OUTCOME 2.3: ASCERTAIN THE CONTENT, ORIGIN, AND EVOLUTION OF THE SOLAR SYSTEM AND THE POTENTIAL FOR LIFE ELSEWHERE.

<u>Planetary Science</u>'s missions have revolutionized understanding of the origin and history of the solar system. NASA has missions circling the innermost planet, Mercury, and heading for the outer reaches of the solar system, where Pluto orbits among other Kuiper Belt objects. Its missions have orbited and roved the surface of Mars, finding evidence of liquid water. Closer to home, Planetary Science uses ground-based sensors in coordination with the <u>National Science Foundation</u> and the <u>U.S. Air Force</u> to survey the volume of near-Earth space to detect, track, catalog, and characterize near-Earth objects that may either pose hazards to Earth or provide destinations and resources for future exploration.

NASA's robotic science missions are paving the way for understanding the origin and evolution of the solar system and identifying past and present habitable locations. With this knowledge, NASA is enabling human space exploration by studying and characterizing planetary environments beyond Earth and identifying possible resources that will enable safe and effective human missions to destinations beyond low Earth orbit.

Robotic explorers gather data to help scientists understand how the planets formed, what triggered different evolutionary paths among planets, what processes are active, and how Earth formed, evolved, and became habitable. To search for evidence of life beyond Earth, scientists use this data to map zones of habitability, study the chemistry of unfamiliar worlds, and unveil the processes that lead to conditions necessary for life.

Providing National Scientific Capabilities in Planetary Sciences

NASA continues to develop the Nation's capabilities in support of NASA's science objectives by funding research and mission development performed by scientists and engineers at universities, research centers, private sector organizations, and NASA Centers. The majority of research awards also include funding for postdoctoral fellows, graduate students, and undergraduate students, thereby supporting the education and training of future scientists and engineers.

Programs and activities serving this goal in FY 2012 include:

- The Research Opportunities in Space and Earth Science annual solicitation;
- Basic technology development in instrumentation and power systems;
- Graduate student, postdoctoral and early career Earth and space science fellowships;
- Presidential Early Career Award for Scientists and Engineers;
- Hands-on Project Experience; and
- Venus Transit public educational and viewing event.

The establishment, operation, and maintenance of necessary facilities is critical to the Nation's scientific capabilities. In FY 2012, NASA provided:

 Operations, basic data analysis, and resources for operation centers for the <u>MSL Curiosity</u>, <u>Cassini, Dawn (now ended)</u>, <u>LRO</u>, <u>New Horizons</u>, the <u>Mars Exploration Rover Opportunity</u>, <u>MRO</u>, <u>Juno</u>, <u>MESSENGER</u>, <u>Mars Odyssey</u>, and <u>GRAIL (now ended)</u> missions;

- The Planetary Data System (PDS), which archives all NASA planetary science mission data and provides open access to the science community and the public through the PDS discipline nodes, including Atmospheres, Geosciences, Imaging, Navigational and Ancillary Information, Planetary Plasma Interactions, Planetary Rings, and Small Bodies;
- Facilities operation of ground-based <u>Infrared Telescope Facility</u> and Keck Observatories and Astromaterials Curation, including lunar and extraterrestrial specimens; and
- Support for the <u>NASA Astrobiology Institute</u>, the <u>NASA Lunar Science Institute</u>, and analysis working groups providing cross-disciplinary community engagement and research collaborations.

NASA requires that all funded research investigations publish their results in open, peer reviewed science literature, ensuring that data and knowledge are captured. Each year, the Planetary Science Subcommittee of NASA's external advisory Science Committee evaluates the progress made by NASA toward each science objective. In FY 2012, the subcommittee found that expectations had been fully met by research results that included those discussed below.

Reported Multi-Year Performance

Multi-Year Performance Goal 2.3.1.1: Provide national scientific capabilities through necessary skilled researchers and supporting knowledge base. (In support of objective 2.3.1: "Inventory solar system objects and identify the processes active in and among them.")

system objects and	a racitity the processes active in and among them.				
FY11	NASA provides the skilled researchers and supporting planetary science knowledge base				
Green	necessary for the Nation's scientific capabilities as detailed.				
FY12	Dawn at Vesta				
Green					
	The Dawn spacecraft completed its observations at the giant asteroid Vesta. The results from Dawn warranted an entire issue of <i>Science</i> (May 11, 2012) dedicated to the new findings. Results show asteroid Vesta has geomorphological features such as varied topography and depositional and erosional environments indicating active surface processes. Data from the Dawn spacecraft reveal Vesta to be a dwarf planet with an inner iron core like the Moon and rocky planets.				
	atellite of Pluto Discovered				
	Researchers from NASA's <u>New Horizons</u> mission to Pluto used the <u>Hubble Space Telescope</u> to discover a fifth moon orbiting Pluto in images taken during June–July 2012. The moon, tentatively called "P5," has a diameter of about 15 kilometers, making it the smallest and faintest of Pluto's moons yet discovered. The image of the new moon and other images will enable the mission team to assess the safety of several candidate trajectories for New Horizons as it passes near Pluto in July 2015.				
	Can a Moon Have a Moon? Saturn's Mysterious Iapetus May Have Had One				
	Two NASA-funded research groups proposed that Iapetus, Saturn's outermost major moon, once had its own satellite. Both groups propose that this "subsatellite" was formed by collision with another moon during Iapetus' formation. The research groups are investigating the fate of the lost moon. One team suggests that the subsatellite spiraled out				

from Iapetus and was responsible for Iapetus' very slow spin before ultimately being lost. The other research team proposes that the subsatellite ultimately spiraled back toward Iapetus, breaking up into a debris ring, and forming the equatorial accretion ridge.

Update to Multi-Year Performance Goal	
FY13 Update	This performance goal remains the same in FY13.
FY14	This performance goal remains the same in FY14.

Reported Annu	al Performance						
PS-12-1: Demo	nstrate planned p	progress in invent	torying solar sys	tem objects and i	identifying the		
processes active	processes active in and among them. Progress relative to the objectives in NASA's 2010 Science						
Plan will be eva	Plan will be evaluated by external expert review.						
Contributing T	Contributing Theme: Planetary Science						
Contributing Program(s): Multiple Programs							
FY07	FY08	FY09 FY10 FY11 FY12					

Nono

None	None	None	None	Green	Green			
Planned Annua	Planned Annual Performance							
FY13 Update	FY13 Update PS-13-1: Demonstrate planned progress in inventorying solar system objects and identifying the processes active in and among them. Progress relative to the objectives in NASA's 2010 Science Plan will be evaluated by external expert review.							
FY14	FY14PS-14-1: Demonstrate planned progress in inventorying solar system objects and identifying the processes active in and among them. Progress relative to the objectives in NASA's 2010 Science Plan will be evaluated by external expert review.							

None

Reported Multi-Year Performance

None

Multi-Year Performance Goal 2.3.1.2: By 2017, launch at least two missions in support of objective 2.3.1.

FY11	The
Green	of ol
FY12	Plan Reg
Green	Opp
	from
	whic
	Rev
	will
	NAS
	Disc
	look
	from

None

The purpose of this performance goal is to design, develop, and launch satellites in support of objective 2.3.1, as outlined in the NASA Science Mission Directorate's <u>2010 Science</u> <u>Plan</u>. NASA selected the Origins-Spectral Interpretation-Resource Identification-Security-Regolith Explorer, or <u>OSIRIS-REx</u>, project in FY 2011 through a NASA Announcement of Dpportunity. Planned for launch in 2016, it will be the first U.S. mission to bring samples from an asteroid back to Earth. The project team chose to extend the formulation phase, which will help reduce mission risk. OSIRIS-REx successfully conducted a Mission Design Review on May 8-10, 2012. The Preliminary Design Review initially planned for FY 2012 will be held in March 2013.

PS-11-1

PS-12-1

NASA selected the second mission serving this performance goal in August 2012 from three Discovery 12 concept studies. Also planned for launch in 2016, <u>InSight</u> will take the first look into the deep interior of Mars to see why it evolved differently as a terrestrial planet from Earth.

Update to Multi-Year Performance Goal				
FY13 Update	FY13 Update This performance goal remains the same in FY13.			
FY14	This performance goal remains the same in FY14.			

Reported Annual Performance							
PS-12-2: Complete New Frontiers 3 Preliminary Design Review.							
Contributing T	Contributing Theme: Planetary Science						
Contributing Program(s):		New Frontiers					
FY07	FY08	FY09 FY10 FY11 FY12			FY12		
None None		None	10PS04	PS-11-3	PS-12-2		
		None Green		Green	Yellow		

Why this APG was not achieved:

At the time of the performance plan update, NASA had not completed the final negotiation on the procurement the Origins Spectral Interpretation Resource Identification Security Regolith Explorer (OSIRIS-REx) mission. The final agreement resulted in a proposed extended Phase B for the OSIRIS-REx project, which moved the Preliminary Design Review (the APG milestone) beyond fiscal year 2012, with the planned completion of the Mission Definition Review in FY 2012 instead. NASA made this change to reduce risk to cost and schedule performance for the project.

Planned Annual Performance

I familieu / Minua				
FY13 Update PS-13-5: Complete the OSIRIS-REx Preliminary Design Review (PDR).				
FY14	PS-14-2: Complete the OSIRIS-REx Critical Design Review (CDR).			

Reported Annu	al Performance	e					
PS-12-3: Comp	lete the Discove	ery 12 mission con	cept studies.				
Contributing T	ntributing Theme: Planetary Science						
Contributing P	Contributing Program(s): Discovery						
FY07	FY08	FY09	FY10	FY11	FY12		
None	None	None	None None None PS-12-3 Green				
Planned Annua	Planned Annual Performance						
FY13 Update	PS-13-2: Initiate	PS-13-2: Initiate the preliminary design for the Discovery 12 mission.					
FY14	PS-14-3: Compl	PS-14-3: Complete InSight Mission (Discovery 12) Critical Design Review.					

Reported Multi-Year Performance

Multi-Year Performance Goal 2.3.2.1: Provide national scientific capabilities through necessary skilled researchers and supporting knowledge base. (In support of objective 2.3.2: "Improve understanding of how the Sun's family of planets, satellites, and minor bodies originated and evolved.")

FY11	NASA provides the skilled researchers and supporting planetary science knowledge base
Green	necessary for the Nation's scientific capabilities.
FY12 Green	LRO Reveals Scars of Lunar Tectonics
	Scars observed on the Moon by NASA's Lunar Reconnaissance Orbiter (LRO) suggest that the Moon was not fully molten when it first formed. Cooling of a fully melted moon would have erased any localized stretching that formed the features seen today. With the recent imaging capability of the high-resolution camera onboard LRO, new discoveries about the formation of the Moon are coming into focus. High-resolution images show a recent graben, or depression, bordered by parallel faults formed by tectonics, leaving a scar on the lunar surface. The graben is less than 50 million years old based on its lack of craters and micrometeorite infill.
	GRAIL Redefines The Lunar Gravity Field
	The most accurate global gravity model of the Moon to date has been developed from the first three months of <u>Gravity Recovery and Interior Laboratory (GRAIL)</u> data, with surface resolution as small as 23 kilometers. The new model reveals a much more detailed lunar landscape, particularly over the lunar far side, showing the gravity signals of craters and basins not seen before and with an accuracy at least an order of magnitude more precise than any previous model. This data also reveal lunar surface features and provide measurements of the interior composition, subsurface structure, and the lunar thermal history.
	Volatile-rich Terrains on Mercury
	The <u>MESSENGER spacecraft</u> has sent back a wealth of data from the innermost planet. One of the major discoveries from orbit is of "hollows," shallow, rimless, irregularly shaped depressions found in impact craters all over Mercury. The strange landforms can be tens of meters to a few kilometers wide. The origin of the hollows is not yet known, but one of the most likely formation mechanisms involves recent loss of volatiles through some combination of sublimation, space weathering, outgassing, or pyroclastic volcanism. These features support the inference that Mercury's interior contains higher abundances of volatile materials than predicted by most scenarios for the formation of the solar system's innermost planet. Although Mercury was thought to be relatively old and dead, MESSENGER images of the hollows show that parts of it may be active today.

Update to Multi-	Update to Multi-Year Performance Goal			
FY13 Update	FY13 Update This performance goal remains the same in FY13.			
FY14	This performance goal remains the same in FY14.			

Reported Annu	al Performance						
PS-12-4: Demo	nstrate planned	progress in under	standing how th	e Sun's family of	planets,		
satellites, and n	ninor bodies orig	inated and evolv	ed. Progress rela	tive to the object	ives in NASA's		
2010 Science Pl	lan will be evalua	ated by external e	xpert review.				
Contributing T	heme:	Planetary Science					
Contributing P	rogram(s):	Multiple Program	S				
FY07	FY08	FY09	FY10	FY11	FY12		
7SSE1	8PS01	9PS1	10PS01	PS-11-4	PS-12-4		
Green	Green	Green	Green	Green	Green		
Planned Annua	al Performance						
	PS-13-3: Demons	PS-13-3: Demonstrate planned progress in understanding how the Sun's family of planets,					
FY13 Update		nor bodies originated					
_		ence Plan will be ev					
		strate planned progre					
FY14		nor bodies originated			bjectives in		
	NASA's 2010 Sc	ence Plan will be ev	aluated by external	expert review.			

Reported Annu	al Performance							
PS-12-5: Comp	lete MESSENG	ER mission succes	ss criteria.					
Contributing T	Contributing Theme: Planetary Science							
Contributing P	Contributing Program(s): Discovery							
FY07	FY08	FY09	FY10	FY11	FY12			
7SSE2	8PS02	None	None	PS-11-5	PS-12-5			
Green	Green	None	None	Green	Green			
Planned Annua	l Performance							
FY13 Update	No annual performance goal in FY13.							
FY14	No annual performance goal in FY14.							

Reported Multi-Year Performance

Multi-Year Performance Goal 2.3.2.2: By 2015, launch at least three missions in support of objective 2.3.2.

FY11	The purpose of this performance goal is to design, develop, and launch satellites in support
Green	of objective 2.3.2, as outlined in the NASA Science Mission Directorate's 2010 Science
FY12	Plan. On August 5, 2011, NASA launched the first mission, <u>Juno</u> , supporting this
Green	performance goal. It is on its way to the largest planet in the solar system, Jupiter, to collect data that will help scientists better understand how this gas giant planet formed and evolved.
	Shortly into FY 2013, Juno headed back toward the inner solar system to fly past Earth,
	gaining a gravity boost that sped it toward Jupiter.
	NASA also is researching solar system bodies closer to home in support of its science objectives. On September 10, 2011, NASA launched the twin <u>GRAIL</u> spacecraft into orbit around the Moon to map lunar gravity and use that information to increase understanding of the Moon's interior and thermal history. By May 2012, GRAIL had accomplished its mission success criteria.

The third mission also will be focused on lunar research. NASA completed the Delta-Systems Integration Review for the <u>Lunar Atmosphere and Dust Environment Explorer</u> (<u>LADEE</u>) on August 9, 2012, giving the project the go-ahead to integrate the systems into the spacecraft bus and begin testing. LADEE is planned for launch in late 2013, within the completion timeframe for this performance goal. LADEE will orbit the Moon to gather detailed information about the lunar atmosphere, conditions near the surface, and environmental influences on lunar dust.

Update to Multi-	Update to Multi-Year Performance Goal				
FY13 Update	This performance goal remains the same in FY13.				
FY14	This performance goal remains the same in FY14.				

Reported Annual Performance

PS-12-2: Complete New Frontiers 3 Preliminary Design Review.							
Contributing Theme: Planetary Science							
Contributing Program(s):		New Frontiers	New Frontiers				
FY07	FY08	FY09	FY10	FY11	FY12		
Nore	None	None	10PS04	PS-11-3	PS-12-2		
None		None	Green	Green	Yellow		

Why this APG was not achieved:

At the time of the performance plan update, NASA had not completed the final negotiation on the procurement the Origins Spectral Interpretation Resource Identification Security Regolith Explorer (OSIRIS-REx) mission. The final agreement resulted in a proposed extended Phase B for the OSIRIS-REx project, which moved the Preliminary Design Review (the APG milestone) beyond fiscal year 2012, with the planned completion of the Mission Definition Review in FY 2012 instead. NASA made this change to reduce risk to cost and schedule performance for the project.

Planned Annual Performance					
FY13 Update	PS-13-5: Complete the OSIRIS-REx Preliminary Design Review (PDR).				
FY14	PS-14-2: Complete the OSIRIS-REx Critical Design Review (CDR).				

Reported Annu	al Performanc	e					
PS-12-3: Comp	lete the Discov	ery 12 mission con	cept studies.				
Contributing T	'heme:	Planetary Science					
Contributing P	rogram(s):	Discovery					
FY07	FY08	FY09	FY10	FY11	FY12		
None	None	None	None	None	PS-12-3 Green		
Planned Annua	al Performance						
FY13 Update	PS-13-2: Initiat	PS-13-2: Initiate the preliminary design for the Discovery 12 mission.					
FY14	PS-14-3: Comp	PS-14-3: Complete InSight Mission (Discovery 12) Critical Design Review.					

Reported Annu	al Performanc	e					
PS-12-6: Comp	lete the Lunar	Atmosphere and D	ust Environmen	t Explorer (LAI	DEE) Systems		
Integration Re	view.						
Contributing T	`heme:	Planetary Science					
Contributing P	Contributing Program(s): Lunar Quest						
FY07	FY08	FY09	FY10	FY11	FY12		
None	None	None	None	None	PS-12-6 Green		
Planned Annua	al Performance						
FY13 Update	PS-13-4: Laund	PS-13-4: Launch the Lunar Atmosphere and Dust Environment Explorer (LADEE).					
FY14	No annual perfe	No annual performance goal in FY14.					

Reported Annu	al Performance						
PS-12-18: Com	plete GRAIL mi	ssion success crit	eria.				
Contributing T	Contributing Theme: Planetary Science						
Contributing Program(s): Discovery							
FY07	FY08	FY09	FY10	FY11	FY12		
None	None	9PS3	10PS03	PS-11-7	PS-12-18		
None		Green	Green	Green	Green		
Planned Annua	l Performance						
FY13 Update	No annual performance goal in FY13.						
FY14	No annual performance goal in FY14.						

Reported Multi-Year Performance

Multi-Year Performance Goal 2.3.3.1: Provide national scientific capabilities through necessary skilled researchers and supporting knowledge base. (In support of objective 2.3.3: "Improve understanding of the processes that determine the history and future of habitability of environments on Mars and other solar system bodies.")

environments on N	ars and other solar system bodies.
FY11	NASA provides the skilled researchers and supporting planetary science knowledge base
Green	necessary for the Nation's scientific capabilities.
FY12	Mars Science Laboratory Curiosity's Roving Laboratory
Green	Mars Science Laboratory Curlosity s Roving Laboratory
	On November 26, 2011, the <u>Mars Science Laboratory (MSL) Curiosity rover</u> launched from Cape Canaveral. During the eight-month journey to Mars, the Radiation Assessment Detector (RAD), an instrument designed to measure the radiation levels on Mars, measured the radiation dose and detected a solar flare during the transport to Mars. On August 6, 2012, the <u>Mars Reconnaissance Orbiter (MRO)</u> imaged MSL's Curiosity rover as it successfully descended and landed via the skycrane landing system.
	All of the science instruments on-board Curiosity are operating as expected. One of the earliest science highlights is from the Chemistry & Camera (ChemCam) instrument. ChemCam returned spectra from a basalt rock, demonstrating the first use of laser-based, active spectroscopy measurement for mineralogy identification on another planetary body. ChemCam imaged the ablated surface, providing magnified images of the fresh and

weathered surfaces. On the drive from the Bradbury landing site toward Mt. Sharp,
Curiosity investigated several rock outcrops, indicative of a streambed. For more
information on MSL science results, join Curiosity on the traverse to Glenelg.
Martian Meteorites Show Macromolecular Carbon of Non-Biological Origin
The source and nature of carbon on Mars have been a subject of intense speculation. Recent
results of spectroscopy on Martian meteorites, spanning about 4.2 billion years of Martian
history, show that they contain a type of carbon that formed at high-temperature (i.e. in
molten rock or magma). The association of organic carbon within magmatic minerals
indicates that Martian magmas favored precipitation of reduced carbon species during
crystallization. The ubiquitous distribution of this form of organic carbon in Martian rocks
is important for understanding the Martian carbon cycle and has implications for future
missions to detect possible past Martian life.
Mars' Interior as Wet as Earth's
Mars Interior as wet as Earth s
Scientists have determined that the amount of water in the interior of Mars is comparable to
the amount of water in the interior of Earth. The researchers study OH, a proxy for water, in
apatite. Apatite is a mineral formed at high temperature in a hydrated magma (magma and
water), and found in Martian meteorites. Those meteorites containing apatite represent a
range of both depleted (crustal) and enriched (mantle) material on Mars. Laboratory
investigations of the water abundance needed to form apatite in synthetic rocks were
compared with the two Martian meteorites. The water content needed to form apatite in
these meteorites is similar to the amount of water found in Earth mantle rocks like basalts.
these meteorites is similar to the amount of water round in Larth manue rocks like basaits.

Update to Multi-Year Performance Goal				
FY13 Update	This performance goal remains the same in FY13.			
FY14	This performance goal remains the same in FY14.			

Reported Annual Performance

PS-12-7: Demonstrate planned progress in understanding the processes that determine the history and future of habitability of environments on Mars and other solar system bodies. Progress relative to the objectives in NASA's 2010 Science Plan will be evaluated by external expert review.

Contributing T	heme:	Planetary Science			
Contributing Program(s):		Multiple Programs	3		
FY07	FY08	FY09	FY10	FY11	FY12
7SSE6	8PS06	9PS8	10PS09	PS-11-8	PS-12-7
Green	Green	Green	Green	Green	Green

Planned Annua	ll Performance
FY13 Update	PS-13-6: Demonstrate planned progress in understanding the processes that determine the history and future of habitability of environments on Mars and other solar system bodies. Progress relative to the objectives in NASA's 2010 Science Plan will be evaluated by external expert review.
FY14	PS-14-5: Demonstrate planned progress in understanding the processes that determine the history and future of habitability of environments on Mars and other solar system bodies. Progress relative to the objectives in NASA's 2010 Science Plan will be evaluated by external expert review.

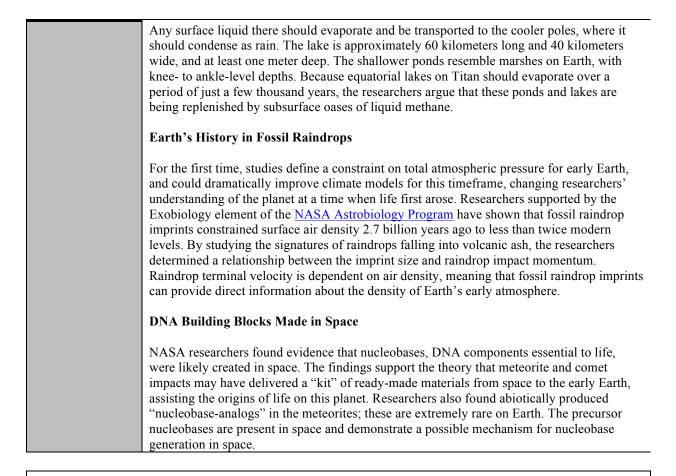
Reported Annu	al Performance				
PS-12-8: Comp	lete the Mars Sci	ience Laboratory	(MSL) Launch	Readiness Reviev	V.
Contributing T	heme:	Planetary Science			
Contributing P	rogram(s):	Mars Exploration			
FY07	FY08	FY09	FY10	FY11	FY12
7SSE5	8PS05	9PS4	10PS06	PS-11-9	PS-12-8
Green	Green	Red	Yellow	Green	Green
Planned Annua	l Performance				
FY13 Update	No annual performance goal in FY13.				
FY14	PS-14-6: Achieve mission success criteria for Mars Science Laboratory (MSL).				

Reported Multi-Year Performance

Multi-Year Performance Goal 2.3.3.2: By 2015, launch at least two missions in support of objective 2.3.3.

FY11	The purpose of this performance goal is to design, develop, and launch satellites in support
Green	of objective 2.3.3, as outlined in the NASA Science Mission Directorate's 2010 Science
FY12	Plan. On November 26, 2011, NASA launched the biggest, most ambitious Mars science mission ever, MSL, which carried the Curiosity rover to the surface of Mars. Enabled by
Green	numerous new technologies and advanced capabilities (including an entirely new Sky Crane
	landing system, a radioisotope-based power system, an advanced communications
	capability, autonomous robotic navigation technologies, and compact science
	instrumentation), MSL successfully landed on Mars on August 6. Shortly after landing,
	Curiosity was taking panoramic photos of its surroundings. Since then, it has been on its
	mission to determine if the planet has ever had an environment capable of supporting life.
	The second mission that will support this performance goal is the <u>Mars Atmosphere and</u> <u>Volatile Evolution (MAVEN)</u> , planned for launch in late 2013. NASA completed the Systems Integration Review on June 28, 2012, giving the project the go-ahead to integrate the systems into the spacecraft bus and to start testing. MAVEN will orbit Mars to help determine how much of the Martian atmosphere has been lost over time. It will measure the current rate of atmospheric escape to space and gather enough information about the relevant processes to allow scientists to extrapolate backward in time.

Update to Multi-Year Performance Goal				
FY13 Update	This performance goal remains the same in FY13.			
FY14	This performance goal remains the same in FY14.			


Reported Annu	al Performance				
PS-12-8: Comp	lete the Mars Sci	ience Laboratory	(MSL) Launch	Readiness Review	V.
Contributing T	heme:	Planetary Science	;		
Contributing P	rogram(s):	Mars Exploration			
FY07	FY08	FY09	FY10	FY11	FY12
7SSE5	8PS05	9PS4	10PS06	PS-11-9	PS-12-8
Green	Green	Red	Yellow	Green	Green
Planned Annua FY13 Update	Al Performance No annual perform	mance goal in FY13			
	No annual performance goal in FY13.				
FY14	No annual performance goal in FY14.				
Comments	The Mars Science Laboratory spacecraft successfully launched on November 26, 2011. MSL's rover, Curiosity, is in operation on Mars, where it is collecting data in support of performance goal 2.3.3.1 through FY 2014, when it will conclude its prime mission. At that time, NASA will evaluate whether the Mars Science Laboratory achieved its mission success criteria.				

Reported Annu	al Performanc	e				
PS-12-9: Comp	lete the Mars A	Atmosphere and V	olatile Evolution	Mission (MAVE)	N) Systems	
Integration Rev	view.	_		·		
Contributing T	'heme:	Planetary Science	e			
Contributing P	rogram(s):	Mars Exploration	l			
FY07	FY08	FY09	FY10	FY11	FY12	
None	None	None	10PS08	PS-11-10	PS-12-9	
None	None		Green	Green	Green	
Planned Annua	al Performance					
FY13 Update	EV12 Under PS-13-7: Complete the Mars Atmosphere and Volatile Evolution Mission (MAVEN) Pre-				MAVEN) Pre-	
r 115 Opuate	Ship Review (PSR).					
FY14	PS-14-7: Launch the MAVEN mission.					

Reported Multi-Year Performance

Multi-Year Performance Goal 2.3.4.1: Provide national scientific capabilities through necessary skilled researchers and supporting knowledge base. (In support of objective 2.3.4: "Improve understanding of the origin and evolution of Earth's life and biosphere to determine if there is or ever has been life elsewhere in the universe.")

FY11	NASA provides the skilled researchers and supporting planetary science knowledge base	
Green	necessary for the Nation's scientific capabilities.	
FY12	New Equatorial Lakes Appear on Titan	
Green	New Equatorial Eakes Appear on Titan	
	Observations from <u>Cassini</u> infrared spectra suggest a hydrocarbon lake (probably methane) and a few small ponds present in the equatorial region of Titan. With the exception of Earth, Titan is the only solid object in the solar system to circulate liquids in a cycle of rain and evaporation. On Titan, the process is driven by methane rather than water. This cycle is expected to form lakes near the moon's poles, but not at its dune-covered equator, where Cassini measurements show that humidity levels are low and little rain falls to the surface.	

Update to Multi-Year Performance Goal

FY13 Update	This performance goal remains the same in FY13.
FY14	This performance goal remains the same in FY14.

Reported Annual Performance

PS-12-11: Demonstrate planned progress in understanding the origin and evolution of life on Earth and throughout the biosphere to determine if there is or ever has been life elsewhere in the universe. Progress relative to the objectives in NASA's 2010 Science Plan will be evaluated by external expert review.

Contributing Theme:Planetary ScienceContributing Program(s):Multiple Programs					
		Multiple Programs	Multiple Programs		
FY07	FY08	FY09	FY10	FY11	FY12
7SSE4	8PS04	9PS5	10PS07	PS-11-11	PS-12-11
Green	Green	Green	Green	Green	Green

Planned Annua	Planned Annual Performance				
FY13 Update	PS-13-8: Demonstrate planned progress in understanding the origin and evolution of life on Earth and throughout the biosphere to determine if there is or ever has been life elsewhere in the universe. Progress relative to the objectives in NASA's 2010 Science Plan will be evaluated by external expert review.				
FY14	PS-14-8: Demonstrate planned progress in understanding the origin and evolution of life on Earth and throughout the biosphere to determine if there is or ever has been life elsewhere in the universe. Progress relative to the objectives in NASA's 2010 Science Plan will be evaluated by external expert review.				

Reported Multi-Year Performance

Multi-Year Performance Goal 2.3.5.1: Provide national scientific capabilities through necessary skilled researchers and supporting knowledge base. (In support of objective 2.3.5: "Identify and characterize small bodies and the properties of planetary environments that pose a threat to terrestrial life or exploration or provide potentially exploitable resources.")

FY11	NASA provides the skilled researchers and supporting planetary science knowledge base
Green	necessary for the Nation's scientific capabilities.
FY12	NASA Near Earth Asteroid Survey
Green	
	NASA and its partners maintain a watch for near-Earth objects, asteroids, and comets that pass close to Earth as part of an on-going effort to discover, catalog, and characterize these potentially hazardous objects. This fiscal year, asteroid search teams funded by NASA's <u>Near Earth Object Observation (NEOO) Program</u> found another 21 asteroids larger than one kilometer in size with orbits coming within Earth's vicinity. Asteroid search teams also found one more near-Earth comet and 896 smaller asteroids of less than one kilometer in average diameter, bringing the total number known of all sizes to 9,118. The high precision orbit predictions computed by NASA's Jet Propulsion Laboratory show that none of these objects is likely to hit Earth in the next century. An object designated 2011 AG5 currently has the highest chance of Earth impact, currently computed at one in 500 on February 5, 2040. However, 1,330 (of which 154 are larger than 1 kilometer in diameter) are in orbits that could become a hazard in the more distant future and warrant continued monitoring.
	Detailed Characterization of Potentially Hazardous Asteroid
	During its November 2011 passage, researchers obtained physical properties of potentially hazardous asteroid 2005 YU55 from multiple observations made by Goldstone, Arecibo, the Very Long Baseline Array, and the Green Bank Telescope. Radar analysis led to accurate measurement of the asteroid's albedo and spin period, and revealed a number of structures on the surface of the asteroid. High-resolution images showed concavities, a ridge near the asteroid's equator, and numerous features interpreted as decameter-scale boulders. The number of boulders on the surface is comparable to that seen on the asteroid 25143 Itokawa by the <u>Hayabusa</u> spacecraft.
	Automated Potential NEA Destinations Assessment
	In a cooperative effort between the Goddard Space Flight Center's Navigation and Mission Design Branch and the Jet Propulsion Laboratory's <u>NEO Program</u> Office, a new capability was added to routine near-Earth asteroid (NEA) processing in March 2012 that assesses the accessibility for human and robotic spaceflight destinations for all NEAs as they are

discovered. The assessment data is continuously updated automatically and made available to researchers and mission designers via a new section on NASA's NEOO Program Web page " <u>Accessible NEAs</u> ." The goal is to identify NEAs that may be good targets for both human and robotic exploration missions. Any interested party also may go online to <u>subscribe to a mailing list</u> to receive a daily email notification of updated results.
The automated NEA accessibility assessment system monitors the space flight accessibility of the latest discoveries from the NEO search teams with up to date orbits and daily email notifications. The system continuously updates a comprehensive publically available database of potential human and robotic space flight targets and their round-trip mission opportunities. The Web site also displays upcoming opportunities to observe those NEAs using ground-based telescopes and radar. The database of NEAs potentially suitable for human space exploration will naturally continue to grow in the months and years to come as more and more NEAs are discovered and observed.

Update to Multi-Year Performance Goal			
FY13 Update This performance goal remains the same in FY13.			
FY14	This performance goal remains the same in FY14.		

Reported Annual Performance

PS-12-12: Demonstrate planned progress in identifying and characterizing small bodies and the properties of planetary environments that pose a threat to terrestrial life or exploration or provide potentially exploitable resources. Progress relative to the objectives in NASA's 2010 Science Plan will be evaluated by external expert review.

Contributing Theme: Planetary Science					
Contributing Program(s):		Multiple Programs			
FY07	FY08	FY09	FY10	FY11	FY12
7SSE8	8PS08	9PS9	10PS10	PS-11-12	PS-12-12
Green	Green	Green	Green	Green	Green

Planned Annual Performance			
FY13 Update	PS-13-9: Demonstrate planned progress in identifying and characterizing small bodies and the properties of planetary environments that pose a threat to terrestrial life or exploration or provide potentially exploitable resources. Progress relative to the objectives in NASA's 2010 Science Plan will be evaluated by external expert review.		
FY14	PS-14-9: Demonstrate planned progress in identifying and characterizing small bodies and the properties of planetary environments that pose a threat to terrestrial life or exploration or provide potentially exploitable resources. Progress relative to the objectives in NASA's 2010 Science Plan will be evaluated by external expert review.		

Reported Annual Performance				
No annual performance goal in FY12 or trended performance.				
Contributing Theme:	Planetary Science			
Contributing	Multiple Drograms			
Program(s):	Multiple Programs			

Planned Annual Performance			
FY13 Update	No annual performance goal in FY13.		
FY14	PS-14-10: Conduct research into mitigation strategies utilizing observed characteristics and properties of those small bodies that pose a threat to terrestrial life.		

Reported Multi-Year Performance

Multi-Year Performance Goal 2.3.5.2: Return data for selection of destinations in order to lower risk for human space exploration beyond low Earth orbit.

FY11 Green FY12 Green	The routine processing and listing of accessible NEAs on the NASA <u>NEOO Program</u> Web site identifies and lists future observing opportunities for ground-based assets. These observing opportunities are used to obtain physical characterization information that could determine whether or not a particular NEA is suitable as a potential human destination. Ground-based sensors can provide details concerning the size, configuration, rotation rate, and composition of the NEA to help NASA mission planners and planetary scientists select the best targets for future human spaceflight missions. These opportunities are listed for optical and radar assets, which are used by the worldwide planetary astronomy community to perform physical characterization observations of these potentially accessible NEAs.			
	Several steps have been taken to aid the collection of physical characterization data on these potentially human accessible NEAs. Two presentations were held in 2012 to brief the international NEA observing community at the Lunar and Planetary Science Conference and the Division for Planetary Sciences Meeting about the new listing of accessible targets and their associated observing opportunities. Both of these meetings generated significant interest in these targets, and several observers expressed a desire to help NASA obtain physical characterization data on these potentially NEA destinations. Awareness of this new capability has led many observers to check routinely the list of accessible NEAs to plan and schedule telescope time for upcoming observation periods. In addition, daily emails of accessible NEAs are distributed and scanned for new discoveries, and if a promising target is immediately or soon-to-be observable, a request is sent out to the international observing community for physical characterization observations.			
	The NEOO Program pursued additional risk reduction efforts in coordination with the <u>Human Exploration and Operation Mission Directorate</u> 's Joint Robotic Precursor Activity:			
	 Increased resources for time on ground-based planetary radars at Goldstone, CA, and Arecibo, PR, which enables a five-fold increase in the number of NEAs observed and characterized for precise orbit, size, and rotation information. An upgrade to the Goldstone radar has increased the resolution that can be imaged down to four meters. Performed extensive analyses to develop several design reference missions for NEA human exploration including identification of additional investments required (i.e., concepts of operations, vehicle sizing, advanced propulsion) to expand number of viable NEAs to explore. 			
	 Supported multiple analog field tests, such as <u>Desert Research and Technology Studies</u> (<u>RATS</u>) and <u>NASA Extreme Environment Mission Operations (NEEMO</u>), for NEA mission system and operational concept validation and began planning for near-term asteroid analog mission at the <u>International Space Station</u>. Released a Request for Information from industry for design of an NEA detection instrument to be flown as a hosted secondary payload on geosynchronous satellites. 			

Update to Multi-Year Performance Goal			
FY13 Update This performance goal remains the same in FY13.			
FY14	This performance goal remains the same in FY14.		

Reported Annual Performance						
PS-12-13: Demonstrate planned progress in characterizing potentially hazardous objects that are						
possible destina	possible destinations for future human space exploration.					
Contributing T	ontributing Theme: Planetary Science					
Contributing P	rogram(s):	Multiple Programs				
FY07	FY08	FY09	FY10	FY11	FY12	
None	None	9AC16	10AC17	PS-11-13	PS-12-13	
		Green	Green	Green	Green	
Planned Annua	l Performance					
EV12 Undata	PS-13-10: Demonstrate planned progress in characterizing potentially hazardous objects that					
FY13 Update	are possible destinations for future human space exploration.					
FY14	PS-14-11: Demonstrate planned progress in characterizing potentially hazardous objects that					
	are possible destinations for future human space exploration.					