

Arizona State University

The Lunar Polar Hydrogen Mapper (LunaH-Map) Mission and Systems-Level Status

Craig Hardgrove

LunaH-Map Mission Overview

- LUNAH-Mala Lunah-Malah
- NASA SMD SIMPLEx mission led by ASU: Craig Hardgrove (PI, Planetary Geology); AZ Space Technology (Engineering, spacecraft, I&T); ASU (Operations, science)
- 6U+ CubeSat to launch on SLS EM-1
- Objective: map hydrogen enrichments at the moon's south pole at small spatial scales, ~1 year cruise & spiral to science phase, 2 month science phase
- Demonstrate planetary neutron spectroscopy from a CubeSat

The ASU LunaH-Map Team

Arizona State University

Lunar Neutron Spectroscopy from Previous Missions

Pixon-based reconstruction of LPNS data (Elphic et al 2007) reveals high WEH abundances in Cabeus (near 1 wt%) and lower abundances in Shoemaker, Haworth, and Faustini (~0.3 wt%)

Analysis of LEND data (Sanin et al 2017) reveals higher WEH abundances (~0.5 wt%) in south polar craters Shoemaker, Haworth, and Faustini

LunaH-Map will acquire similar neutron data from lower altitudes to constrain abundances at small spatial scales (~10km x 10km)

Trajectory Design

Period	4.76 hour	
Aposelene Altitude	3150 km	
Periselene Altitude	RAAN dependent 15-25 km	
Inclination	90°	
Argument of Periselene	273.5°	

Genova, A. L. and Dunham, D. W. (2017) 27th AAS/AIAA Space Flight Mechanics Meeting 17-456.

LunaH-Map Flight System

1:1 3D Printed Model of LunaH-Map Flight System

Single Axis

Solar Array Drive

Propulsion (BIT-3)

- Busek BIT-3 ion thruster
- Iodine propellant
- 10° gimbal for momentum management

Miniature Neutron Spectrometer (Mini-NS)

Detector System & Cold Plate

CLYC Module

Instrument Housing & Digital Electronics Board

Detector	2x4 array of CLYC (elpasolite scintillator, $Cs_2LiYCl_6:Ce$) crystals, each crystal 4 cm x 6.3 cm x 2 cm	
Dimensions	25 cm x 10 cm x 8 cm	
Mass	3.3 kg	
Power	10W (min), 22W (max)	
Data Acquisition	Counts binned every 1 sec	

Mini-NS EDU

Test results from single EDU module exposed to Na-22 and AmBe

Enrichments of 600 ppm +/- 120 ppm WEH are detectable for ~94% of the surface poleward of 85°S in spatial bins of 15km x 15km.

LunaH-Map Predicted South Polar Volatile Mapping

Simulations of maps made from 15x3150km science orbit. Basemap combines LEND high H regions (Sanin et al., 2017) and the Shackleton enrichment from pixon-reconstructed LPNS data (Elphic et al, 2007) to illustrate the type of map LunaH-Map will be able to create.

PC1 – Instrument Qualification

During first lunar flyby, LunaH-Map will observe the lunar neutron count rate of ~3.15 cps at the PC-1 flyby altitude of ~2800 km.

LunaH-Map is below 3000 km altitude for >30 minutes. The predicted epithermal neutron count rate of 3.15 cps can be measured to +/-0.04 cps.

Demonstrate Mini-NS operation in the <u>lunar</u> environment

Qualification

- FM components are tested to GEVS prior to delivery
- S/C at proto-qual vibe and TVAC levels
 Mini-NS calibration at Los Alamos Neutron Free In-Air Facility (LPNS and Dawn) GRaND instrument calibration)

Test

- Component functional testing integrated in S/C
- S/C level functional testing operational modes, day-in-the-life
- GDS testing with Flat sat and flight components, S/C
- Flat sat development: EM (C&DH, EPS, Expansion Board, Solar Arrays, Iris radio), Emulators (BIT-3 propulsion, Iris radio, Mini-NS, SATA), EDU (Mini-NŠ)

Radiation

- Critical components are rad tolerant (10 krad)
- Upsets of non-critical components trigger reboot
- Many components are not powered ON for long duration (exception is prop)
- FSW capability to autonomously recover from an aborted burn

PPU Design Methodology and Radiation Approach

- Complex subsystem by nature
 - Process command & power from s/c bus (RS-485, 28V_{DC} input)
 - Includes various HV and RF converters to perform BIT-3 functions
 - Major challenge is to balance efficiency/volume/cost/radtolerance; there is no magic solution for all!
- "Rad-Hard Fence"
 - PPU core is immune to 37MeV SEU; FPGA has additional Triple Modular Redundancy
 - Peripheral converters trade risk for performance and size, but still follow EEE-INST-002 de-rating guide
 - ~10kRad TID protection is provided by 0.100" AI shielding from chassis and spacecraft

BIT-3 System's Unique Split PPU Design

Road to Launch

- Critical Design Review Completed June 29, 2017
- Phase 2 Safety Review August 8, 2017
- Enter Assembly, Integration, and Test Q4 2017
 - AI&T Review/Workshop with review board
- Launch SLS EM-1, NET Dec 2019

LunaH-Map Program Milestones to Date

IAA	11 December 2015	Δ-IAA REQUIRED
Δ-ΙΑΑ	24 February 2016	PASSED with RFAs
SRR	8 April 2016	PASSED with RFAs
I-PDR	9 June 2016	PASSED with RFAs
P1SR	21 June 2016	PASSED
M-PDR	25 July 2016	PASSED with RFAs
CDR	29 June 2017	COMPLETED

LunaH-Map CubeSat Mission Manager's Assessment

PI: Craig Hardgrove, ASU PM: Teri Crain, ASU Mission Manager: Rick Turner PS: Bobby Fogel PE: Gordon Johnston

Solar System Exploration Program

Technical:

No significant issues

<u>Cost</u>:

No significant issues

Schedule:

No significant issues

Programmatic:

No significant issues

