
correct for image stretching during detection. The modified prediction, Θ= arccot [(1 + ατ) cot Θ], 

Figure 5-5: Arbitrary control of spatial fringe direction. (a) Second-highest variance principal components from sets of 20 trials with timing 
asymmetry δT = −240, −160, 0, +160, +240 µs (from left to right) (b) Comparable images for trials with both a beam tilt δθ = 40 µrad 
and δT = −160, −80, 0, +80, +160 µs. (c) Measured fringe spatial frequency extracted from fits to principal component filtered images 
with vertical fringes. (d) Measured fringe angle extracted from fits to images with tilted fringes. In both (c) and (d) the curves are predictions 
with no free parameters. 
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Atom Interferometry for Detection of Gravitational Waves 
shows good agreement with the measured angles of Fig. 5.5(d) with no free parameters. 

We have demonstrated a precision gyrocompass with PSR, but with arbitrary control of the shear 
angle the method can be used to measure phase shifts and gradients from any origin. For example, a 
vertical gravity gradient Tzz induces a phase shear keff TzzvzT3 . This shear translates the measured angles 
of Fig. 5.5(d) such that Θ = arctan [(δT − TzzT3)/ (δθ t3) . For our parameters, this would yield an 
effective asymmetry of 2 ns/E. PSR can also be used to measure nonlinear phase variations, including 
optical wavefront aberrations [52]. Finally, we expect the phase shear method to be enabling for future 
inertial sensors operating on dynamic platforms, where single shot estimation of phase and contrast is 
vital. 
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A general introduction to atom interferometry is provided here as background.  For a detailed 

discussion of how to calculate phase shifts in atom interferometry, see [9].  For a treatment of 

atom interferometry relevant to the detection of gravitational waves specifically, see [2]. 

A.1. Optical Interferometry 

“What is an optical interferometer and what is its use?” 

As shown in Figure A.1, the basic principle of an optical interferometer is that a coherent 

electromagnetic wave (laser) is split into two paths, redirected, and recombined and the relative 

phase or Optical Path Difference ( ) between the two paths is measured. A beam splitter is 

used to split the laser beam, and the two beams are redirected using mirrors. Recombining the 

beams is done using beam splitters.  

Figure A.1 shows a generic optical interferometer. There are two out ports for this 

interferometer. The interferences at port one and two are: 

(E.1) 

(E.2) 

and are total intensities at port one and two. and are intensities in the two 

paths after beam splitting.  is the Optical Path Difference between the two paths. is the 

wavelength of the laser. is the controlled phase, which can be changed in time to values 0, 90, 

180, and 270 degree for phase shifting. This process is not necessary to measure but 

greatly improves measurement precision. To get good contrast for interferometry, and are 

equal in intensity, so the equation above can be written as: 
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Generally, one path of the interferometer is the reference path with known optical surfaces and 

the second path is the test optical component. Control of  is done through motion of the 

reference mirror. Note that Figure A.1 is a Space-Space diagram. 

Figure A.1. An Optical Interferometer 

Optical interferometers are used to measure surfaces, displacements, and absolute lengths. In this 

case, the desired information is the surface or position of object(s). The desired information 

about the object is encoded in the reflected light and the interference of the two coherent light 

beams results in a change of intensity as a function of the controlled phase . This intensity 

variation is referred to as an interference fringe pattern or “fringes.” Fringes are analyzed and 

 are measured. 

In optical interferometry, noise is mostly from the environment; vibration and acoustic 

sources are problematic.  can be enhanced using multiple reflections from the test surface. 

However, due to practicality and/or for some interferometer configurations, multiple reflections 

are generally limited to four. Current optical interferometers used in measuring large telescope 

mirrors have repeatability of 4 nm root mean square (RMS) for an average of 50 measurements, 

or an RMS of 28 nm per measurement. To minimize issues from vibration, measurements are 

spatially phase shifted rather than temporally. The fringes at port one and port two are 

complimentary to each other. Because energy through the interferometer is conserved, if the 

intensity at port one is zero, intensity is at its maximum at port two for the same controlled phase 

φ.
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A.2. Atom Interferometry 

“Why move away from optical interferometry and into using atom interferometry?” 

Over the past decade there has been tremendous progress toward using neutral atoms in 

measurement devices.  Atoms can have a better reproducibility, repeatability, and accuracy than 

any manmade instrument. Atoms in their own inertial frame are almost completely decoupled 

from their environment, so their noise floor can be lower than optical interferometers. In this 

frame (free fall), neutral atoms are excellent test particles for measuring gravitational fields. 

They can be used to measure the gravity gradient field of the Earth, Moon, other planets, or a 

gravitational wave emanating from a merger of two black holes. 

Atoms have both internal and external degrees of freedom. The internal degrees are 

different atomic energy levels and the external ones are the different momentum states the atoms 

can occupy. These multiple degrees of freedom offer flexibility and support a diverse variety of 

techniques that can be used to amplify the desired signal of an atom interferometer. This is 

somewhat analogous to the amplification that can be achieved in an optical interferometer by 

increasing the by using multiple reflections. Recent work demonstrated an atomic 

interferometer with a more than 50-fold amplification of the desired signal [8]. 

A.3. What is an atom interferometer? 

An atom can operate as an interferometer. To form an interferometer, two coherent waves are 

required. In an optical interferometer, the two coherent waves are generated by a beam splitter 

that splits the original electromagnetic wave (laser) into two paths. A material optical 

component, such as a beam splitter, splits a wave to two portions. In an atom interferometer, the 

two coherent waves are the two coherent states of the atom. The two states of the atom become 

coherent by applying a laser pulse to the initial state of the atom. This pulse is analogous to a 

beam splitter in optical interferometry. In atom interferometry, the coherent waves are material 

waves called de Broglie waves, and the beam splitter is a laser pulse electromagnetic wave.  

In atom interferometry, the material optical components such as beam splitters, 

combiners, and mirrors, are replaced by laser pulses. For example, the electromagnetic wave 

(laser) is replaced by de Broglie waves (material waves). Generating coherence between the two 

independent states of the atom is called the superposition state of the atom. Atom interferometry 

is manipulation of the superposition state and its interference with itself via laser pulses. 

Information in optical interferometer is on the test mirror and is encoded to the laser light 

via its reflection from it. The interference of the laser light with itself reveals the encoded . 

Information in atom interferometer is on the laser pulses and is encoded to the superposition state 

of the atom via its stimulated interactions. The interference of the superposition state with itself 

reveals the encoded . The de Broglie wave interferes with itself enabling measurement of 

the desired information encoded into it by the laser pulses. 

As with optical interferometers, different atom interferometer configurations are used for 

different measurements. A variety of different atom interferometers configurations are being
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considered for gravitational wave detection (see discussion in Section 2).  For simplicity, this 

tutorial focuses on three-pulsed atom interferometry using the Raman process. 

In atom interferometry, beam splitting, mirroring, and combining are done through interactions 

of laser pulses with an atom. The beam splitting and beam combining pulses are the same type, 

laser pulses. Mirroring is done by a laser pulse. 

To understand the nature of these pulses and their name, the focus will be on a specific 

interaction of laser with an atom called Raman process. In this process, the relevant energy states 

, excited state , and an intermediate state of the atom are the ground state . If the initial g 
state of the atom is the ground state , the desired state of the atom after applying the beam 

splitting pulse is the superposition state of and .  This state is represented by : 

(E.5) 

CWhere and are complex coefficients. The physical interpretation of this atom state is that 

it is neither completely in the ground state nor in the excited state; the probability that the atom is 

in a ground state is and the probability that the atom is in an excited state is . That is, a 

portion of the atom is in the ground state and a portion of it is in the excited state at the same 

time. If the atom initially is at the ground state , a portion of the atom, via stimulated 

absorption, absorbs the energy of the electromagnetic wave to be in excited state but it also 

absorbs the momentum and the phase of the electromagnetic wave. So, the portion of the atom in 

the excited state also has a different momentum and phase than the portion in the ground state. 

Because different portions of the atom have different momentum, the implication of the 

atom being continuously in the superposition state is spatial separation after a finite time. This 

spatial separation increases the sensitivity to phase measurements, which will be discussed later 

in this document. 

The phase of the laser also gets absorbed by the portion of the atom that is excited. This 

phase is added to the time evolution phase of the excited state portion of the superposition state. 

This phase is the desired information that is encoded to the atom by the laser. So, the above state 

becomes: 

(E.6) 
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where is the momentum of the ground state and is the momentum of the pulse. For a 

Raman process,  is equal to , where  is the wave vector of the laser. 

 with momentum , a laser pulse can 

 via stimulated emission. This interaction causes 

If the atom initially starts in the excited state 

induce a transition back to the ground state 

the state to evolve to 

 (E.7) 

Note that unlike in Eq. (E.6), the phase of the ground state appears with a negative sign here. The 

component that makes the transition to the ground state picks up the phase factor and the change 

in momentum while the excited state remains unaffected. The key is interaction. The portion of 

the atom that interacts with the laser pulse gets the information and the other state is unaffected. 

The next section provides a detailed description of the and coefficients. 

Figure A.2 represents a three-pulsed Raman atom interferometer Space-Time diagram. 

Pulses in this interferometer consist of two counter propagating lasers.   

Figure A.2. A Three-Pulsed Raman Atom Interferometer 
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Figure A.2 is an analog to the Figure A.1 optical interferometer. Unlike the optical 

interferometer, which is a Space-Space diagram, the atom interferometer diagram is a Space-

Time representation. An atom starts in the ground state and at time , a pulse of is applied to 

the atom. The pulse consists of two counter propagating laser pulses. Immediately after this 

pulse, the atom is in the superposition of the two states, with different momentum and phase. No 

other pulses are applied until the time . The above diagram depicts that, just before 

applying the second pulse, the states of the atom have been separated spatially due to the relative 

momentum (different slopes on the Space-Time diagram) between the two states. 

Just like in an optical interferometer that splits the beam and uses mirrors to redirect them 

to spatially-overlap to create the fringes, the states of the atom also have to be redirected. 

Therefore, at time , a pulse is applied that mirrors the components of the superposition 

state. This pulse reverses the momentum of the states and changes the ground state to the excited 

and the excited to the ground state. If the interferometer is ideal, at the time , the two 

states completely overlap and the final pulse is applied to recombine them. 

The ground state appears at port one and the excited state appears at port two. As shown 

in Figure A.2, the two ports are spatially separated. The fringes in the atom interferometer are the 

probability of finding the atom in a specific state vs. the control provided by the phase of the 

final pulse. 

Changing the phase of the final pulse acts like controlling the phase in optical 

interferometry using motion of the reference mirror. The phase difference between the two paths 

in this interferometer is expressed as, 

(E.8) 

where and are phases of the different paths indicated in diagram. 

(E.9) 

(E.10) 

(E.11) 

and are the two laser phases at the time of interaction. 

Probability of finding an atom in a ground state if the atom is initially in a ground state is: 
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The probability of finding an atom in an excited state if the atom is initially in the ground state 

is: 

 (E.13) 

Just like with the fringes in optical interferometry, in atom interferometry, the probability of 

finding the atom in an excited state or the ground state are complimentary to each other and the 

summation of the two probabilities adds to one. This is equivalent of the conservation of energy 

in optical interferometry. The next section briefly covers interaction of the laser pulses with an 

atom and provides additional description of the and  pulses. 

A.5.  How do laser pulses interact with an atom? 

As mentioned above, the Raman process involves three atomic levels called the ground state 

, excited state , and intermediate state . For appropriate choice of laser parameters [21], a 

andtwo-photon transition occurs between states    via virtual transitions to the 

i intermediate state .  Since the intermediate state  remains essentially unpopulated during 

this process, the Raman transition can be described as an effective two level interaction between 

and .  Therefore for a Raman process we can accurately treat the atom as a two level 

system ( and ) with energy states and . In the absence of any external 

electromagnetic field, these are the eigenvalues of the unperturbed Hamiltonian. 

When an external field is applied, an electric dipole moment is induced and the external 

field interacts with it. This adds a new term to t he Hamiltonian of the system. If the 

electromagnetic field is polarized in the  direction, then the electron is displaced in the 

direction with respect to the atom’s center of mass. The dipole moment matrix element between 

the ground and excited states is , 

 (E.14) 

where  and are the wave functions of the atom and the bracket is the Dirac notation for 

that integral. At any time, the wave function of the atom can be written as: 

 (E.15) 

Substituting this into the Schrodinger equation and taking advantage of the orthonormality of 

wave functions when integrating over space, the rate of change of and in time are 

described by the equation below: 

 (E.16) 
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where is the resonant frequency of the two level atom: 

 (E.18) 

and the polarized external field is: 

(E.19)

Introducing Rabi Frequency defined by: 

 (E.20) 

the rate equations can be rewritten as: 

 (E.21) 

 (E.22) 

A higher Rabi Frequency indicates a stronger laser and atom interaction. In atom interferometry, 

monochromatic power lasers are used and these interactions are strong. Assuming the resonant 

frequency of the atom, ω, and the frequency of the laser, , are the same, and neglecting the 

terms oscillating and solving the equations above for and : 

 (E.23) 

 (E.24) 

Probabilities for finding the electron in the ground and excited states are then given by: 

 (E.25) 

 (E.26) 
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The time dependence of these probabilities shows that electron at time is in the excited 

state, but at time is back to ground state. The process repeats itself with a period equal to 

The atomic energy level oscillates back and forth between the ground and the excited 

states. This oscillatory behavior in response to the strong-field is called Rabi Oscillation or Rabi 

Flopping. If the external field (laser) is not at resonance with the atom, then the Rabi Frequency 

has the detuning term, 

(E.27) 

This shows the Rabi Frequency increases as the external field is detuned, but the probability of 

also finding the electron in the excited state is decreased by , 

(E.28) 

If there are no damping mechanisms, such as spontaneous emissions, then for a continuous 

external field, flopping continues until the field is turned off.  

, is time varying.  If In atom interferometry, lasers are pulsed. So the electric field, 

is changing in time, so is the Rabi Frequency, . 

It is useful to define Pulse Area, , according to: 

 (E.29) 

A pulse that has an area of  is called -pulse. An atom in the ground state will be in the 

excited state after interacting  with a -pulse. This atom remains excited until the spontaneous 

emission of the excited state. If shortly (i.e., in a shorter time than the lifetime of the electron in 

the excited state) after applying the -pulse a -pulse is applied, then the atom would 

transition to the ground state. For the same Rabi Frequency, a pulse is twice as long as a -

pulse. A -pulse for the same is half the length of a -pulse. 

πA -pulse makes a complete transition from the ground state to the excited state and vice 

versa.  A -pulse puts the atom in the superposition state. This is a state described by a coherent 

summation of the ground and excited state; there are specific phase relations between the two 
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states of this superposition state. Therefore, a portion of the atom is in the excited state and 

portion of it is in the ground state at the same time. 

Figure A.2 demonstrates that the first -pulse puts the atom that was initially in the 

ground state into superposition of the ground and excited state. After a time of T, free 

propagation for the states of the atom with different momentums, a -pulse is applied. This 

pulse interacts with the superposition state and makes a transition from ground state to excited 

state and from excited state to ground state and reverses all momentums of the states’ 

constituencies. After a time of T, the last -pulse is applied. This pulse puts the ground state 

into superposition of the two states and also puts the excited state into superposition. The last 

pulse acts as combiner of the states. Then, the probability of detecting the atom in an excited and 

ground state is done in the ports of the atom interferometer. 

A.6. Geometrical Interpretation of a Three Pulsed Atom Interferometer 

An arbitrary superposition state of a two level atom will have a wave function of the form given 

below: 

(E.31) 

The normalization condition on the wave function requires that: 

(E.32) 

This suggests the state of the atom can be represented by a unit vector from the origin on a 

sphere. This vector is called the Bloch vector and the sphere is called a Bloch sphere. The 

direction of the Bloch vector can be represented in Cartesian or spherical coordinates. For a unit 

vector, they are related by, 

(E. 33) 

Only two independent variables are needed to define an arbitrary state of the atom. 

The Bloch vector and the wave function can be connected by the top and bottom of the sphere to 

the ground and excited states respectively. The ground state, with , thus corresponds to 

in the Cartesian and in the spherical coordinate systems. The excited state,
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with thus corresponds to in Cartesian and in spherical 

coordinates. An arbitrary state in Cartesian coordinates is given by: 

 (E.34) 

In polar coordinates, this simplifies to: 

 (E.35) 

with 

 (E.36) 

Therefore, the superposition state of an atom can be written in terms of the polar coordinates: 

 (E.37) 

This one-to-one mapping allows us to visualize an arbitrary superposition state of a two level 

atom in a geometric way, which is very useful when considering the resonant interaction with an 

intense laser. 

Figure A.3 illustrates the states of the two level atom and its geometrical representation 

on the Bloch sphere. Every point on the sphere corresponds to a coherent state of a two level 

atom. 
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 Figure A.3. The Bloch Sphere and States of an Atom 
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For example, the point on the positive x-axis is the state: 

xLikewise, the point on the -axis on the negative side is: 

The time dependence of the wave function of a two level atom has an intrinsic angular 

frequency, , that is related to the energy difference between the two states via equation. The 

Bloch vector that represents the state of the atom rotates with an angular frequency of about 

Zthe -axis. If we make a coordinate transformation to this rotating frame, then the Bloch vector 

is stationary. Notice so far we have only assumed the bare atom and no external field. The 

question is what happens to the Bloch vector when the resonant external field is applied to the 

atom. 

The application of a short resonant laser pulse is considered as a coherent operation on 

the Bloch vector. Assuming the damping time due to spontaneous emission is much longer than 

the pulse duration, then the magnitude of the Bloch vector is preserved and the Bloch vector only 

changes direction. This means the laser pulse acts as a rotation operator. A rotation operator 

acting on an initial Bloch vector results in another Bloch vector that can be acted upon by 

another rotation operator, and so on. 

This process of applying rotational operators (laser pulses) to consecutive Bloch vectors 

can continue until the damping destroys the coherence of the superposition state of the atom. To 

represent the pulse lasers as rotation operators on the Bloch sphere, we use Pauli’s rotation 

matrices. These rotational matrices are used for two-dimensional complex vector spaces more 

commonly than the more familiar three-dimensional rotational matrices used for a real three-

dimensional vector space. 

We do not make any attempt to derive them, but just list them and use them in this paper. 

Rotation angle, , about the  axes can be performed using matrices below, respectively: 

(E.40) 

 (E.38) 

 (E.39) 
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(E.42) 

As previously discussed, starting with an atom in a ground state and applying a -pulse causes 

the atom to make a complete transition to the excited state. This can be examined using Bloch 

representation.  

The atom in the ground state, 

 (E.43) 

out the 

x-axis to the Bloch vector : 

This vector points toward the positive direction. Then, applying a rotation of z 

 (E.44) 

 (E.45) 

Except for an overall  phase, the atom is in the excited state. The Bloch vector points toward 

the - direction. It is important to remember what the rotation operator physically represents. The z 
laser pulse has intensity, polarization, and duration. The laser polarization induces an electric 

dipole in the atom in the direction of the polarization. This induced electric dipole interacts with 

the laser. The strength of this interaction is measured by Rabi Frequency, which is a product of 

the electric field of the laser and the magnitude of the induced dipole moment. The duration of 

the pulse multiplied by the Rabi Frequency generates the type of pulses, , needed to 

transition the atom from one state to another. Next, consider the geometrical interpretation of a 

three-pulsed atom interferometer, starting with the ground state and applying successive 

 ab
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pulses about the x-axis. If ideal conditions are assumed (i.e., the phase of the laser 

pulses at the time of interaction are null), then after application of the three pulses the atom is at 

the ground state. 

 Figure A.4: The Three-Pulse Atom Interferometer 

Figure A.4 depicts the successive application of these pulses to rotate the Bloch vector from 

initial state to final state. This can be calculated through the matrix multiplication below: 

 (E.46) 

Except for an overall phase, the atom is in the ground state. This shows the interpretation and 

formalism works, but what if at the time of application of the -pulse the laser phase is not null. 

In this case, the last pulse is applied with respect to the phase of the laser pulse that 

has been encoded to the component of the superposition state. That is, the  rotation is done 

with respect to the Bloch vector that has the phase of the pulse laser after application of the -

pulse.  

Figure A.5 displays the acquired phase before application of the final  pulse. The state of the 

πatom after the -pulse with null laser phase is, , and the state of the atom after the -pulse 

with a laser phase of is . So, the ground state component of the superposition state 

from the laser pulse. The excited state of the superposition state picks up a phase factor of 

picks up a phase factor of . The phase difference between the ground state and the excited 

state is . Now, applying the last pulse: 
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Figure A.5: The Three-Pulse Atom Interferometer with laser phase 

 (E.47) 

So, the probability the atom is in the ground state is: 

 (E.48) 

And the probability of finding the atom in the excited state is: 

 (E.49) 

If the desired information to be detected is on the laser pulse, then this phase can be encoded to 

the states of the atom and detected through atom interferometry..  
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