

Validated Thermal-Material Simulation to Predict Microstructure Evolution in Selective Laser Melting Additive Manufacturing of Nickel Alloys

A 3 Year \$500k program to develop an integrated method to simulate additive manufacturing that leverages Rensselaer's expertise in materials processing and high performance computing.

Rensselaer Project Team

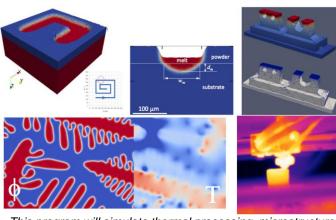
Dr. Dan Lewis (PI)

Materials Science and Engineering

Dr. Antoinette Maniatty

Department of Mechanical, Aerospace, and Nuclear Engineering

Dr. Johnson Samuel


Department of Mechanical, Aerospace, and Nuclear Engineering

Dr. Steve Rock

Center for Automation Technologies and Systems

Dr. Chris Carothers

Department of Computer Science

This program will simulate thermal processing, microstructure and chemical evolution, and then validate microstructure predictions with experimental AM/SLM processing.

Research Objectives

- Develop an integrated thermal-chemicalmicrostructural simulation approach for additive manufacturing.
- Increase ease of use of HPC through innovative software design and dissemination.
- Predict and validate micro-structure using experimental builds at Rensselaer and General Electric.
- Advance from TRL 2 to TRL 3.

Technical Innovations

- Develop finite element simulation of thermal transport, phase change, and defect formation during laser processing.
- Link thermal modeling to thermodynamic databases and classical solidification models for structure and segregation calculations.
- Develop thermodynamic descriptions suitable for morphology prediction using phase field to predict dendrite solidification, evolution, and non-equilibrium phase precipitation.

Potential Impact

- A thermodynamically consistent model will be capable of more accurate process design.
- Quantitative micro-structure prediction will enable property validation without the need for experimental iterations.
- In house validation platform will permit rapid model development cycle.