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Integrated System Design for 
Radiation Environments*

Requirements

Design Reliability

*This slide and many of the following from: R. 
Austin, “Reliability Assurance of CubeSat 
Payloads using Bayesian Nets and Radiation-
Induced Fault Propagation Models,” Single Event 
Symposium 2017
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Integrated System Design for 
Radiation Environments
SEAM paradigm:
System Engineering 
and Modeling 

Figure Design: Rebekah Austin
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Motivation for Alternate Reliability Approach

• Shift from document-centric to model-centric repository of 
design information (SysML) 

• Shift from prescriptive reliability paradigm to objectives-
based paradigm for reliability
• NASA-STD-8729.1A Reliability and Maintainability Std.
• Goal Structuring Notation (GSN)

• Increased use of COTS parts on spacecraft
• Relatively little info on physics of parts available from manufacturers
• High variability in radiation response of COTS parts
• Well-suited to probabilistic modeling (Bayesian nets) 

• Rapid acceptance and deployment of small spacecraft 
• Short schedule, limited budget and resources
• Extensive radiation testing and rad-hard parts not feasible
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Chronological Overview of Research Effort

• Year 1 (FY 2016): Use of GSN to create a safety case for 
the impact of single events on a Cube Sat experiment board
• Sponsored by John Evans (OSMA/HQ) and Ken LaBel (NEPP) 

• Year 2 (FY 2017): Development of SysML/GSN/BN model 
on Cube Sat Experiment board
• Sponsored by John Evans (OSMA/HQ) and Ken LaBel (NEPP) 
• Development and launch of public website deployed on AWS

• Year 2 (FY2017): TID and Reliability Modeling of Sphinx 
C&DH board
• Sponsored by Harald Schone and Phillipe Adell (OSMS) at JPL
• First task: deterministic modeling of TID impact on system 

parameters
• Second task: application of SEAM modeling to Sphinx board
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Chronological Overview –Proposed Work 

• Year 3 (FY 2018): Reliability of Cube Sat Board
• Improve SysML import compatibility (e.g. MagicDraw), 
• move into automatic creation of Bayesian nets
• Integrate with other reliability approaches
• Sponsored by Ken LaBel (NEPP) and John Evans (OSMA/HQ) 

• Year 3 (FY2018): TID and Reliability Modeling of Sphinx 
C&DH board
• TID modeling task: Work towards higher fidelity modeling, 

incorporation of software in simulation
• SEAM tasks: create model library for Sphinx board components, 

interface SEAM modeling to IRIS system modeling (UCLA)
• Sponsored by Harald Schone and Phillipe Adell (OSMS) at JPL
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Foundation: NASA Reliability & Maintainability 
(R&M) Hierarchy
• Basis of NASA-STD-8729.1 (R&M Standard)
• Incorporates R&M into MBSE

• Moves to objectives-based 
reliability requirements 
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Graphical Assurance Cases

Argument: “A 
connected series 
of claims intended 
to support an 
overall claim.” [1]

Assurance Case: “A reasoned and compelling argument, supported by a 
body of evidence, that a system, service or organization will operate as intended 
for a defined application in a defined environment.” [1]

[1] GSN Community Standard Version 1 2011 
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Goal Structuring Notation (GSN): 
Visual Representation of an Argument

Goal: 
Claims of the 

argument

Strategy: 
Reasoning 

step, nature of 
argument

Solution: Items of 
evidence. Test 
reports linked. 

Supported by: 
Inferential or 

evidential 
relationships
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Model Integration of SysML, GSN, and BN*

SysML
Functional Requirements

• Related to radiation effects

Design/ Architecture
• Hierarchical Block Diagram 

models 
• Component / Subsystem interface 

and interconnection. 
• Fault Model – Radiation 

induced fault effects and their 
propagation

Cross Reference

GSN Model
• Model-based documentation of 

arguments for radiation reliability 
assurance

• Construct argument template from 
R&M hierarchy and System Models

Components/  
Functionalities

BN Model

• Construct BN structure by traversing the fault 
propagation paths

BN Inference

Feedback,
Design iteration

Causal
Relationship
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Overview of Modeling Languages Used

SysML GSN BN Network
• Specification of systems 

through standard notation
• Added fault propagation 

paths

• Visual representation 
of argument

• Goals, Strategies,
and Solutions

• Nodes describe probabilities of 
states

• Calculate conditional 
probabilities from observations 
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Radiation Reliability Assessment of CubeSat 
SRAM Experiment Board
• Assessment completed on REM
- 28nm SRAM SEU experiment

• Reasons for integrated modeling
1. Use commercial off-the-shelf (COTS) parts
2. System mitigation of SEL
3. System mitigation of SEFI on microcontroller 
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Top Level GSN Model of REM Experiment Board

• Top level goal: Complete science 
mission objective

• Strategies: Provided functionality 
and mitigate radiation environment

• Goals: Validation of  “Nominal” and 
“Mitigation” functionalities 
- Focused on radiation-induced faults
- Adapted from NASA R & M 

Standard
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SysML Block Diagram of REM Experiment Board

Power(red lines)

Signal (green lines)
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SysML Block Diagram of REM Experiment Board

Power(red lines)

Signal (green lines)

Focus on
Load Switch, 
SRAM 
subsystem
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SysML Internal Block Diagram with Fault 
Propagation Paths 
• Load Switch
- Faults (F)
- Anomalies (A) 
- Responses (R)

- Nominal response
- Degraded response
- Ports
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SysML Internal Block Diagram with Fault 
Propagation Paths 
• SRAM
- Effects (E)
- Faults on different

inputs
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Pruned Bayesian Network Model of the REM 
Experiment Board
• SEE environment set 

to LEO or SAA
• Input is data from 

microcontroller 
- Assumed correct

• Show sensitivity of 
SRAM data to SEE 
environment
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Summary

• Developed integrated 
process for model-based 
assurance case for 
radiation reliability

• Constructed example 
SysML models augmented 
with radiation-induced faults 
and propagation

• BN inference “observations” 
used to assess impact of 
various faults on SRAM 
performance

Gives 
structure to

Contains 
reference to
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Modeling JPL Sphinx C&DH Board: Issues of Scale

• Sphinx much more 
complex than Cube 
Sat board

• Hierarchy for 
managing 
complexity

• Schemes for 
categorizing sub-
systems

• Subsystems based 
on functionality

• Components belong 
to more than one 
subsystem

Temperature Control
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Functional vs Schematic Organization Strategy

Advantages of Functional Strategy:
• Specifies purpose of 

components
• Simplifies functional models 
• Parallels thinking of GSN 

arguments
• Abstraction level same as 

deterministic simulation 
Disadvantages: 
• Uses same components in 

multiple subsystems 

Temperature Control
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GSN Radiation Parts Characterizations
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Deriving the Bayesian Net from SysML Models for 
the Temperature Loop Subsystem

• Block Diagram view 
includes all 
components directly 
involved in system 
functionality 

• Links connection 
paths directly 
involved in system 
functionality

• Visualizes fault and 
failure propagation 
paths 
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Temperature Control Bayesian Net

• BN only considers TID 
(no SELs or external 
faults) 

• MissionTime branch 
sets TID

• System output is board 
temperature

• PowerAvailabilty node 
represents stress on 
satellite power bus due 
to increased heater 
usage 

• Annotations add 
details and 
assumptions
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Overview of TID and Reliability Modeling of the JPL Sphinx 
C&DH Board

• Arthur Witulski, P.I., Gabor Karsai, Co-P.I., Nag Mahadevan, Jeff Kauppila,
• Ronald Schrimpf, Robert Reed
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JPL Sphinx C&DH Block Diagram
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Introduction to Board Level Modeling Paradigm

• Problem: How to estimate impact of transistor-level 
degradation on system-level performance? 
• Need fast modelling turn-around time so process can be iterative
• Must be able to accommodate many signal and part types

• Analog-SPICE-like continuous waveforms
• Pure digital (one-zero level) 
• Digital in the electrical domain
• Behavioral: VHDL and Verilog AMS
• Software: Control algorithms, etc.

• Must be tolerant of incomplete knowledge of part performance 
and radiation behavior

• Need fast run time so Monte Carlo Bayesian approach is possible
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Demonstration: Temperature regulation loop model 
with TID Degradation

ADC

Temperature 
Monitor
I=kT deg K

Resistor

FPGA CPU PWM Power 
MOSFET

Thermal
Model
Heater

Temperature T
IBISB2A

IBISA2B

Serial Parallel

Analog
Modeling Control

Algorithm

CPU Rad Hard

Analog Step Size FPGA/ADC
Clock

CPU Clock
Thread Timing

MOSFET
Switching Freq.

Digital Modeling

Radiation modeling embedded in parameter variation

Clock SPI

Software
Modeling
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Mentor Questa and SystemC

• The Questa ADMS simulation package from Mentor Graphics is 
the simulation engine within the Expedition PCB design flow
• Capable of co-simulating SPICE, Behavioral (Verilog, Verilog-

AMS, VHDL, VHDL-AMS), and SystemC
• Synchronization of time steps and convergence routines

• Questa’s ability to simulate models from multiple hierarchy levels 
provides the capability to model a complex system
• Accurate and detailed transistor level models (Temp Sensor)
• IBIS models at digital interfaces for signal integrity
• Behavioral level models for complex circuits (ADC, FPGA, 

etc.)
• We have successfully simulated behavioral models, IBIS models, 

Spice models and SystemC within one netlist and transient 
simulation
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Temperature Regulation Loop – Questa ADMS

ADC
Verilog-AMS

FPGA
VHDL/SystemC

Processor/PWM
VHDL/SystemC

Boundary Model

• The temperature regulation loop is closed

Thermal Model

Gate Drive, 
power MOSFET, 
heater resistor 

AD590 Temp. 
Sensor Model
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Questa ADMS Simulation Results - Temperature

Set point = 290 K

Degraded models show 
significant impact on 
temperature profile

Fast simulation 
time ~20 sec 
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Continuous Bayesian Network (BN) Model

x -- Stochastic node – X= Gaussian( µ,σ)

y -- Deterministic node (V_TS, Code, µe ,σe)
Root Nodes with Uniform priors (Temp, TID)

Eqn. -- Likelihood Function for deterministic nodes

Legend

BN Model (PyMC code)
- BN Nodes  à Domain Variables and function parameters.
- Relationship between Nodes à Likelihood functions. 

BN Setup/ Observations (Test bench data)
- Initialize parameter nodes with (prior) probability distributions.
- Associate evidence (data) with appropriate BN nodes. 

BN Execution
- Markov Chain Monte Carlo sampling algorithms  sample prior 

distributions and evaluate outputs (likelihood functions). 
- Iterate until predictions converge to observed data.

BN Results
- Posterior (updated) distribution for each node.
- Use posterior distributions of parameters to get an estimation of 

the spread (distribution) in domain variables such as 
- Output voltage of temperature sensor (V_TS)
- Output code from ADC (Code_ADC)
- Error in input to controller (Error_Ctrl_Input) 
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Continuous Bayesian Network Results

x -- Stochastic node – X= Gaussian( µ,σ)

y -- Deterministic node (V_TS, Code, µe , σe)
Root Nodes with Uniform priors (Temp, TID)

Eqn. -- Likelihood Function for deterministic nodes

Legend

Posterior Distribution ( parameter k1)

Spread in ADC Output
(TID,  Part Variability)

Controller Input Error with TID
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Questa ADMS Sim Distributions Electrical and 
Radiation Parameters

Set point = 290 K

Monte Carlo analysis of 
the circuit with Pre-Rad 
and 30 kRad component 
models
Black shows component 
variations pre-rad

Dotted Lines = Monte Carlo Sims (10 runs)
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Conclusions 

• Board-level modeling requires simulation of analog, mixed-signal, 
and fully digital components, as well as software

• Created modeling and simulation paradigm for a fully capable, multi-
domain board simulator using Mentor Questa with SystemC
- Shows the impact of component-level variations on board-level system parameters
- Fast run times for long simulation clock times
- Fully customizable abstraction levels from software to all-digital to behavioral models 

to Spice-like circuit simulation
- Compatible with other Mentor products like circuit board layout and parasitic tools
- Parameter variation and Monte Carlo simulation capability

• Simulation demonstrates significant impact on the system-level 
variable (Temperature) owing to TID degradation of ADC and sensor

• Clear road map for next steps in C&DH radiation modeling


