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• Supported CLaSP/AOSS/SPRL PIs 
in the development of space 
research  instruments since 1946

• Over 100 rocket, aircraft & 
balloon experiments developed 
to-date

• Over 35 major space instruments 
developed to-date

• Engineering & technical services 
provided to UM and industry

Space Physics Research Laboratory 
(SPRL)

PIXL XRSA for Mars 2020 Mission

Home of SPRL Today

Early “Double Probes” flown on V2’s
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Some Dimensions of our Projects…
• Large Size Range:  $3k precision parts to $100M projects

• Diverse Harsh Environments:  
Very dry and dusty to very cold/very hot to very high radiation

• Responsive Management:  Fast technology development to high 
reliability precision instrumentation
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• Design and build 2 CubeSats from scratch in 5 
months

• Take on system elements we had not done before
– Radio link
– Solar panels
– Attitude control
– Satellite integration
– To name a few!

• Use new tools and processes

Our Challenge on QB50…
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Your Speaker, Ryan Miller
• 1985 U of M, BS Computer Engineering, Summa Cum Laude
• 1987 U of M, MS Computer Engineering
• I’ve had the privilege of working in the Aerospace field for over 30 years
• Project History:
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Your Speaker in Action
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What is QB50?
• QB50 is an international network of CubeSats

for multi-point, in-situ measurements in the 
lower thermosphere and re-entry research. 

• This EU project is managed by the von Karman 
Institute (Rhode-Saint-Genèse, Belgium).

• 36 CubeSats have been launched into orbit in 
2017. 
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University of Michigan Involvement

• Development of two, 2U satellites, 
– 1 for UM, 
– 1 for Universidad del Turabo, Puerto Rico

• The University came to SPRL with the request 
to deliver satellites in 5 months!
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• Small, experienced team
• Streamline administrative burden.
• Rely on our engineering expertise, no time for 

reviews or time consuming analyses and 
reports.

• Engineers in primary role, supported by 
students.

How Could We Be Successful?
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Design Approach
• Start from scratch

– Ultimate control
– Avoid working around/fixing someone else’s designs

• Simplify everything
– Mechanical
– Electrical
– Cabling
– Software

• Design for ease of assembly and testing
• Utilize our space expertise to build in reliability 

from the start
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Design Constraints
• No ball-grid-array packages for components
• No ribbon cables, minimize cabling overall
• Follow normal derating guidelines
• Follow normal signal integrity practices
• Stake heavy components and fasteners
• No space qualified components – all parts had to be in-

stock at Digikey
• Minimize use of busses (I2C, SPI, etc.)
• Utilize non-bussed backplane for board-board connects
• Add redundant components where possible
• Provide power control for all components
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My Design Responsibilities
• Command & Data Handling (CDH)

– Electrical Design of CDH board
– FPGA Design
– Boot Software
– Flight Software
– Radio Interface
– Science Unit Interface (FIPEX)
– Ground Station
– Ground Software
– Testing off all of these
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Command & Data Handling (C&DH)
• Short hardware design cycle to maximize 

software development
• Utilize a CPU with which we have experience
• Utilize components with some sort of established 

heritage (but commercial grade)
• Provide a high degree of functional integration to 

minimize off-board I/O (also less design cycles)
• Utilize point-to-point communication interfaces 

to minimize cascade failures due to multiple 
components on a bus
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Major Components of C&DH
• CPU
• SRAM Memory (software working RAM)
• Non-Volatile Memory (code/data storage)
• PROM (boot loader, non-changeable in flight)
• FPGA (programmable logic)
• Clock Oscillator
• Other Devices

– Radio
– IMU
– Analog to digital and digital to analog converters
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C&DH Block Diagram
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Component Selection
• FPGA

– Microsemi ProAsic
• previous use, JPL radiation test(s)

• CPU
– Coldfire IP Core Processor 

• CPU gains benefits of FPGA reliability
• Could use TMR/EDAC to improve reliability
• Software can be executed with FPGA timing simulation
• Can customize I/O to support point-to-point comm
• SPRL has used discrete ColdFire CPUs on last several space projects

• Memory
– Everspin Magneto-Resistive MRAMs

• Naturally radiation tolerant, JPL radiation test(s)
• Non-Volatile, fast, no write cycle limits
• Can be used as PROM, EEPROM, Flash, SRAM
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SAM CDH vs. QB50 CDH 
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Completed CDH
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• ColdFire CPU, 32-bit, 20MHz
• 2 MBytes SRAM
• 1 MBytes EEPROM
• 32K PROM
• Watchdog Timer
• 4 ADCs
• 16 DACs
• Serial Interfaces
• 64 MBytes Flash
• Redundant Rover Interface

QB50 CDH vs. SAM CDH
SAM QB50

• ColdFire CPU, 32-bit 25MHz
• 4 MBytes SRAM
• 2 MBytes EEPROM/Flash
• 2 MBytes PROM 
• Watchdog Timer
• 1 ADC
• 1 DAC
• Serial Interfaces 
• 2 IMUs
• 1 Lithium UHF Radio
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CDH Operational Results

• Integrating the V1 Coldfire core into FPGA 
proved straightforward

• Ability to simulate software within FPGA was 
extremely helpful.

• Developed bootloader and flight software 
(~18,000 lines of code) without a debugger.

• Very little on-satellite debugging required
• Chose to ignore ‘failed’ magnetometer due to 

redundancy and point-to-point design
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Mission Accomplished 
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Overall Design Features
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Design, Top View

Magnetorquers Power Supply w/ 
Battery Pack

C&DH w/
Lithium UHF Radio

FIPEX Science Payload

October 11 & 12, 2017 24 of 36



Internal Structure
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Partial Assembly
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Completed Satellite – Glamour Shot
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Testing – Thermal-Vacuum
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Testing - Vibration
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Current Status
• 2 CubeSats delivered and integrated into Nano-

Racks, October 2016 (all work completed in Sept.)
• Launched to ISS, April 2017
• Deployed from ISS, May/June 2017
• Drag panels deployed and they de-tumbled the 

satellites within about 2 weeks.
• We successfully track both satellites and receive 

data every day!
• Zero issues with electronics and software.  No 

upsets, reboots, lock-ups, etc.
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There are some issues…

• FIPEX, the scientific payload
– Atomic oxygen sensor supplied by University of 

Dresden
– Sensitivity to one of the supply voltages 

preventing science operations

• Radio Communications
– Downlink is very reliable
– Uplink is unreliable, even with amplifier
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Deployment from the ISS
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• Satellite Reliability is Achievable
– Requires careful component selection
– Fault handling procedures
– Well thought-out designs
– Testing

• Backplane Design
– Very successful for assembly and test
– Allowed individual board testing with extender card
– Eliminated cabling

• Card Wedge-locks
– Convenient for testing
– Increases rigidity of chassis due to integral guides
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Lessons Learned
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• Burn mechanism for deployment
– Developed thermal knife nichrome wire heating elements which 

doubled as hold-downs
– Improvement over fishing line/resistor method

• Solar Panel Production
– Utilized multi-layer double-sided adhesive tapes for bonding 

with vacuum pressure
– Developed tab cutting and recycling methods

• CDH Design
– IP core processor was critical and very successful
– Point-to-point interfaces very successful
– High level of integration saved additional board designs
– Boot PROM write disable needed to be accessible 
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Lessons Learned 
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• Radio Testing
– Need to simulate full link
– Error detection and correction
– More fully developed protocol (ACK/NAK, etc.)

• Third Party Modules
– Insist on full integration test

• Batteries
– Careful selection
– Testing is very time consuming
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