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Executive Summary
 

In this document we detail the findings of the NIAC Phase-I investigation for the concept 
The Regolith Biters---A Divide-And-Conquer Architecture for Sample-Return Missions. 
The concept investigated consists of a space mission architecture for collecting multi-

ple, distributed samples from small, primitive celestial bodies (like asteroids and comets) 
and bringing them back to Earth for their study; it is fundamentally different from existing 
alternatives because it is based on the premise that separating the navigation problem 
from the sample collection problem will lead to a more robust and flexible overall system. 
The current architectural paradigm for sample-return missions is centered around a 

design where spacecraft and sampling device are merged into a single, complex system; 
we argue that this monolithic approach couples the navigation and sample-collection prob-
lems, making both more difficult. We diverge from this vision, and propose a decoupled 
system based on the coordinated interaction between a spacecraft and a collective of 
small, simple devices which we have called the Regolith Biters (ℛℬs). 
A spacecraft carrying a number of ℛℬs would travel to the vicinity of a small body. 

From a favorable vantage point, and while remaining at a safe distance on a non-colliding 
trajectory, it would release an approach stage capable of delivering the ℛℬs towards the 
target body. Upon encountering the body, the ℛℬs would bite the regolith (thus retaining 
a sample), and eject back to a heliocentric orbit. The spacecraft, being endowed with 
appropriate propulsion, navigation and tracking capabilities, would rendezvous with and 
collect those ℛℬs within its reach, and bring them back to Earth. 
Separating the navigation and sampling concerns could remove the need for proximity 

operations with the small body---the stage in current architectures that carries the most 
challenges and risks. Eliminating the need for small body proximity operations brings 
back to the discussion the exploration of exciting prospects like highly active comets, fast-
rotating bodies, and binary systems. 
In addition, distributing the sampling problem among a collective of agents could pro-

vide the opportunity to sample multiple regions---on one or multiple bodies within a system-
--in a single mission. It may also provide robustness to various environmental conditions, 
and enable the distributed, in situ characterization of the small body. These technical 
distinctions separate our concept from existing art. 
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Executive Summary
 

The Phase-I investigation detailed in this report focused on assessing the astrodynamic 
feasibility of the concept. In particular, we set out to test three basic hypotheses: 

Availability There are sufficient small-body candidates and launch opportunities in the 
next decades to ensure that a target would be available if the mission were executed. 

Reachability The propulsion requirements to travel to the small body, chase and capture 
the ℛℬs, and return to Earth are within reach of current or near-term technology. 

Visibility The capabilities required to track the ℛℬs after their ejection from the small body 
are within reach of current or near-term technology. 

Given availability, reachability, and visibility, our core technical analyses then focused on 
obtaining an estimate of the number of ℛℬs that could be captured for a given ∆v budget. 
Based on the results of our analyses, we observe that: 

• A wide variety of small bodies exist that could be targets for a sample-return mission 
based on the ℛℬ architecture. 

• The ∆v and thrust requirements are such that a dual-mode propulsion system would 
be required: a high-efficiency, low-thrust propulsion mechanism for the transfer be-
tween Earth and small body (for both legs of the trip), and a high-thrust, chemical 
propulsion system for the capture of the ℛℬs after their ejection from the small body. 

• Astrodynamically plausible ℛℬ capture tours were found for a variety of Solar System 
small bodies, under a wide range of perturbing conditions; for most of these tours, 
several ℛℬs could be captured at a reasonable ∆v budget, and for smaller bodies 
the number increases considerably. 

• The optical tracking of the ℛℬs is feasible with technologies which are either readily 
available or close to maturing within the next decade. 

During the investigation, we also developed basic, preliminary computer-aided designs of 
the physical ℛℬs to serve as proof-of-concept and visualization aid. The investigation also 
enabled us to to identify key technologies and drivers critical for further development. 
In conclusion, our findings suggest that the physical foundation of the ℛℬ architecture 

is astrodynamically sound, and exhibits robustness to variations in size and rotational state 
of the target body. 
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1
 
Introduction 

The collective interaction of simple systems can be leveraged to attain complex goals. 
Based on this principle, we envision space systems where the core functional compo-
nents are decoupled, autonomous, and cooperative. In particular, we propose a space 
mission architecture for collecting multiple, distributed samples from small, primitive ce-
lestial bodies (like asteroids and comets) and bringing them back to Earth for their study. 
The architecture is fundamentally different from existing alternatives because it is based 

on the premise that separating the navigation problem from the sample collection problem 
would lead to a more robust and flexible overall system. 
We have focused our architectural development in the context of small-body sample-

return missions for three main reasons: 

1. We believe that no experimental study sheds more light on our understanding of the 
origin and evolution of the Solar System than the analysis of samples from asteroids 
and comets [16  ].

2. We are convinced that their study is important from a strategic perspective: meteorite 
impacts pose a direct and credible threat to life on Earth [23], and the development 
of contingency small-body deflection missions presupposes some knowledge of the 
target body. 

3. Our concept came to life at a historic time when private industry decided to pur-
sue asteroid mining as a commercial venture: our architecture could prove to be a 
valuable framework for prospecting potential mining candidates. 

While meteorites have proved invaluable in our understanding of the origin and evolu-
tion of the Solar System, linking them to the original small body from which they originated 
currently eludes our capabilities [14]. In addition, the violence of atmospheric entry and 
surface collision leads to irreparable alterations in their material integrity and composition. 
The most direct route to furthering our knowledge about primitive bodies is to sample as-
teroids and comets directly, and bring the samples in pristine integrity back to Earth for 
detailed study. 
Indeed, the analysis of microscopic samples (1 to 300 µm in size) of comet Wild 2 

brought by the Stardust mission challenged Solar System evolution theories, and provided 
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deep insight in the physical chemistry of the comet's nucleus [8]. One can only imagine 
what discoveries may be enabled by significantly larger sample sizes. 
The scientific community has long recognized the value of studying asteroids and 

comets. An unprecedented and inspiring fact speaks for itself: between 1985 and 1986, 
five international spacecraft were dedicated to the study of comets Halley and Giacobini-
Zinner, while nearly 5,000 professional and amateur astronomers monitored both comets 
from the ground [30]. 
In addition to the relentless scientific interest in small bodies, recent announcements 

have been made [19] by private ventures expressing their interest in mining asteroids as 
a commercial venture. Such rare alignment of interests promises to energize the com-
munity to develop new technological advances addressing the difficulties associated with 
discovering, prospecting, sampling, and working in general with asteroids and comets. 
The current architectural paradigm for sample-return missions is centered around a 

design where spacecraft and sampling device are merged into a single, complex system. 
We argue that this monolithic approach couples the navigation and sample-collection prob-
lems, making both more difficult. 
In contrast, we propose a decoupled system based on the coordinated interaction be-

tween a spacecraft and a collective of small, simple devices---the Regolith Biters (ℛℬs): a 
spacecraft carrying a number of ℛℬs would travel to the vicinity of a small body. From a fa-
vorable vantage point, and while remaining at a safe distance on a non-colliding trajectory, 
it would release an approach stage capable of delivering the ℛℬs towards the target body. 
Upon encountering the body, the ℛℬs would bite the regolith (thus retaining a sample), 
and eject back to a heliocentric orbit. The spacecraft, being endowed with appropriate 
propulsion, navigation and tracking capabilities, would rendezvous with and collect those 
ℛℬs within its reach, and bring them back to Earth. 
Separating the navigation and sampling concerns could remove the need for proximity 

operations with the small body---the stage in current architectures that carries the most 
challenges and risks. Eliminating the need for small body proximity operations may bring 
back to the discussion the exploration of exciting prospects like highly active comets, fast-
rotating bodies, and binary systems. 
In addition, distributing the sampling problem among a collective of agents could pro-

vide the opportunity to sample multiple regions---on one or multiple bodies within a system-
--in a single mission. It may also provide robustness to various environmental conditions, 
and enable the distributed, in situ characterization of the small body. These technical 
distinctions separate our concept from existing art. 
From the point of view of its generality, our concept can be aggregated at three different 

levels: 

The paradigm A common technological paradigm for the attainment of complex goals is 
to increase the complexity of the individual components, forming a specific, central-
ized system. Our ambition is the opposite: we conceive of simpler, generic, dis-
tributed components, and shift the complexity to their common interactions. 

Whereas centralized systems search for deterministic success (one device reaches 
the desired outcome in one attempt), we aim to explore stochastic success---the in-
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teraction of a collective achieving overall success, even in the presence of individual 
failures. 

The platform The distribution of numerous, relatively simple, cooperative, autonomous 
devices across the surface of a body could enable the development of new scientific 
techniques. Just like scores of GPS sensors are deployed across Earth to study 
plate tectonics, one can visualize the deployment of simple sensors across other 
bodies for their extended characterization. 

Even the most modest prospects are appealing, like placing simple devices furnished 
with a thermocouple and an accelerometer in ten different places of a comet for mea-
suring thermal properties and rotational state. Miniaturization of individual compo-
nents would enable the deployment of numerous sensors, making this prospect all 
the more exciting. 

The architecture At this most specific level, we believe our concept could provide a wider 
flexibility in the selection of candidate small body targets than alternative architec-
tures. 

For example: some bodies rotate so fast that proximity operations become too prob-
lematic; some comets are more interesting when they are highly active, but their 
ejecta may damage the spacecraft; many asteroids belong to binary systems, and 
their common gravity field defies our current navigation capabilities. 

In contrast, we aim to maintain a safe distance from the target in a manner such that 
mission risk would no longer be dominated by small body proximity operations. This 
would open the architecture to previously unreachable bodies. 

1.1 Alignment with Current Priorities 

From a scientific perspective, our vision is directly aligned with some of the highest prior-
ity goals of the Space Program, which recognizes that returning a sample from primitive 
asteroids and comets is scientifically compelling and would have a major impact on our 
understanding of the origin and evolution of the Solar System [16]. 
Our concept is also consistent with technical challenges identified in NASA's Space 

Technology Roadmaps and Priorities, and the goals for specific Technology Areas [25]. 
In particular, our concept is most aligned with the following top challenges identified for 
Technology Area 4---Robotics, Telerobotics, and Autonomous Systems [1]: 

Rendezvous Develop the capability for highly reliable, autonomous rendezvous, proxim-
ity operations, and capture/attachment to (cooperative and non-cooperative) free-
flying space objects. 

The development of highly reliable, autonomous rendezvous and capture capabili-
ties is central to our architecture, and it is precisely in the context of cooperative (the 
mother ship) and non-cooperative (the ℛℬs) space objects. 
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Maneuvering Enable robotic systems to maneuver in a wide range of NASA-relevant 
environmental, gravitational, and surface and subsurface conditions. 
While ℛℬs would not be capable of maneuvering, we do believe that the architecture 
directly provides means for a system to maneuver in a wide variety of environmental, 
gravitational, and surface/subsurface conditions. In the proposed architecture the 
mother spacecraft is not required to undergo proximity operations with the small 
body, and ℛℬs travel on ballistic trajectories. This separation of concerns addresses 
the maneuvering problem by eliminating it. 

In Situ Analysis and Sample Return Develop subsurface sampling and analysis explo-
ration technologies to support in situ and sample return science missions. 
The concept itself constitutes a potential technology supporting sample-return sci-
ence missions, and its potential as a platform for distributed characterization of small 
bodies provides a unique approach to in situ exploration. 

Relative Guidance Algorithms Anticipate applicable environmental effects, the nature 
of the trajectory change/attitude control effectors in use, and the inertial and relative 
navigation state data available to the guidance algorithms. 
The development of guidance and navigation algorithms required for the deployment 
of the delivery stage, and the tracking, chase, and capture of the ℛℬs after their ejec-
tion from the small body are concerns directly addressing this technical challenge. 

We are inspired by one bold challenge issued in the Roadmap for Technology Area 
4 [1], which summarizes the desired outcome of technological development for a comet 
nucleus sample-return mission: 

Return up to several kilograms of samples from multiple sites on the nucleus, 
with stratigraphy and all ices intact, and no cross contamination of collected 
samples. 

We believe that the distributed aspect of our architecture represents a step in the right 
direction: ℛℬs can conceivably be designed to collect a few tens or hundreds of grams 
from different regions of a comet, and the fact that they are independent agents provides 
a natural barrier against cross-contamination of samples. 
While preserving the stratigraphy and ices intact would require furthering our concept 

to consider controlled ℛℬ landings, advanced core sampling mechanisms, and furnishing 
the spacecraft with cryogenic storage capabilities (and such advanced capabilities are not 
the central focus of our current development), the architecture itself does not restrict future 
adaptations to address these concerns. 
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2
 
Concept Description 

We created the concept of Regolith Biters as a way to remove the small body proximity 
operations problem inherent to current sample-return paradigms. The concept is based 
on decoupling the navigation and sample collection concerns, thus transforming the core 
difficulty: from navigating a spacecraft to---and extracting a sample from---a poorly char-
acterized, possibly active (in the case of a comet), and likely spinning small body; into 
acquiring, chasing and capturing the ℛℬs. We believe the later alternative is not only safer 
from a mission success standpoint, but that it is an approach for which reliable, generic 
technology can be more easily developed. 
The narrative of a small-body sample-return mission based on our architecture can be 

divided into six stages, and would read as follows: 

Transfer A spacecraft would be launched from Earth on a trajectory en route to the target 
body; the trajectory would reach a closest approach of at minimum a few hundred 
kilometers, and with the relative velocity between body and spacecraft maintained 
below a maximum threshold. 

Deployment Upon arriving to a favorable vantage point in the vicinity of the body, the 
spacecraft would deploy a delivery stage loaded with a number of ℛℬs. 

Sampling The delivery stage would release the ℛℬs upon close proximity to the body; 
they would encounter the surface with a given arrival dispersion pattern and velocity. 
Immediately upon contact, the ℛℬs would collect a regolith or core sample; through-
out this process, the spacecraft would have been cross-referencing each ℛℬ to its 
landing site via active or passive tracking. 

Ejection Either as a reaction to the landing impact (bouncing), or as an action initiated 
by an autonomous mechanism, the ℛℬs would eject from the surface of the body; 
they escape the body and enter some heliocentric trajectory with random orbital 
parameters. 

Capture The spacecraft---continuing the active or passive tracking of the ℛℬs---would 
algorithmically determine the optimal path to rendezvous with and capture some of 
the ejected ℛℬs. 
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Transport The captured ℛℬs would be stored in a container designed to maintain sample 
integrity during their transport, and return to Earth with the collected samples. 

2.1 Limitations of Related Approaches 
In our review of current sample-return technologies, we noticed that the overarching con-
ventional approach relies on the touch-and-go (TAG) concept, where a spacecraft en-
dowed with a sampling mechanism undergoes proximity operations with a small body, 
touches the surface with said mechanism, and leaves1. 
We contend that such a monolithic system effectively couples the navigation and sam-

ple collection problems making both more difficult: navigation errors directly affect the 
performance of the sampling device, and the sampling process itself introduces torques 
which complicate navigation. It is also a concern that the exhaust jets from the propulsion 
and attitude control systems could contaminate the surface of the small body. The TAG 
architecture tends to demand high ∆v to capture into the sampling orbit, and once the 
sampling program has been initiated, it is difficult to modify the inertial trajectory. 
Proximity operations with asteroids and comets are difficult in general. The gravity field 

of these small bodies tends to be highly irregular, and while it is strong enough to signif-
icantly perturb the spacecraft trajectory, it is too weak to serve as an anchor for a stable 
orbit. For some of the most interesting bodies the complications are even greater: their 
high rotation rates can induce unmanageable torques upon contact, and unpredictable 
streams of debris and ejecta (especially in the vicinity of comets) are capable of impinging 
on and damaging the spacecraft. 

2.2 Risks of this Approach 

We acknowledge formidable challenges that must be overcome before materializing our 
architecture. Below we enumerate those risks which we have identified during the devel-
opment of this proposal. In addition to the risks associated with any new technology, we 
compiled the following non-exhaustive inventory, where we aim to capture some of the 
unique risks and trades which need to be addressed more fully during the development of 
our concept. 

System Design The community has less expertise characterizing non-deterministic sys-
tems, and the performance guarantees required for flight qualification are difficult to 
measure using conventional methodologies. On the other hand, our efforts in ad-
dressing this concern are aligned with a top priority of the Technology Area 4 [1]: 
the development of novel validation and verification techniques for autonomous, 
stochastic systems. 

1The Hayabusa mission is an exemplary and daring example of the TAG architecture. Unfortunately, 
problems related to the spacecraft led to an overall unsuccessful sampling program. While microscopic sam-
ples did make it into the canister and back to Earth [14], the mission---an admirable venture---underscores 
the motivation to consider separating navigation from sample collection. 
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Spacecraft Failure The architecture's single-point-of-failure is the spacecraft. It must 
deploy the ℛℬs with acutely precise pointing, perform reliable tracking, successfully 
rendezvous with and capture a number of ℛℬs, and undergo atmospheric reentry. 
While any one capability is within reach of current technology, their combination into 
a single spacecraft represents---to the extent of our experience---a previously unat-
tempted venture. 

There is a risk that the spacecraft could be damaged when trying to rendezvous with 
an ℛℬ. However, this type of risk is inherent to any sample-return mission, and we 
consider it more pronounced in the coupled TAG architecture. 

Fortunately, there is a large amount of prior art when it comes to managing this type of 
risk. We aim to collect and interpret the lessons learned from other related missions 
(like Dawn, Hayabusa, Deep Impact, Stardust, DART [5], and PRISMA, to name a 
few) and incorporate their risk mitigation strategies into our concept development. 

Economical A clear trade-off exists between ℛℬ performance and development cost. An-
other trade-off exists between ℛℬ performance and the minimum number of ℛℬs re-
quired to achieve a given probability of mission success. For a given measure of 
ℛℬ performance, probability of mission success increases with the number of ℛℬs. 
On the other hand, additional performance implies additional development cost. 

It is possible that in balancing the technical ℛℬ requirements, a design is reached 
that falls outside of economical viability. 

Common-Mode Failure As we envision them, ℛℬs would be similar amongst each other; 
their similarity is inherent to the architecture, and could reduce development cost. 
However, it also introduces the risk of common-mode failure: if ℛℬs are afflicted by 
a common design flaw, the concept may collapse regardless of the number of ℛℬs. 
A given small body could have a harder surface such that the ℛℬs bounce-off before 
successfully collecting the sample. It could also have a softer surface, burying the 
ℛℬs and keeping them from successful ejection. These and other potential common-
mode failures need to be investigated further. 

Sample Collection, Preservation, and Handling While any sample from a small body 
would be a valuable treasure, it is a priority that the mission architecture is able to 
cross-reference the different samples to their corresponding body surface locations; 
this would require the development of reliable ℛℬ tagging mechanism (for example, 
an ℛℬ could leave an RFID tag on its landing location). 

For more advanced applications, the ℛℬ collection process should not destroy the 
morphological or stratigraphical integrity of the sample; the preservation of volatiles 
and ices---a top priority---would likely require a cryogenic return vehicle, which in 
itself is a difficult venture. 

Finally, it is possible that the samples would need to be contained and subject to spe-
cial handling requirements for some asteroids and comets [27] before being admitted 
into Earth. 
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2.3 Potential Impact 
If successful, our approach would fundamentally change the conversation for sample col-
lection, scouting, and prospecting of small bodies because it could enable the sampling 
of bodies currently out of scope for the TAG architecture, like fast-rotating bodies, active 
comets, and binary systems. 
We also believe it could be made proportional in its complexity to the desired outcome; 

for example, a less reliable system would be made to take a quick sample of a potential 
mining candidate, while a more reliable system would be made to gain understanding 
about the composition of an incoming threat before attempting a deflection mission. 
The architecture would be more immediately suitable for sampling the surface of small 

bodies, a central scientific component to understanding the mechanisms of space weath-
ering, i.e., how does exposure to space alter the structure, optical properties, chemical 
composition, and mineralogy of the material [17]. A pristine sample from the surface of 
a small body would provide an anchor for spectral interpretation of the compositions and 
interrelationships of numerous asteroids and establishing links between meteorites and 
their parent bodies [16]. 
The deployment of autonomous agents is not limited to sampling devices that would 

eject back to a heliocentric orbit. In fact, we envision the deployment of other sensing 
devices, transponders, or reflectors to be left on the surface for later distributed character-
ization of the small body. There is nothing intrinsic to the architecture limiting this vision. 
Some concepts for Mars sample-return missions also rely on the development of sys-

tems for autonomous tracking and rendezvous with small devices. Our investigation on 
this front would both leverage existing expertise, and extend current capabilities strength-
ening both ventures. 
On a more philosophical level, we believe that our approach changes the paradigm 

from deterministic to stochastic success, and can teach us that victory does not need to 
come from success in all the parts; we can embrace the failure of individual components 
as long as their overall interaction is successful. We hope that it will serve as a catalyst 
for new exploration paradigms, where the cooperation of simple systems is leveraged to 
attain complex goals. 
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3
 
Technical Analyses 

The investigation focused on assessing the astrodynamic feasibility of the concept. In 
particular, we set out to test three basic hypotheses: 

Availability There are sufficient small body candidates and launch opportunities in the 
next decades to ensure that a target would be available if the mission were executed. 

Reachability The propulsion requirements to travel to the small body, chase and capture 
the ℛℬs, and return to Earth are within reach of current or near-term technology. 

Visibility The capabilities required to track the ℛℬs after their ejection from the small body 
are within reach of current or near-term technology. 

Given availability, reachability, and visibility, our core technical analyses then focused on 
obtaining an estimate of the number of ℛℬs that could be captured for a given ∆v bud-
get. In addition, we developed basic, preliminary computer-aided designs of the physical 
ℛℬs to serve as proof-of-concept and visualization aids. 

3.1 Modeling 

The preliminary trajectory calculations between Earth and small bodies assume conic mo-
tion of the celestial bodies; the motion of the mother spacecraft is described by a simple 
dynamic model describing a point mass moving under the influence of the Sun's gravity 
and a low-thrust engine: 

d2r 
dt2 

r 
= − µ⊙ 

r3 
+ aT , where 

aT =τ 
T u 
m 

and (3.1) 

dm T 
dt 

= − τ . 
g0Isp 

A given propulsion system can be characterized in terms of a maximum thrust level, T , 
and a specific impulse, Isp; the throttle parameter, τ , and directional cosines of the thrust 
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direction, u, are determined during the trajectory calculations. In the case of chemical 
propulsion, the trajectory calculations were modeled using impulsive velocity changes; 
targeting problems (reaching a given position in a given time) were modeled as Lambert 
arcs, and solved using standard algorithms [10]. 

3.2 Target Population 

The population of asteroids and comets in the Solar System has been documented by the 
Solar System Dynamics Group at the Jet Propulsion Laboratory, and made available via 
the on-line Horizons system [9]. As of this writing, the database contains 3,216 comets 
and 654,603 asteroids, and it constituted our main source for small body information. 
Our concept aims to sample small bodies, which have different rotational properties than 

Figure 3.1: Smaller asteroids (those associated with larger absolute magnitude, H) tend to 
rotate faster. The solid line denotes the rotational limit which divides gravity- from strength-
bound asteroids (cf. [4]). 

larger bodies. In particular, it has been determined [12] that small asteroids tend to be 
rapid rotators; Figure 3.1 depicts the rotation period of asteroids in the Horizons database 
as a function of their absolute magnitude1. 
As it can be seen in Figure 3.2, smaller asteroids are associated with larger absolute 

magnitudes (in particular, those bodies with ⌀ < 2 km are associated with H > 17). Notice 
1For database entries which contain both of these parameters. 
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Figure 3.2: The absolute magnitude (H) of an asteroid is inversely proportional to its size. 

also the abrupt change between strength-bound and gravity-bound bodies (the change 
is perhaps simpler to visualize in Figure 3.3). Investigating these very fast rotators can 
provide important scientific insight regarding the collisional processes which formed the 
Solar System [4]. 
In conclusion: while the majority of asteroids rotate between one and ten times per 

day (in the case of comets, the effective radii fall between 200 m and 37 km, and the 
range of rotational periods extends from 5 to 70 h [15]), a small but interesting fraction can 
exhibit hundreds of rotations per day (cf. Figure 3.3); such rotational characteristics have 
important consequences in the the ejection stage (cf. §3.5). 
The low gravitational potential of small bodies leads to low escape velocities. In order to 

characterize the expected escape velocities we relied on available small body density [13] 
and porosity [7] values to derive the mass of a sphere of a given radius. The general rule 
used in this investigation is that the escape velocity measured in m/s at the surface of an 
asteroid is roughly equal to its radius measured in km (cf. Figure 3.4). 
Such heuristic is equivalent to assuming a default density of 2 g/cm3; this approximation 

will tend to underestimate the escape velocity for metallic (M-type) and silicaceous (S-
type) bodies, and overestimate the escape velocity for carbonaceous bodies (C-type); the 
escape velocity is then given by √

2Gm 
, 

r 

where G is the gravitational constant. 
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Figure 3.3: While the majority of asteroids rotate between one and ten times per day, a 
small but interesting fraction can exhibit hundreds of rotations per day. 

3.3 Transfers 

The identification of spacecraft trajectories between Earth and small, primitive bodies has 
been subject to a considerable amount of research, and there are numerous general-
purpose methodologies to calculate feasible and optimal transfers [3, 6]. 
While finding valid spacecraft trajectories was not the core concern of the investigation, 

we did find it necessary to develop a custom, simple optimizer for low-thrust trajectories in 
order to investigate the required propulsion requirements. And our findings are consistent 
with previous work: in general, low-thrust propulsion is an alternative superior to chemical 
propulsion for both legs in a small body sample-return trajectory. Missions using chemical 
propulsion alone require gravity assists and many years to rendezvous with a comet in 
order to deliver a reasonable mass using an affordable launch vehicle [24, 11]. In addition, 
low thrust propulsion reduces implementation risk by enabling longer launch windows and 
robustness to launch-date slips [26]. 
Our preliminary transfer analysis relied on the performance figures for the NEXT thruster, 

which is the current state-of-the-art low-thrust propulsion system, and will be readily avail-
able in the coming years as an off-the-shelf solution [18]. Table 3.1 depicts a comparison 
between NEXT and the previous-generation NSTAR [2] thruster. As expected, our trajec-
tory analysis confirms that it is possible to reach a wide variety of targets in the coming 
decades, and currently available low-thrust propulsion systems are suitable for delivering 
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Figure 3.4: Small bodies have low escape velocity. As a basis for comparison, jumping 
half a meter on Earth requires about 3.1 m/s; the National Basketball Association record 
for vertical leap (about 1.16 m) requires about 4.8 m/s. 

Parameter NSTAR NEXT 
Maximum power, kW 
Maximum thrust, mN 
Throttling range, (Tmax/Tmin), 
Maximum Isp sec 
Total impulse 106N-sec 
Propellant throughput, kg 

2.3 
91 
4.9 

3,120 
4.6 
150 

6.9 
236 
13.8 
4,190 
> 18
450 

Table 3.1: The state-of-the-art NEXT thruster offers significant propulsion advantages over 
the previous generation NSTAR thruster. 

the mother spacecraft to the vicinity of the small body at various relative velocities. Fig-
ure 3.5 presents a typical comet sample-return trajectory2; the transfer parameters are 
presented in Table 3.2. 

2Sims determined in previous work that a typical trajectory using low-thrust propulsion to rendezvous with 
a comet completes more than one revolution around the Sun and rendezvous is shortly after the comet's 
perihelion passage; launch from Earth occurs when the Earth crosses the longitude of the perihelion of the 
comet's orbit [24]. We leveraged such finding to assess the suitability of our simplified dynamic model; our 
trajectories exhibit such behavior. 
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Figure 3.5: An example transfer from Earth to comet Wild-2 using the NEXT thruster. The 
Earth-to-comet trajectory is denoted by a thick line, and the return trajectory by a dashed 
line; the cross markers are spaced every thirty days. 

3.4 Deployment of ℛℬs 
The second stage in the architecture is the deployment of the Regolith Biters (ℛℬs) from 
the spacecraft to the small body. The original assumption was that the ℛℬs would be 

Launch date 2020, March 18 
Arrival to Comet 2023, July 14 
Time to Capture 10 ℛℬs 43 days 
Chase ∆v 1.0 km/s 
Start Return Trajectory 2023, August 26 
Arrive to Earth 2027, November 21 
Total xenon mass 902 kg 

Table 3.2: Details for a preliminary Wild-2 sample-return transfer using the NEXT low-
thrust engine. 

16 
© 2013 California Institute of Technology 
Government Sponsorship Acknowledged 



3.5. Post-Ejection Stage
 

deployed independently (as projectiles that would be launched from the spacecraft target-
ing the small body). However, after simplified Monte Carlo analyses it was determined 
that such strategy introduced complications. In particular, it resulted in the delivery of the 
ℛℬs exhibiting a large variation band, and thus requiring a closer distance between the 
mother spacecraft and the small body. 
Instead, we opted for an architectural element that would consist of a delivery stage 

similar in concept to the one used by Deep Impact to deploy the impactor from the space-
craft to comet Tempel 1. This vehicle is capable of maintaining attitude control, and main-
tain a communication relay with the spacecraft. In addition, its propulsion capabilities 
would enable the reduction of the approach velocity relative to the small body3. Figure 3.6 
presents the outcome of the Impactor Targeting Maneuvers (ITMs) executed by Deep Im-
pact's delivery stage. We consider that our concept can rely on such technology for the 
deployment of an autonomous delivery vehicle carrying the ℛℬs. 

Figure 3.6: Impactor Targeting Maneuvers (ITMs) performed by Deep Impact's delivery 
stage as it made the final approach to its target, comet Tempel 1. The autonomous nav-
igation system on the delivery stage was designed to make as many as three ITMs to 
correct its course to the comet (image credit: NASA/JPL-Caltech/UMD). 

3.5 Post-Ejection Stage 
Given the availability of target bodies and spacecraft transfers to reach them, the core tech-
nical analysis developed during Phase-I investigated the challenges of acquiring, chasing, 
and capturing the ℛℬs after their ejection from the small body surface. 
For each independent ℛℬ capture, the mother spacecraft would have to cycle through 

the following steps: 

Acquisition & Tour Design After the ℛℬs have ejected from the small body surface, the 
mother spacecraft would perform an initial acquisition and orbit estimation to support 

3Simple simulation scenarios were designed to consider the deployment of this delivery vehicle: in prin-
ciple, the output of the simulations in the previous sections was used as the initial condition of the delivery 
stage, and variations in the size of the release fan were investigated. The motion of the delivery stage in the 
vicinity of the small body was approximated by the restricted three-body problem subject to solar radiation 
pressure [21] as opposed to the dynamic model described by the system (3.1). 
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the design of an optimized chase tour4. 

Chase Once the initial tour has been designed, the mother spacecraft would begin a 
chase and capture sequence with the first ℛℬ. The spacecraft would likely take 
intermittent observations as it closes in on the target, reducing orbit uncertainty and 
allowing it to safely approach to capture distance. 

Capture & Re-Acquisition The spacecraft would zero-out the relative velocity with the 
ℛℬ at a very close distance, deploy the capture mechanism and physically grab 
the ℛℬ. Once the ℛℬ has been successfully stowed, the mother spacecraft would 
acquire the next target and repeat the sequence. This may involve re-acquiring all 
targets and re-optimizing the entire chase tour. 

The terminal parts of the chase and capture segments would need to be handled by an 
on-board autonomous navigation system (it may be desirable for such a system to handle 
other segments as well). Such a system would be responsible for taking observations of 
the target, converting them to tracking data, updating the relative navigation solution, and 
making it available to other on-board subsystems---all in real-time. 
AutoNAV---a system with many of these capabilities---has been developed at JPL and 

flown on several missions, most notably on Deep Impact. Although as of this writing 
AutoNAV does not have all the abilities desirable for our architecture, no fundamental 
technical concerns have been identified that would prevent a future version of this system 
from delivering these capabilities. 
The analyses presented below focus on the acquisition and chase segments; they 

are intended as a preliminary demonstration that chase tours can be designed that visit 
multiple ℛℬs for a reasonable ∆v budget, and that at typical ranges the ℛℬs can indeed 
be acquired by the spacecraft. 

3.6 Chase 
A simulation was designed to assess the overall astrodynamic feasibility of a chase tour 
capable of capturing several ℛℬs from a typical solar system small body. 
The conceptual scenario for the simulations is stated as follows: the mother spacecraft 

is off-set from a rotating small body by some initial distance. A swarm of ℛℬs has just 
finished collecting samples, and are ejecting off the small body with the lowest possible 
relative speed (nominally, the escape velocity of the small body). The spacecraft performs 
an initial acquisition of the ℛℬs as they eject, designs an optimized chase tour, and starts 
a chase sequence (cf. Figure 3.7). 
We considered the following simplifying assumptions in the development of the simu-

lation model: 

Spacecraft An early finding of this study was that the ∆v budget of any chase tour was 
dominated by a large relative velocity between the mother spacecraft and the small 

4This tour is structurally similar to a traveling salesman problem, with the important distinction that it's 
nodes are dynamic. 
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Figure 3.7: Chase Analysis Conceptual Scenario. 

body. In order to remove this important source of variability, we assume a zero 
relative velocity as a starting condition, and a stand-off range of 10,000 km. The 
implication of this simplifying assumption is that the ∆v budget for the transfer stage 
increases (cf. Table 3.2). 
The simulation relied on a Lambert arc to estimate the ∆v required to chase an indi-
vidual ℛℬ, which requires the selection of a time-of-flight (TOF) between the mother 
spacecraft and the ℛℬ. The selection of the TOF represents a challenge: character-
istic rendezvous ∆v vs. TOF curves approached a minimum near thirty day transfer 
times, increasing exponentially as the TOF decreased. However, a notion of reason-
able tour length needed to be developed to prevent multi-month chase tours from 
being the norm. For the current results, a compromise was reached by selecting a 
baseline acceleration value, and iterating the TOF so that the ∆v / TOF converged 
to this acceleration. This value was developed by assuming a 600 kg spacecraft 
equipped with a continuous thrusting engine capable of generating a thrust of 0.15 
N. 

Small Body The small bodies explored in this study ranged in radius between 50m and 
30km. Special attention was payed to the < 5km radius bodies, as many bodies 
in this size range are particularly interesting. Typical rotation rates were randomly 
assigned to these small bodies, scaled according to their radius [20]. As described 
in §3.2, we assumed that the escape velocity of a small body measured in m/s was 
equal to the its radius in km. 

ℛℬs	 The small body rotation rate and escape velocity parameters previously discussed 
were key in determining reasonable ejection velocities for the ℛℬs. For the simu-
lation, ℛℬs were allowed to randomly eject in any direction from the surface of the 
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small body, with their relative velocity vectors directed radially and with a baseline 
magnitude equal to the escape velocity, and and additional ∆v was added to account 
for the rotational effect. 

A typical run of the simulation is depicted in Figure 3.8. The chase tour begins in 
Subfigure (a), with the mother spacecraft at an initial offset from the small body, and the 
ℛℬs (numbered 1 through 3) ejecting in random directions with random (but bounded) 
escape velocities. 
The spacecraft acquires ℛℬ-1 as it ejects from the small body; the location of ℛℬ-

1 at acquisition is depicted in the figure as the blue numeral 1; the distance between the 
spacecraft and ℛℬ at this time---depicted by the blue dashed line---is termed the detection 
distance. 
After acquisition, the spacecraft follows the chase trajectory depicted by the red solid 

line, and eventually captures ℛℬ-1 at the capture location, depicted as the red 1(c). 
In Subfigure (b), the spacecraft is now positioned at the capture location of ℛℬ-1, and 

goes on to acquire, chase and capture ℛℬ-2 in a similar manner. Subfigure (c) completes 
the tour with the capture of ℛℬ-3. 

(a) Ejection; capture of ℛℬ-1. (b) Capture of ℛℬ-2. (c) Capture of ℛℬ-3. 

Figure 3.8: Typical simulation rendezvous tour. 

The results of running a Monte Carlo analysis on this simulation are summarized in Ta-
ble 3.3, which presents the estimated number of ℛℬ captures possible for different small 
body and ∆v budget combinations. For each small body class and ∆v budget, a hun-
dred independent tours were generated by randomly sampling a small body and swarm of 
ℛℬs as described above, and then following an non-optimal rendezvous tour until the ∆v 
limit was reached. The number of ℛℬs visited, the maximum detection distance, and the 
length of the resulting tours were averaged, and those are the values reported in the ta-
ble. The maximum detection distance generated here serves as the basis for the following 
discussion on ℛℬ acquisition. 
The class of small bodies ranging in radius from 50 m to 5 km are particularly inter-

esting. To this end, a modification of the simulation was created to investigate these in 
more detail. Figure 3.9 presents the simulation results for small bodies in this size range. 
As can be seen, the lower escape velocities of these small bodies allows for a sizeable 
increase in the number of possible ℛℬ captures for a given ∆v budget. 
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Radius range, km ∆v budget ℛℬs Max Detection Tour Length 
m/s Captured Distance, 103 km days 
100 1 11 4 
200 3 11 9 
300 4 14 13 
400 5 19 17 

1--10 500 6 24 22 
600 7 29 26 
700 8 36 30 
800 9 41 35 
900 9 44 39 
1,000 10 52 43 
100 1 11 4 
200 2 19 8 
300 2 30 12 
400 3 41 16 

10--20 500 4 50 20 
600 4 64 24 
700 5 76 28 
800 5 86 32 
900 6 97 36 
1,000 6 108 40 
100 1 15 4 
200 1 28 7 
300 2 39 10 
400 2 61 15 

20--30 500 3 75 19 
600 4 94 23 
700 4 109 27 
800 4 126 31 
900 5 144 35 
1,000 5 161 39 

Table 3.3: ℛℬ chase tour profiles for different classes of small bodies. 

3.7 Acquisition 

There are several methods which may be used to acquire and subsequently track the 
ℛℬs after they eject from the small body surface. Active detection schemes, which use 
transponders or other mechanisms mounted on the ℛℬs, sit at one end of the spectrum; 
they enable compelling possibilities, such as the ability detect ℛℬs regardless of lighting 
conditions and cross-reference specific ℛℬs to their sampling location impact sites. How-
ever, this capability increases the overall complexity of the ℛℬ design, thus driving up both 
mass and development costs. In contrast, for this study we adopted a passive tracking 
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Figure 3.9: ℛℬs captured vs. ∆v for small bodies with radii in the range 50 m to 5 km. 

method; it places the burden for acquiring and tracking the ℛℬs on the mother spacecraft 
and its instrumentation. 
The JPL OpNav Camera (ONC)---which has been flight-proven on missions such as 

the Mars Reconnaissance Orbiter---was used as the baseline optical navigation system. 
We performed a first order analysis to determine whether the post-ejection ℛℬs would be 
visible to the ONC at the maximum detection distances calculated in the previous section 
(from 10,000 km to about 160,000 km). 
Admittedly, detecting or acquiring the ℛℬs in this context is not synonymous with being 

able to accurately track them. However, visibility is a first requirement to passive tracking, 
and we chose such criteria for our preliminary analyses. For the simulation we assumed 
a heliocentric distance of 2 AU and favorable lighting conditions. 
Figure 3.10 shows the resulting ℛℬ signal-to-noise ratio (SNR) for the ONC as a func-

tion of the distance between spacecraft and ℛℬ. The minimum threshold for a positive 
detection using the ONC happens at a SNR value of 3, which occurs at around 42,000 km 
for this baseline scenario. 
We explored different alternatives to increase the SNR, like varying the detector aper-
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Figure 3.10: ℛℬ signal-to-noise ratio vs distance from spacecraft. 

ture and efficiency, or increasing the ℛℬ brightness and exposure time. Our findings 
(cf. Figure 3.11) suggest that a relatively inexpensive mechanism to boost SNR would 
be to increase the brightness of the physical ℛℬ, perhaps by mounting a low-power LED 
beacon signal. 

3.8 Return 

After a number of ℛℬs have been collected, it is time to calculate a return trajectory to 
Earth. 
This is a challenge fundamentally different from the classical round-trip trajectory opti-

mization problem because the rendezvousing process introduces uncertainty on the initial 
conditions for the return leg. For this reason, it is important to consider---yet again---the 
statistical nature of the post-capture trajectory, and evaluate the possibilities for a mixed 
low- and high-thrust trajectory for Earth return. 
In addition, the return transfer has an important component: its duration will determine 

the nature of space vehicle required to ensure the thermal and radiation insulation (longer 
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(a) Response to ℛℬ brightness. (b) Response to detector aperture.
 

(c) Response to detector efficiency. (d) Response to exposure time. 

Figure 3.11: Response of signal-to-noise ratio to various optical system performance pa-
rameters. 

transfers which fly close to the Sun will require more thermal insulation, or entire cryogenic 
subsystems) 

We believe that the distributed nature of the ℛℬ architecture implicitly provides a mech-
anism for sample protection: the ℛℬs themselves can be visualized as protective contain-
ers. However, further considerations must be taken into account for sample transport, like 
cryogenic capabilities in the mother spacecraft to conserve volatiles and ice. 

In addition, it is possible that the samples would need to be contained and subject to 
special handling requirements for some asteroids and comets [27] before being admitted 
into Earth. 
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3.9 ℛℬ Preliminary Designs 
We investigated several conceptual, preliminary designs for the physical ℛℬs. More than 
developing a physical ℛℬ, our investigation in this area focused on determining the criteria 
to evaluate different concepts. We determined that four independent traits can serve as 
the basis for preliminary comparisons of different designs: 

Compactness Given that the physical size of an ℛℬ will restrict the number of devices 
which can be carried, the compactness criteria serves to eliminate designs whose 
bulk size or form factor renders them difficult to pack in a given delivery stage. 

Simplicity Our concept is based on carrying a relatively large number of ℛℬs. If their 
design is not simple (in terms of manufacturing, testing, stowing, deployment, and 
capture), mission reliability may decrease or costs may increase beyond manage-
able levels. 

Capacity The physical amount of sample which can be collected into a single ℛℬ will be a 
factor in determining the number of units needed to attain a given science objective. 

Versatility The ability of a nominal design to undergo slight modifications to function in 
different environments, like porous vs. hard surfaces; ices vs. rocks; cores vs. re-
golith. 

Figure 3.12: The Squid---a preliminary ℛℬ proof-of-concept.
 

We have just begun exploring the nature of the ℛℬ mechanical devices. Their physical
 
design has become the core focus of subsequent concept development. At this point,
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Name Concept Compactness Simplicity Capacity Versatility Overall 

Squid 

Puck 

Geodome 

Pac-Man 

Scoop 

Pen 

Sawblade 

Table 3.4: Preliminary qualitative evaluation of various ℛℬ proofs-of-concept. The degree 
of fill denotes how well the concept satisfies the criteria ( least; mid-way; most). 
The overall score weights the criteria as: compactness, 1/8; simplicity, 1/4; capacity, 
1/8, and versatility, 1/2. The Squid design has been selected by our team to undergo 
further refinements. 
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we have selected the Squid design (presented in Figures 3.12 and 3.13) to undergo fur-
ther refinements. In Table 3.4 we present an evaluation of different ℛℬ proofs-of-concept 
developed for this investigation, which highlights the qualitative rationale in selecting the 
Squid concept. 
In addition to the basic concepts presented in this report, we are investigating different 

mechanical sampling methods designed for the varying possible small body terrain types. 
For instance, a crush-bite mechanism, with extremely high bite-pressures, could be used 
to crush and collect samples from hard rock surfaces; a core-sampling device may be 
more appropriate for surfaces of moderate hardness, such as loose collections of rock 
or water ice; a sticky-pad could be used to sample extremely soft surfaces; a magnetic 
pad for ferrous surfaces; and other equally exciting prospects. There is no fundamental 
reason to limit the baseline ℛℬ design to a single kind of sampler. 
An important aspect of the ℛℬ design which has not been assessed in this investiga-

tion is the ejection mechanism. Somewhat ironically, the simplest conceivable ejection 
mechanism is no mechanism at all: depending on the encounter velocity and material 
composition of the target, the ℛℬs may spontaneously bounce off the body with enough 
velocity to escape its gravitational pull. While this fact is often encountered as a difficulty 
for small-body lander concepts, in our architecture it is welcomed as an advantage: we 
expect the ℛℬ to escape from the body. 
On the other hand, it may be desirable to soft-land the ℛℬs on the surface, and some 

time later eject them into heliocentric orbit. The dynamic deployment of an airbag, for 
instance, could be used to launch the ℛℬ off the surface. If the airbag were made of a 
highly reflective material, it could be later useful for passive tracking purposes (as detailed 
in Figure 3.11). 
Soft-landing the ℛℬs on the small body surface would enable a staggered ejection strat-

egy, in which ℛℬ ejection may be triggered either by a timer or a signal from the mother 
spacecraft. Staggered ejection would allow more ℛℬs to be collected for a given ∆v bud-
get, as it eliminates the drift problem of simultaneous ejection. Also, a soft-landing of many 
ℛℬs may enable the distributed, in-situ characterization of the small body. Equipped with 
the right sensors, the ℛℬs could spend their time on the surface collecting simultaneous 
measurements from many different locations, enabling exciting new scientific possibilities. 
Mature concepts collectively known as surface hoppers have been developed; they ex-

ploit the low-gravity environment of small bodies for mobility purposes. We aim to leverage 
the wealth of information available for such concepts [22, 28, 29] during the analysis of 
possible ejection mechanisms. 
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Figure 3.13: Different views of the Squid, a preliminary ℛℬ proof-of-concept. 
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Conclusions and Future Work 

Our Phase-I investigation focused on assessing the astrodynamic feasibility of the Regolith 
Biter architecture. Briefly, we set out to confirm that there are a large number of interesting, 
accessible small bodies, and the cost of capturing the ℛℬs after sample collection was not 
prohibitive. In the course of pursuing these analyses, we also identified key mission critical 
technologies and drivers. In addition we developed preliminary ℛℬ proofs-of-concept. 
Based on the results of our analyses, we observe that: 

• A wide variety of small bodies exist that could be targets for a sample-return mission 
based on the ℛℬ architecture. 

• The ∆v and thrust requirements are such that a dual-mode propulsion system would 
be required: a high-efficiency, low-thrust propulsion mechanism for the transfer be-
tween Earth and small body (for both legs of the trip), and a high-thrust, chemical 
propulsion system for the capture of the ℛℬs after their ejection from the small body. 

• Astrodynamically plausible ℛℬ capture tours were found for a variety of Solar System 
small bodies, under a wide range of perturbing conditions; for most of these tours, 
several ℛℬs could be captured at a reasonable ∆v budget, and for smaller bodies 
the number increases considerably. 

• The optical tracking of the ℛℬs is feasible with technologies which are either readily 
available or close to maturing within the next decade. 

During the investigation, we also developed basic, preliminary computer-aided designs of 
the physical ℛℬs to serve as proof-of-concept and visualization aid. The investigation also 
enabled us to to identify key technologies and drivers critical for further development. 
In conclusion, our findings suggest that the physical foundation of the ℛℬ architecture 

is astrodynamically sound, and exhibits robustness to variations in size and rotational state 
of the target body. 
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4.1 Future development 
We consider it a great privilege to have been awarded funds to develop a highly innovative 
concept with a very low level of technological readiness. At the forefront of our minds 
throughout this study was to favorably position these idea for future development. 
And while the Phase-I investigation established the baseline feasibility of the Regolith 

Biters concept (it is viable from an astrodynamic perspective and is devoid of unattainable 
physical or technological leaps), it also raised a number of new questions to be answered; 
this avenue is actively being pursued, and a proposal has been submitted to continue the 
development of this concept during the NIAC Phase-II Program; the investigation would 
focus on three priorities: 

ℛℬ Development Provide a mechanical ℛℬ design around which to pivot the overall con-
cept. This design would enable us to provide a specific, quantitative measurement 
of expected scientific return, like amount and nature of the sample (e.g., its depth, 
maximum grain size, containment of volatiles, and others), and narrow the techno-
logical requirements for the spacecraft, propulsion subsystem, delivery vehicle, and 
autonomous tracking and navigation subsystems. 

ℛℬ Capture Address the specific ℛℬ tracking, chase, and capture concern. Determine a 
specific flight envelope relating the maximum sensing distance to the available ∆v 
and control authority of a specific autonomous navigation solution. 

Mission Scenario Develop a baseline mission scenario with specific requirements on 
launch period, target small body, and expected scientific return. Such reference 
mission would enable us to compare our concept to related technologies on a specific 
basis, and solidify our arguments for further development. 

In addition, there is a highly correlated trade-space of critical technologies that are 
necessary to further the development of our concept. These technologies can be divided 
into two broad categories (cf. Table 4.1): those with a generic scope (i.e., broad-based 
general application across many domains), and those with an ℛℬ scope (i.e., specific to 
the ℛℬ architecture). 

Generic Scope ℛℬ Scope 
Propulsion system efficiency 
Autonomous chase & capture algorithms 
Optical instrument sensitivity 
Miniaturization of space hardware 
etc. 

Design of delivery stage 
Biting or sampling mechanism 
Surface ejection mechanism 
Sample handling and transport 

Table 4.1: Critical concept technologies divided by scope. 

In tackling these outstanding technological challenges, we would follow a two-pronged 
approach: for those with technologies with generic scope, we would limit our effort to 
articulating the dependencies of the ℛℬ architectures on such technologies, and describe 
what advances we are expecting to obtain from industry through a detailed technological 
roadmap. For those technologies with ℛℬ scope, we would focus our efforts into advancing 
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the technology readiness level. By focusing our efforts on the ℛℬ scope technologies 
while leveraging the work of others on the generic scope technologies, we hope to rapidly 
advance the concept as a whole. 
We believe that our concept fulfills the core requirements of the NIAC Program: an 

exciting, unexplored, and credible aerospace architecture. We aim to compound the in-
vestment made by the NIAC Program into our architecture by focusing the scope and 
maturing the technology to an extent that it becomes a compelling architecture for subse-
quent development and industry partnership. Reflecting on the capability of our concept 
and our team to attain this goal, we can enumerate five main reasons why we believe we 
stand on a unique opportunity: 

Capability Based on our preliminary investigations, we believe that no other architecture 
for sample-return and distributed characterization of small bodies offers the ability to 
investigate the most interesting prospects: highly active comets, fast-rotating bodies, 
and binary systems. 

Viability Our Phase-I investigation suggests that the concept is viable from an astrody-
namic perspective, and we did not identify fundamentally unattainable physical or 
technological leaps required for overall implementation. 

Compatibility The technological advances required to implement our concept are aligned 
with the current technological roadmaps, and our architecture would capitalize on 
those advances without a need to directly fund them; it does not require a different 
prioritization or investment level for its general technical components. 

Symbiosis Our concept came to life at the historical moment when NASA's ambition to 
investigate small bodies in general---and return samples in particular---aligned with 
commercial ventures aiming to mine such bodies. Such rare simultaneous compat-
ibility promises to spark effective partnerships. 

Timeliness We believe the ℛℬs are advanced enough to be novel and exciting, while 
maintaining a foundation on technologies which can enable an imminent realization. 
While we are proposing an advanced concept at least 10 years away from possible 
implementation, we directly aimed to strike a balance between vision and pragma-
tism in the interest of demonstrating a radically new technology in a comparatively 
short period of time. 
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