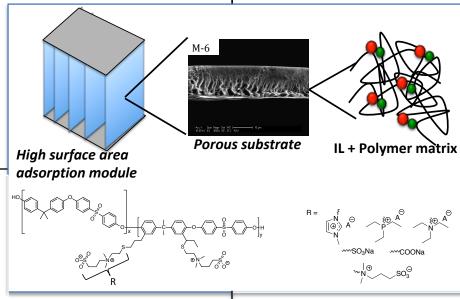
Scalable Membrane-supported IL CO2 capture and removal systems

Early Career Faculty Award (ECF): Topic 2 – MOF and Ionic Liquids/Membrane Technologies for Advanced CO2 Removal Applications

PI: Matthew Green


Assistant Professor Chemical Engineering **Arizona State University** Tempe, AZ 85287

Approach

- Utilize charged, high Tg, porous polysulfones to encapsulate ILs
- Control charge density on polysulfone and optimize polymer-IL interactions to maximize IL loading capacity
- Tailor IL and polymer charge to yield selective CO₂ solubility in the membrane
- Build high surface area modules to maximize CO₂ adsorption capacity and rate

Research Objectives

- Goal: Phase I: Integrate macromolecular design with precision synthetic protocols to produce low maintenance CDRAs that maintain CO₂ below 2630 ppm
- Phase II: Integrate with other support systems and utilize CO₂ as a feedstock

Start at TRL1 (design and synthesis of polymers and IL pairs) and end at TRL3 (deployable CDRA modules)

Potential Impact

Improved longevity, and thermomechanical performance/stability

removal to enable deep space operationsAdaptable module design enables

Reduce cost, weight for efficient CO₂

- integration into other life support systems
- Membrane design allows for CO₂ adsorption or capture, the latter can be fed into catalytic systems to manufacture CH₄, HCOOH, and others with great efficiency