Poly(ionic liquid)-ionic liquid membranes reinforced by graphene sheets for CO₂ capture and conversion in microgravity

Burcu Gurkan (PI)

Chemical and Biomolecular Engineering

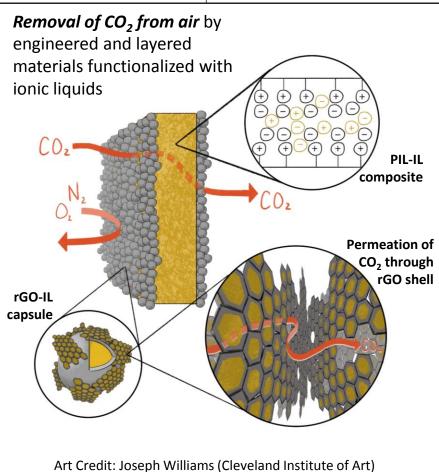
http://www.energylab-cwru.com/

Approach

- Synthesis of poly(ionic liquid)-ionic liquid: PIL-IL composite
- Graphene reinforcement (layer of rGO-IL capsules)
- Characterization: morphology, mechanics and CO₂ & water uptake
- Measure of performance: permeability, selectivity, CO₂ flux with water and temperature

Research Objectives • Develop a structure

- Develop a structured ionic liquid membrane for an integrated CO₂ capture and utilization unit
- Drive innovations in design and synthesis of novel solvents, materials and architectures


Comparison to State-of-the-Art

Improves CO₂ capacity & flux, eliminates volatility/odor, no dust or leakage, robust recovery

TRL1 to TRL3

Potential Impact

- Integration to NASA's
 Environmental Control and Life Support System
- Maintenance of healthy CO₂ level in air
- Integration as an end unit to other applications (e.g., passenger vehicles)
- Future potential for O₂ generation from CO₂ at International Space Station

