

# HUMAN LANDING SYSTEM BAA

FEBRUARY 14, 2019

#### *In the next decade, humanity will return to the Moon for good.*

#### Agenda



#### Schedule: 1:30 - 4:30 p.m. EST

|              | Topics                                                 | Speakers                                                         | NASA Affiliation                                                                                                                               |
|--------------|--------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
|              | Moon to Mars and Human<br>Landing System (HLS) Remarks | Jim Bridenstine<br>Bill Gerstenmaier                             | NASA Administrator<br>Associate Administrator, Human Exploration and Operations Mission<br>Directorate (HEOMD)                                 |
| $\mathbf{i}$ | Introduction                                           | Lindsay Aitchison                                                | HLS Formulation Integration, HEOMD                                                                                                             |
|              | Lunar Exploration Overview                             | Marshall Smith                                                   | Lunar Exploration System Development, HEOMD                                                                                                    |
|              | HLS and the NextSTEP-2<br>Appendix E BAA               | Greg Chavers<br>Nantel Suzuki<br>Mike DeKlotz<br>Melinda Swenson | HLS Formulation Manager, HEOMD<br>HLS Program Executive, HEOMD<br>HLS Acquisition & Project Management Advisor, HEOMD<br>HLS Procurement, MSFC |
|              | Industry Q&A                                           |                                                                  |                                                                                                                                                |



#### Forum Purpose



- Provide an overview of NASA's Moon to Mars activities
- Provide background on NASA's Human Landing System (HLS) Objectives and Activities
- Provide an overview of NASA's NextSTEP-2 Broad Agency Announcement (BAA), Appendix E, released on February 7, 2019
  - Seeks proposals for 6-month Studies and Risk Reduction activities to enable rapid development and flight demonstrations of Human Landing System elements
  - Solicitation available at: <u>https://www.fbo.gov/index?s=opportunity&mode=form&tab=core&id=13ca9566b575d496988122e66efc8230</u>
  - Additional information available at: <u>https://www.nasa.gov/nextstep/humanlander</u>
- Address questions from potential offerors



#### Forum Ground Rules



- This forum is being recorded for purposes of capturing questions and answers
- NASA will address questions during this forum to clarify the content of the Announcement. The posted Q&A log will represent NASA's official response.
- Virtual participants, please submit questions via Webex Chat or by email at hq-nextstep-baa@mail.nasa.gov
- Questions that require further assessment to address will be resolved as soon as possible after the forum, and the answers will be included in the Q&A log



#### Forum Ground Rules

- NASA
- NASA will not provide evaluations, opinions, or recommendations regarding any suggested approaches or concepts
- The Announcement and written answers posted to the NextSTEP website take precedence over all verbal discussions, including this forum and presentation materials
- Deadline for written technical questions is February 21, 2019, 5 pm EST submit questions to hq-nextstep-baa@mail.nasa.gov
- Following this forum, NASA will post an Industry Attendance list for partnering purposes. Send an email to <u>hq-nextstep-baa@mail.nasa.gov</u> by February 15, 2019 if you <u>do not</u> want to be included on this list.



#### **HLS Panel Members**



#### **GREG CHAVERS**

**HLS Formulation Manager** 

NANTEL SUZUKI HLS Program Executive

#### MIKE DEKLOTZ

HLS Acquisition and Project Management Advisor

#### **MELINDA SWENSON**

**HLS Procurement** 

#### **LINDSAY AITCHISON** HLS Formulation Integration





## Welcome

#### Marshall Smith

Lunar Exploration System Development Human Exploration and Operations Mission Directorate NASA Headquarters



## Why The Moon? Because Humans Explore.

No human being has ventured beyond low-Earth orbit since 1972. Right now, NASA is working to re-establish U.S. preeminence to, around, and on the Moon.

#### Space Policy Directive-1





"Lead an innovative and sustainable program of exploration with commercial and international partners to enable human expansion across the solar system and to bring back to Earth new knowledge and opportunities.

Beginning with missions beyond low-Earth orbit, the United States will lead the return of humans to the Moon for long-term exploration and utilization, followed by human missions to Mars and other destinations."



## Lunar Surface in Preparation for Mars

- Transportation Capabilities
  - Demonstrate ISRU
  - Demonstrate precision landing
  - Human-class ascent vehicle development and testing
  - Development of human-scale, pressurized surface mobility

#### Crew Health and Habitation Systems

- Short- and long-duration surface habitat refinement
- Learning to recycle destination resources for fuel, water, oxygen, and building materials
- Development of advanced surface suits

- Surface Operations
  - Teleoperation of surface assets from orbit
  - Sample return
  - Surface power technology demonstrations
  - Communications delay and autonomous operations
  - Establishing deep space logistics supply chains
  - Human surface science and exploration operations techniques

## Capability maturation and system development ongoing within NASA and through international and commercial partnerships



#### Strategic Principles for Sustainable Exploration





#### Path to the Lunar Surface



INSIGHT

MARS SAMPLE

**MARS 2020** 

#### Gateway Objectives





- Enable human crewed missions, including surface missions
- Meet scientific requirements for lunar discovery and exploration
- Prove technologies that enable Lunar missions and feed forward to Mars and other deep space destinations

14

#### Gateway's Near-Rectilinear Halo Orbit (NRHO)





#### **FULFILLING THE DREAM**

In the next decade, humanity will return to the Moon for good.



Today marks an early step on this journey. Our bold adventure is just beginning!

#### HLS Architecture and BAA Overview – N. Suzuki



# Next Space Technologies for Exploration Partnerships

#### Next Space Technologies for Exploration Partnerships

HUMAN LANDING SYSTEM BAA Industry Forum

QUESTIONS? Email HQ-NextSTEP-BAA@mail.nasa.gov

#### Lunar Transportation Technology Development



## HLS Architecture Key Target Features

NA

- Sizing for 4 crew lunar landings with an option of as few as 2 crew
- Support for lunar surface extra-vehicular activities (EVA)
- Global lunar surface access
- Reusability
  - Ascent and Transfer Vehicle Elements reusable, refueled in 2028
  - Descent Element evolvable to be reusable in future
- Accommodations for science missions
- Facilitates commercial and international participation
- Support for launching Elements on commercial launch vehicles
- Rendezvous with Gateway to transfer crew
- 7-day lunar sorties



## Key Takeaways from Initial Studies



#### To deliver humans to the Moon, several lander vehicle options were assessed

| LANDER<br>MODULE                      | 50+ mT              | <ul> <li>Single-stage human lander</li> <li>Does not fit on any launch vehicle, including SLS Block 1B Cargo</li> </ul>                                                                                                                                |
|---------------------------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ASCENT<br>MODULE<br>DESCENT<br>MODULE | 9-12 mT<br>32-38 mT | <ul> <li>Two-stage options</li> <li>Ascent Module fits on commercial launch vehicles expected to be available</li> <li>Descent Module does not fit on commercial launch vehicles</li> <li>Small module commonality across habitable volumes</li> </ul> |
|                                       |                     |                                                                                                                                                                                                                                                        |
| ASCENT<br>MODULE                      | 9-12 mT             | <ul> <li>Three-stage options         <ul> <li>Fits on commercial launch vehicles expected to be available</li> </ul> </li> </ul>                                                                                                                       |
| DESCENT<br>MODULE                     | ~15 mT              | <ul> <li>Single elements potentially can be co-manifested payload on SLS</li> <li>Allows increased partnering opportunities</li> </ul>                                                                                                                 |
| TRANSFER<br>VEHICLE                   | 12-15 mT            | <ul> <li>Maximizes reusability and flexibility</li> <li>Small module commonality across habitable volumes</li> </ul>                                                                                                                                   |

## Buildup of Notional Human Landing System Reference Architecture (1 of 3) GATENAA ORDI

#### 2024



LUNAR DESCENT ELEMENT LAUNCHES TO GATEWAY ON COMMERCIAL ROCKET

**Descent Element** departs Gateway, goes to low lunar orbit for deployment to surface.

DESCENT ELEMENT

MUNAR OFBIT



Ascent Element back to Gateway

## Buildup of Notional Human Landing System Reference Architecture



#### Notional Acquisition Timeline





#### HLS Design Analysis Cycle and BAA Schedule







## Goals of Appendix E BAA



- **Refine** the architecture, functional allocation options, standards, and common interfaces required to enable the aggregate system to provide human landing capability
- Inform System, Element-level, and Inter-Element interface requirements
- Understand and refine Element designs, schedules, and costs
- Identify key technology maturation areas and implement technology maturation plans
- Identify any long-lead procurement items, as well as provide a plan for how offerors would acquire those items, including procurement during the 6-month period of performance of this Phase A effort
- BAA Scope: Descent, Transfer Vehicle, and Refueling Elements (funding emphasis on Descent Element)
- Ascent Element and Surface Suit: NASA plans internal effort to mature designs of Ascent and Surface Suit Elements before issuing potential external study and risk reduction efforts



## Minimum and Goal Element Requirements



| Descent Element Requirement               | Preliminary Minimum                                                             | Preliminary Goal                                    |
|-------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------|
| Design stability                          | Minimal changes needed from 2024 design to support 2026, 2028 missions          | Not applicable (N/A)                                |
| Payload mass to lunar surface             | At least 9 metric tons (mT) from LLO (100km) to support 2026 and 2028 missions. | 12 mT or greater.                                   |
| Reusability (Full reusability: ability to | N/A                                                                             | Evolvable to be refuelable to support eventual full |
| be refueled and reused on a               |                                                                                 | reusability                                         |
| subsequent mission)                       |                                                                                 |                                                     |
| Schedule                                  | Credible launch readiness in 2024                                               | Credible launch readiness in 2023                   |
| Launch Vehicle considerations             | Design to fit within 6.3m dynamic envelope diameter                             | Design to fit within 4.6m dynamic envelope diameter |
|                                           | Wet mass at launch less than 16mT                                               | Wet mass at launch less than 15mT                   |
| Landing zone                              | Global access                                                                   | N/A                                                 |
| Landing precision                         | 100m                                                                            | 50m                                                 |
| Propulsion system effective deep          | 4:1                                                                             | 6:1                                                 |
| throttling (accomplished with single or   |                                                                                 |                                                     |
| multiple engines)                         |                                                                                 |                                                     |



## Minimum and Goal Element Requirements



| Transfer Vehicle Element                     | Preliminary Minimum                        | Preliminary Goal                  |
|----------------------------------------------|--------------------------------------------|-----------------------------------|
| Requirements                                 |                                            |                                   |
| Reusability (Full reusability: ability to be | Evolvable to being fully reusable          | Fully reusable                    |
| refueled and reused on a subsequent          |                                            |                                   |
| mission)                                     |                                            |                                   |
| Number of reuses                             | N/A                                        | 10 uses                           |
| Mass transferred from Near Rectilinear       | 25mT                                       | >25mT                             |
| Halo Orbit (NRHO) to 100km LLO (assuming     |                                            |                                   |
| ability to return to NRHO after transfer)    |                                            |                                   |
| Schedule                                     | Credible launch readiness in 2026          | Credible launch readiness in 2025 |
| Launch Vehicle considerations                | Design to fit within 6.3m dynamic envelope | Design to fit within 4.6m dynamic |
|                                              | diameter                                   | envelope diameter                 |
|                                              | Wet mass at launch less than 16mT          | Wet mass at launch less than 15mT |
| Propellant                                   | Cryogenic or storable                      | Cryogenic                         |



#### Minimum and Goal Element Requirements



| <b>Refueling Element</b>      | Preliminary Minimum                                 | Preliminary Goal                                    |
|-------------------------------|-----------------------------------------------------|-----------------------------------------------------|
| Requirements                  |                                                     |                                                     |
| Refueling capacity at NRHO    | 10 mT propellant                                    | >10mT propellant                                    |
| Propellant types              | Cryogenic or storable                               | Cryogenic                                           |
| Reusability                   | None                                                | Some                                                |
| Schedule                      | Credible launch readiness in 2028                   | Credible launch readiness in 2026<br>or earlier     |
| Launch Vehicle considerations | Design to fit within 6.3m dynamic envelope diameter | Design to fit within 4.6m dynamic envelope diameter |
|                               | Wet mass at launch less than 16mT                   | Wet mass at launch less than 15mT                   |



## Industry Partnerships in Pursuit of NASA Goals









- NextSTEP solicits studies, concepts and technologies to demonstrate key capabilities on the International Space Station and for future human missions in deep space. Focus areas include:
  - life support systems, advanced electric propulsion systems, small satellites, commercial lunar landers, in-space manufacturing, and in-situ resource utilization (ISRU) measurements and systems
- Most NextSTEP efforts require some level of corporate contribution. For this Appendix, small businesses have different corporate contribution requirements.
- This corporate contribution model of public-private partnerships stimulates the economy and fosters a stronger industrial base and commercial space market.

## NextSTEP-2 Omnibus BAA

NASA

- Umbrella BAA solicitation covering multiple areas of research by AES
  - Original Release April 19, 2016: NNHZ16CQ001K
  - Effective through December 2020 as of Amendment #6
- Specific Research and Development Opportunities announced periodically as Appendices
- Umbrella BAA document contains information relevant to all Appendix solicitations
  - Information may be augmented by or superseded in Appendices
  - Provide the flexibility for a variety of contract vehicles
  - Eligibility requirements, proposal instructions, proposal review information



#### NextSTEP-2 Omnibus BAA



- Appendices contain details specific to the research being sought
  - Funding, expected number/type of awards (grant, CA, contract)
  - Proposal instructions where it may differ from the omnibus
- Appendix E Human Landing System Studies, Risk Reduction, Development, and Demonstration released February 7, 2019



#### NextSTEP BAA HLS Phase A Award Overview



- NASA is soliciting Phase A proposals for firm fixed price contracts for trade studies, longlead items, and risk reduction prototypes for Descent Elements, Refueling Elements, and Transfer Vehicles of the Human Landing System
  - Base study All proposals are expected to include a Base Study that includes all Phase A scope with the exception of scope included under Long-Lead and Prototypes described below
  - Long-lead items Proposals may include procurement of long-lead items
  - Risk reduction prototypes Proposals may include risk reduction prototype development and testing



#### NextSTEP BAA HLS Phase A Award Overview

- Phase A Period of Performance: 6 months
- Funding: \$30 \$40M to allocate (FY2019)
- Structure by Contract Line Item Number (CLIN) (total not to exceed \$9M per proposal)
  - Base Study CLIN (expected to be < \$1M, not to exceed \$1.5M)
  - Long-Lead CLIN
  - Prototype CLIN
- Corporate contribution: at least 20% (10% for small business)
- Follow-on potential
  - Phase B for Design, Development, Test and Evaluation (DDT&E) of Descent Elements (other Elements will have separate DDT&E procurement)



## Phase A Objectives and Expected Deliverables



| BAA Phase A Objective                                    | Expected in Proposal                                              | Expected Proposed Study Deliverable(s)                                                                       |
|----------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| Inform requirements, concept of operations, architecture | SOW Milestone(s) to provide comments                              | Comments                                                                                                     |
| Inform interfaces                                        | Approach to standards review, support of interface working groups | Report(s)                                                                                                    |
| Mature designs                                           | Capability concept                                                | Updated design package                                                                                       |
| Technology maturation                                    | Technology maturation plan, including proposed prototypes         | <ol> <li>Prototype documentation</li> <li>Updated technology maturation plan for post-Study phase</li> </ol> |
| Element Development Schedule thru flight                 | Rough schedule with assumptions                                   | Refined preliminary schedule                                                                                 |
| Study SOW (includes schedule                             | Phase A SOW w/milestones                                          | N/A (deliverables per SOW)                                                                                   |
| Element SOW thru flight                                  | N/A                                                               | Draft SOW (expected only for Descent Element)                                                                |
| Element cost thru flight                                 | N/A                                                               | Estimated Element cost with assumptions                                                                      |
| Mature program technical approach                        | Element technical approach                                        | Updated design package                                                                                       |
| Long-lead items                                          | Long-lead plan, including proposed Phase A procurements           | Updated long-lead items plan                                                                                 |
| NASA GFP/GFE/Subject Matter Expertise Plan               | Phase A NASA GFP/GFE/Subject Matter<br>Expertise Plan             | Updated GFE plan (expected only for Descent Element)                                                         |

#### Descent Element Follow-On Phases



- Following Phase A, NASA intends to make zero, one, or two awards for the Design Development Test and Evaluation (DDT&E) and planned 2024 flight demonstrations of Descent Elements from among the Phase A participants
  - Potential offerors that are interested in performing DDT&E and flight demonstration of their Descent Elements under contract at Phase B are strongly encouraged to and should propose Phase A Studies requested under this Appendix
  - Following Descent Element Phase A award, NASA intends to provide additional Phase B information, including applicable evaluation criteria
- Work related to the planned 2026 and 2028 missions may be awarded exclusively to one or more offerors from among Descent Element Phase A awardees
- NASA reserves the right to revisit and modify its Descent Element acquisition/partnering strategy at any time and will notify industry if and when it does so



#### BAA Details – M. DeKlotz



# Next Space Technologies for Exploration Partnerships

#### HUMAN LANDING SYSTEM BAA Industry Forum

QUESTIONS? Email HQ-NextSTEP-BAA@mail.nasa.gov
## Eligible Participants



- This solicitation topic is open to non-Government U.S. institutions (companies, universities, nonprofit organizations)
- Foreign institutions, NASA civil servants, Jet Propulsion Laboratory (JPL) employees, national laboratories, and Federally Funded Research and development Centers (FFRDCs) shall not be proposed as a Prime Contractor on any effort associated with this announcement, but may participate as a team member
- Performance of Descent Element Phase B of this appendix will be subject to the eligibility and domestic sourcing requirements of both the Commercial Space Act of 1998 and the National Space Transportation Policy



#### Corporate Resources



- Offerors must show a minimum of 20% of the overall effort corporate contribution (10% for a Small Business) that is directly relevant to the proposed effort.
  - A minimum of half of corporate contribution must be invested coincident with the period of performance of this effort in the form of direct labor, travel, consumables, or other in-kind contributions.
  - No more than half of required minimum corporate contribution may be from foreign partners
  - Value of participation by federally funded participants and/or use of federal government facilities shall be added to the price to the government for determining whether the 20% required corporate contribution has been met.

CC: **Corporate Contribution** RP: Requested Price to NASA (not including cost of NASA resources) NR: NASA Resources (GFP/GFE/Subject Matter Expertise) OF: **Overall Effort** OE = CC + RP + NR (if applicable) Minimum CC = 0.20 \* OE



### Government-Contributed Resources



- Offerors may include requests for access to Government resources, such as facilities, GFP/GFE, NASA subject matter expertise, or other Government services
  - Responsibility of offeror to determine availability of Government facilities or services
  - Government effort must be a discrete effort/SOW
- Center points-of-contact listed below and in BAA Appendix E, Attachment B

| Center                    | Point-of-Contact                                            |
|---------------------------|-------------------------------------------------------------|
| Ames Research Center      | David Korsmeyer, 650-604-3114, david.korsmeyer@nasa.gov     |
| Armstrong Flight          | Charles Rogers, 661-276-7572, charles.rogers-1@nasa.gov     |
| Research Center           |                                                             |
| Glenn Research Center     | Gary Ruff, 216-433-5697, gary.a.ruff@nasa.gov               |
| Goddard Space Flight      | Mark Lupisella, 301-286-2918, mark.l.lupisella@nasa.gov     |
| Center                    |                                                             |
| Jet Propulsion Laboratory | Dave Eisenman, 818-354-4430, david.j.eisenman@jpl.nasa.gov  |
| Johnson Space Center      | Randy Lillard, 281-483-4629, randy.lillard-1@nasa.gov       |
| Kennedy Space Center      | Julius Edelmann, 321-861-7526, j.edelmann@nasa.gov          |
| Langley Research Center   | David Dress, 757-864-5126, david.a.dress@nasa.gov           |
| Marshall Space Center     | Jason Adam, 256-961-2317, jason.r.adam@nasa.gov             |
| Stennis Space Center      | Lauren Underwood, 228-688-2096, lauren.w.underwood@nasa.gov |

## Proposal Content (1 of 5)

NASA

- Title Page
- Executive Summary
  - No proprietary content (publicly releasable)
- Proof of Eligibility



# Proposal Content (2 of 5)

#### Technical Proposal

- Capability Concept
  - Element concept description and how it functions (what role it serves in the Human Landing System)
  - How concept addresses objectives/requirements
  - Reusability, recyclability, extensibility
- Technical Approach
  - Overview of enveloping engineering approach
  - Detailed work plan and schedule including key project milestones (may refer to Draft SOW attachment)
  - Long-lead procurement plan
  - Technology maturation path
  - A brief summary of past relevant activities/tests
  - Plan for providing feedback on Concept of Operations, requirements
  - Plan for supporting interface working groups
  - Plan for NASA-contributed expertise and facilities (may refer to Requested government-contributed resources attachment)
  - Identification of key team members, their roles in the project, and plan to coordinate work across multiple departments/partners, if applicable (may refer to Resumes attachment)

42

## Proposal Content (3 of 5)

NASA

**Business Proposal** 

- Define customer/partnership model
- Capabilities: Evidence of existing capabilities for designing and developing space-qualified systems applicable to the Elements described in this Appendix
- Intellectual Property
  - Approach for data rights and inventions
  - Describe how approaches meet the objectives outlined under Omnibus BAA Section 2.7, Intellectual Property
  - Attachment E provides as a reference the standard FAR patent and data rights clauses used by NASA in contract awards. Provide any exceptions, with justification.



## Proposal Content (4 of 5)



#### **Price Proposal**

- Firm fixed price, sample format set forth in Omnibus BAA Attachment A
- Include table with breakout and value of corporate resources
- Include table with breakout and value of government-contributed resources
- Structure by CLIN (total not to exceed \$9M)
  - Base Study CLIN (expected to be < \$1M, not to exceed \$1.5M)
  - Long-Lead CLIN
  - Prototype CLIN
- Provide existing rate agreements, if any

## Proposal Content (5 of 5)

#### • Attachments:

- Draft Statement of Work
  - Proposed technical and payment milestones
  - Deliverables
- Summary chart (template enclosed)
- Resumes
- Corporate Resources Documentation
- Key Facilities and Equipment
- Requested government-contributed resources





## Proposal Evaluation Criteria (1 of 3)



- Technical Merit, Relevance, and Price factors are equally important. Within the Technical Merit factor, Technical Approach is more important than Quality of Team.
- Relevance
  - Address one of the specific HLS Elements
    - Offerors may submit proposals for one or more Elements, with a separate proposal submitted for each Element being proposed
    - Offerors may only submit one proposal per Element
    - Note that proposals not aligned with the Elements of the HLS as described in the BAA, while potentially valuable to NASA, are outside the scope of this BAA
  - Alignment with NASA's strategy to stimulate the U.S. space industry while leveraging those same commercial capabilities through this Partnership and future contracts to deliver mission capabilities

## Proposal Evaluation Criteria (2 of 3)



#### • Technical Merit – Technical Approach

- Address the preliminary minimum and goal requirements for proposed element
- Robust design such that Elements used in earlier missions are expected to be robust enough to be used for later missions without significant design changes
- Proposed technology maturity plan supports the schedule and objectives of three anticipated missions described in Attachment A
- Risk-reduction prototype activities and long-lead procurement proposed to be accomplished during Phase A critical in supporting the schedule and objectives of the proposed Element
- To what extent is the SOW including key technical milestones and deliverables specific, measurable, appropriate, realistic, and timely
- Use of NASA GFE, GFP, and subject matter experts aligns with the objectives
- Adequate plan to assess proposed design concept against applicable standards, as well as provide feedback on interfaces, requirements, concept of operations
- Recognize significant potential risks and consider reasonable mitigation strategies



## Proposal Evaluation Criteria (3 of 3)



#### • Technical Merit – Quality of Team

- Proposed team posses sufficient technical knowledge and capabilities
- Evidence of successful past performance for designing and developing space-qualified systems
- Staffing levels adequate
- Roles clearly defined, with clear and appropriate management structure
- Facilities appropriate to complete the Phase A effort and potential follow-on development and manufacture of space-qualified systems
- Price will be evaluated for reasonableness



#### Schedule



- Pre-Solicitation Notice (Synopsis) Released: 12/13/18
- BAA Solicitation Released: 2/7/19
- Industry Forum (NASA HQ & Virtual): 2/14/19
- Inquiries / Notices of Intent (NOI) Due:
- Proposals Due:
- Awardee Selections:
- Contract Awards:

2/21/19

3/25/19

May 2019 (anticipated)

July 2019 (anticipated)

#### Q & A - L. Aitchison



# Next Space Technologies for Exploration Partnerships

#### Next Space Technologies for Exploration Partnerships

#### HUMAN LANDING SYSTEM BAA Industry Forum

QUESTIONS? Email HQ-NextSTEP-BAA@mail.nasa.gov

## Q & A Instructions

NASA

- Questions may be submitted as follows:
  - In-Person or Webex Chat questions during Q&A period of the forum
  - E-mail questions to: <u>hq-nextstep-baa@mail.nasa.gov</u>
- Please limit questions to clarifications of this BAA
- Questions that require further assessment to address will be resolved as soon as possible after the forum, and the answers will be posted to the NextSTEP website: http://www.nasa.gov/nextstep/humanlander
- Any published responses to questions posted at the NextSTEP website will supersede oral discussions during this forum





#### Thank You for Participating This presentation will be posted at: http://www.nasa.gov/nextstep/humanlander

Please submit questions about no later than February 21, 2019, 5pm EDT to: hq-nextstep-baa@mail.nasa.gov



## NASA

#### HUMAN LANDERS BAA INDUSTRY FORUM FEBRUARY 14, 2019

#### *In the next decade, humanity will return to the Moon for good.*