
TITLE: Predictive Simulations of Chemical and Structural Failure of Porous Ablative Materials

PI: **Thomas E. Schwartzentruber** University of Minnesota

Co-I/I-PI: Alexandre Martin University of Kentucky

Co-I: Jose Graña-Otero University of Kentucky

Molecular simulations of boundary layer flow at relevant hypersonic conditions (top-left) will provide the local chemical environment and structural loading for microstructure features. Microscale modeling of coupled chemical (top-right) and structural (bottom-right) response will enable prediction of spallation (bottom left) as well as computational design of TPS at the microstructure level.

The objective of this research is to develop a predictive modeling capability that couples thermochemical TPS response with its microscale *thermo-structural* response.

- Boundary layer simulations
- Thermo-chemical response of fibers
- Thermo-structural response of fibers
- Validation with spallation experiments

Potential Impact

The predictive modeling capability will enable precise assessment of TPS microstructure response, including complex processes such as spallation, and could ultimately be used in the *design* of new TPS materials at the microstructure level, such as new woven TPS currently under development at NASA.

Approach

X-ray micro-tomography and numerical design of microstructure.

Direct simulation Monte Carlo (DSMC) and Computational Fluid Dynamics of boundary layer flows.

Finite-volume thermo-structural simulations of microstructure.

Microscale structural response experiments.

Detailed carbon oxidation modeling, pitting, and microstructure evolution.

Research Objectives