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I. THE PROPOSED RESEARCH
 

The NIAC Ghost Imaging of Space Objects research program has been carried out at 

the Jet Propulsion Laboratory, Caltech. The program consisted of Phase I (October 2011 

to September 2012) and Phase II (October 2012 to September 2014). The research team 

consisted of Drs. Dmitry Strekalov (PI), Baris Erkmen, Igor Kulikov and Nan Yu. The 

team members acknowledge stimulating discussions with Drs. Leonidas Moustakas, Andrew 

Shapiro-Scharlotta, Victor Vilnrotter, Michael Werner and Paul Goldsmith of JPL; Maria 

Chekhova and Timur Iskhakov of Max Plank Institute for Physics of Light, Erlangen; Paul 

Nuñez of Collège de France & Observatoire de la Côte d’Azur; and technical support from 

Victor White and Pierre Echternach of JPL. We also would like to thank Jay Falker, Jason 

Derleth, Ron Turner, Katherine Reilly, and all of the NIAC team for continuous support, 

advice and encouragement throughout the entire research effort. 

A. Origins and motivation of this research 

Development of innovative aerospace technologies is critical for our nation to meet its 

goals to explore and understand the Earth, our solar system, and the universe. The spectac

ular success of many recent NASA missions hinges on the extensive technological innovations 

that NASA has been supporting for the past decades. To sustain this successful tradition 

it is very important to identify and stimulate the scientific research that may turn into a 

viable technology in the decades yet to come. Innovative low-TRL research stimulates the 

growth of the scientific knowledge and enhances the technological capabilities in a way that 

answers new questions and responds to new requirements. Such a research also helps find

ing novel creative solutions to problems constrained by schedule and budget. Moreover, the 

impact of this kind of research goes beyond the original area. A long-term advanced space 

concepts and technology development program is likely to have multiple and diverse positive 

outcomes. 

The NASA OCT’s NIAC program which has sponsored this research effort is an example 

of such a long-term technological investment. This program has a history of seeding the 

research efforts that later turned into a great success. One of the most recent and spectacular 

examples of such an early innovation sponsorship is the Kepler planetary detection research 
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mission [1–3]. We use the achievements of this mission as benchmarks for our research. 

Like the Kepler mission, our research lies in the area of observation astronomy. We aim 

to improve the technical methods and approaches available in this area and directed to 

investigation of such important space objects as exoplanets, asteroids, gravitational lenses, 

gas and dust clouds, and others. 

Direct intensity measurement, by an eye or a detector, has always been the foundation 

of observation astronomy. Sometimes this technique is successfully complemented by other 

types of measurements, for example those relying on intensity interferometry. The pioneering 

application of intensity interferometric measurement in astronomy has been demonstrated by 

Hanbury Brown and Twiss in 1960s [4]. These measurements involved only a pair of detectors 

(coupled with telescopes) and were aimed at determining a star’s angular size. The success of 

this approach caused a brief but powerful wake of interest to intensity interferometry in the 

astronomy community. Unfortunately, further development of this technology was impeded 

by the limitations of contemporary optical detectors and fast electronics, as well as by limited 

computational power, for a few decades. Recently, however, the explosive progress in all 

these underlying technology fields revived the practical interest in intensity-interferometric 

imaging. It has been considered for imaging of solar spots, tidal and rotational distortions, 

limb darkening and other stellar phenomena [5–11]. Even a space-deployable version of this 

approach has been discussed [12]. 

Intensity correlation measurements proved to be also important in the area of science 

extremely distant from astronomy: in quantum optics. In particular, photon coincidence 

measurements have allowed for the study of nonclassical optical fields whose photons are 

emitted as tightly correlated pairs, e.g. in a process of parametric down conversion. Para

metrically produced photons are not only tightly correlated in time, but also in space, even 

to the extent beyond possible in classical physics. (This phenomenon is one of the man

ifestations of the quantum entanglement.) Such a spatial correlation between parametric 

photons allows an observer to predict the “location” of one photon based on the observation 

of the other with a better resolution than is possible in a direct intensity measurement. It 

also enables a remarkable technique of optical imaging, called the “ghost imaging” [13]. 

Quantum world is usually associated with small size and low energy, and is believed to 

be governed by laws often defying the common sense. Quantum systems make wonderful 

objects for study, but rarely lend themselves as research tools in other areas of science and 
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engineering. Any such event in the history had truly revolutionary value. A few relevant 

examples are the laser, transistor, and superconductivity. It is therefore not surprising that 

the quantum optical phenomena attracts great interest as potential instruments for science 

and technology. The possibility to surpass the classical limits of optical resolution has been 

suggested for use in microscopic imaging [14] and lithography [15, 16]. The unique features 

of ghost imaging were proposed for spectroscopy [17, 18] and for the military surveillance [19] 

applications. In this research we take a further step and consider a possibility for application 

of ghost imaging (or speaking more generally, optical correlation imaging) in astronomy. We 

expect this approach to enhance the capabilities of conventional observation astronomy, as 

well as to create conceptually new capabilities. 

B. Proposed approach in a nutshell 

The term “ghost imaging” was coined in 1995 when an optical correlation measurement 

using biphoton light from parametric down conversion crystal was used to observe an image 

[13] or a diffraction pattern [20] of a mask placed in the signal channel by scanning a detector 

in an empty idler channel. This image is obtained by a gated photon counting, with the 

gating obtained by photon detections in the signal channel which lacks any spatial resolution, 

as illustrated in Fig. 1. 

Besides its significance for the field of quantum optics, the ghost imaging technique has 

a few appealing practical advantages. Since no spatial resolution in the object channel 

is required, a very primitive single-pixel optical sensor could be placed in this channel, 

while the more advanced optics responsible for the image quality could be placed in the 

reference channel. This could be convenient for imaging of hard-to-access objects. The 

ghost imaging is especially beneficial for imaging the objects at “inconvenient” wavelengths, 

such as far infrared, while the reference channel wavelength is visible [17]. Furthermore, the 

coincidence measurement technique is more robust in the presence of the optical background 

illumination. Finally, the possibility of surpassing the diffraction limit in ghost imaging has 

been discussed. However here one should be careful to acknowledge that while the transverse 

intensity correlation of parametric photons is not limited by by the signal or idler diffraction, 

it is limited by the pump diffraction. 

Despite these potential advantages, the first realization of ghost imaging was extremely 
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FIG. 1: Simplified illustration of the original ghost imaging experiment [13]. A mask with letters 

“UMBC” is placed in the object channel, where all light is collected by a “bucket detector”. 

Nonetheless, an image is reconstructed by correlating this detector’s photo counts with those from 

another detector, raster-scanning the empty reference channel. A sharp image is observed when a 

modified thin lens equation is fulfilled: 1/(a1 + a2) + 1/b = 1/f . 

far from any practical applications, and especially from astronomy. Indeed, the need for 

a laser-pumped source of photon pairs and for collecting of all light in the object channel 

(which means that the object has to be placed in the close vicinity of the collection optics) 

effectively ruled out such applications. 

A first step towards practical ghost imaging was made ten years after its initial demon-

stration, when it was shown that the two-photon correlation properties of common thermal 

light are applicable for ghost imaging [21, 22]. Since thermal light sources are much more 

abundant than parametric light sources, and in particular in space, this realization has been 

very important. Next, it was shown that collecting all the light in the object channel (the 

“bucket detection”) is not required, and that only some small portion of scattered light could 

be collected instead [19]. This has allowed the object to be placed at a large distance from 

the observer. Remarkably, the approach by [19] has already relied on the pseudo-thermal 

light source rather than on parametric light, as shown in Fig. 2. 

However, using thermal light sources brings about a new complication: a beam splitter 

that has to be placed between the source and the object (see Fig. 2). This beam split

ter is needed to create the reference channel whose speckle pattern duplicates that in the 

object channel, enabling the intensity correlation imaging. Such a geometry can be easily 
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FIG. 2: Using a thermal light source with a point-like detector collecting the light scattered by an 

object gives access to ghost imaging of distant and hard to access objects. Experimental diagram 

and image from [19]. 

implemented in a lab, but becomes problematic when both the source and the object, and 

possibly the observers, are located far in space. 

This is the key problem we need to solve in our research. Our approach is illustrated 

in Fig. 3. Its main idea is that an object that partially transmits and partially reflects or 

scatters light, can itself play the role of the beam splitter. Moreover, even a perfectly opaque 

scattering object may under certain conditions (as discussed below) create coherence between 

the transmitted and scattered light, which may be utilized for the intensity correlation 

imaging. Since the object is present in both channels, this approach leads us away from 

“conventional” ghost imaging towards intensity interferometry of the Hanbury Brown and 

Twiss type. The similarities and distinctions of these two types of imaging have been 

discussed in literature [23]. In our case, an important distinction is that we will not be 

concerned with the angular size or other properties of the source, which will be assumed 

to be known. Instead, we will study how the object’s geometry and location relative to 

the source and observer affect the intensity correlation. We will attempt to restore these 

parameters from the correlation measurements and show that these results could provide 

important information complementary to conventional direct observations. 

Configuration shown in Fig. 3(b) can be realized in three different ways, when both, one 

or none of the detectors receive the direct light from the source in addition to the object-

scattered light. The mission concepts arising from the last two configurations are illustrated 
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(a) (b) 

FIG. 3: Conceptual schematic of conventional thermal light ghost imaging setup (a) and of our ap

proach (b). Colors represent transverse optical modes (speckles) responsible for the excess intensity 

correlation and providing the physical mechanism for the correlation imaging. 

in Fig. 4 (a) and (b), respectively. 

Obviously, shielding one or both detectors from the direct source light provides reduced 

background signal and appears advantageous, as well as simpler to analyze. However, it 

requires the source and object to be optically resolvable and may require placing one or 

both detectors in space far apart from each other. For very distant objects this may not 

be feasible. In the following analysis we will assume that both detectors see the direct as 

well as scattered (in the nearly forward direction) light, thereby realizing the scenario from 

(a) (b) 

FIG. 4: Two possible mission scenarios that may arise from the measurement schematics in 

Fig. 3(b): one detector receives only scattered light (a); both detectors receive scattered as well as 

the direct light (b). 
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Fig. 4(b). 

Below we will develop and test a simple analytic model that will allow us to study 

the intensity-correlation signatures of simple test objects. Based on this model we will 

make predictions concerning the observability of various space objects, and concerning their 

parameters that can be inferred from such observations. We will show that the object’s image 

reconstruction is possible when an array of detectors is used, such as shown in Fig. 5. By 

the “image” here we will understand the object’s column optical density in the line of sight 

direction. In the case of fully opaque objects such imaging is equivalent to reconstruction 

of the object’s contour. 

FIG. 5: In this mission concept an array of detectors is used to reconstruct the dark object’s image
 

from intensity interferometry data. The array can be either ground-based or space-based as shown. 

C. Proposed approach in the context of modern astronomy 

High angular resolution is indisputably the main figure of merit in astronomical observa

tions and the main parameter in astronomy missions. Different missions performance with 

respect to this parameter at different wavelengths is summarized in Fig. 6. This figure also 

includes the projected performance of an intensity interferometer based on the Cherenkov 

Telescope Array (CTA) facility, which will be discussed in more details in the following. It 
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FIG. 6: The angular resolution chart illustrating various approaches capabilities. Projected capa

bility of the intensity-interferometric technique based on the Cherenkov Telescope Array (CTA) 

facility is shown in red. 

should be mentioned that the majority of stars in the Bright Star Catalogue have the an

gular size below 1 milliarcsecond, hence a much better resolution is required to observe any 

stellar features. The merit of the intensity interferometry in reaching this goal is evident. 

As a further advantage it should be mentioned that this approach is immune to atmospheric 

turbulence and therefore can be implemented on the ground. The turbulence limits the use

ful aperture of ground-based telescopes and field interferometers to approximately 60 cm; 

by contrast, the CTA effective aperture (the interferometer baseline) is going to reach 2 km. 

We have already mentioned the sharp rise of the enthusiasm regarding the intensity 

interferometry applications in astronomy, which has followed Hanbury Brown and Twiss 

discovery but quickly subsided due to insufficient detection techniques available in the mid

20th century. Presently, the field experiences an evident revival, as can be seen from the 

growing number of research activities and publications in the field. For example, the Uni

versity of Utah has recently (in Spring 2014) deployed a pair of 3-m diameter segmented 
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optical telescopes at StarBase-Utah [7]. These telescopes use photomultiplier tubes on the 

focal plane to detect starlight. As another example, E. Horch’s group at the Southern Con

necticut State University [24] carries out measurements with a 53 m baseline stellar intensity 

interferometer using single-photon avalanche photodiodes (SPAD) for detection. It is impor

tant to realize that the telescopes in the intensity-interferometric array need not have high 

imaging quality. Since the connection between them is not optical but only electronic, their 

error budget relates to the electronic time resolution. For example, 10 ns resolution corre

sponds to 3 meters light-travel distance, which greatly relaxes optical quality requirements 

and reduces the project cost. 

Rather than building dedicated intensity-interferometric telescope arrays and high-speed 

detectors and electronic networks, it may be beneficial to leverage already existing Cherenkov 

telescopes arrays. Such arrays are equipped with high-resolution photon detectors and cor

relation electronics that is required for study of high-energy cosmic particles and can also 

be used for intensity interferometry measurements. 

A few of such arrays presently exist worldwide, e.g. the High Energy Stereoscopic System 

(H.E.S.S.) in Namibia, see Fig. 7; the High Altitude Gamma Ray Telescope (HAGAR) in 

India (which is the site of the 21-m Major Atmospheric Cherenkov Experiment (MACE) tele

scope); Very Energetic Radiation Imaging Telescope Array System (VERITAS) in southern 

Arizona, measuring digital correlations between pairs of 12-m telescopes with 1.6 ns reso

lution [6]; Major Atmospheric Gamma-ray Imaging Cherenkov Telescopes (MAGIC) on La 

FIG. 7: The High Energy Stereoscopic System (H.E.S.S.) telescopes array in Namibia.
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Palma; and CANGAROO in Australia. Some of these projects are open to external research 

proposals, which can provide a path for the future developing of our project. 

Finally, as the larger-scale effort, we should mention the CTA Consortium. It is a large 

international project designed to deploy a network of telescopes equipped with high-speed 

photodetectors and high-bandwith time-correlation electronics. The CTA array will consist 

of 50-100 telescopes spread over a few square km, as shown in Fig. 8 . 

(a) (b) 

FIG. 8: One possible layout for the CTA (a) and its instantaneous reciprocal (Fourier) plane 

coverage in the zenith direction (b), from [8]. 

Various types and sizes of telescopes are considered for the CTA project. One of the 

most likely candidates is the SST-1M prototype, which is shown in Fig. 9. This telescope is 

developed by a subconsortium of Polish and Swiss institutions. It will be equipped with a 

novel fully digital camera based on SPADs. The telescope features a Davies-Cotton optical 

design with focal length f=5.6 m and the reflective dish of 4 m diameter, that is composed of 

18 hexagonal mirror facets. The large field-of-view will allow the scans of extended regions 

of the sky in search of the most powerful accelerators of galactic cosmic rays. The SST-1M 

has been conceived to be easily mass-producible by using standard industrial technology 

and materials, easy to transport and install. The telescope weight, including camera and 

auxiliary systems, is about 9 tons. Given the compactness and weight of the structure, three 

telescope structures can be packed in a standard open-top 12 m container for the shipping 

from the production site to the assembly point. This design achieves currently the lowest 

costs for the SSTs. 
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FIG. 9: An SST1M telescope is a workhorse of the CTA project. This telescope is designed for 

light collection rather than for imaging, which considerably offsets the costs of its mass-production. 

Close collaboration between the CTA Consortium and the intensity interferometry com

munity is anticipated. An international workshop dedicated to intensity interferometry has 

been held in Nice in May 2014, featuring the progress of research groups from all over the 

world, including ours. The workshop was co-located with the CTA Consortium meeting and 

highlighted in a CTA newsletter. 

Provided with suitable software, the CTA could become the first kilometer-scale optical 

intensity interferometer, reaching into novel microarcsecond resolution domains. Imaging 

luminous objects, it could reveal the surfaces of rotationally flattened stars with their cir

cumstellar disks and winds, monitor a nova eruption, or possibly even visualize an exoplanet 

during its transit across some nearby star. Such measurements are in fact planned for the 

CTA during down time of its main operations (e.g., due to full Moon). 

The most traditional goal of stellar intensity interferometry is to measure the stars angular 

diameter. These measurements can provide information of the effective temperature, which 

can be obtained by measuring the angular radius and the parallax (distance) [25]. When 

combined with spectroscopic and spectrophotometric measurements, it can also be used to 

make inferences regarding stellar atmospheres [26]. 
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The advance of the detection and analysis techniques enabled other, even more ambitious 

goals, such as the study of rapidly rotating stars. Local gravity of such stars can be consid

erably reduced (even approaching zero) in the equatorial regions, which leads to apparent 

darkening of these regions. Rotation also leads to oblateness of the star disk. 

Another important class of astrophysical systems that could be potentially studied with 

intensity interferometry technique are binary systems. Resolving such system and measuring 

their orbital parameters can provide important information regarding the stars’ masses and 

possibly mass flow. The mass flow can also be studied in the case or radiatively driven stellar 

mass loss [27], such as may occur in hot O and B type stars. Finally, stellar features similar 

to solar spots and jets may also be accessible for intensity interferometric observations. 

A more detailed review of various stellar objects of interest that can be observed by this 

technique is available in [9]. 

Our approach significantly expands the list of potential objects of interest for astronom

ical intensity interferometry, including in it dark and potentially purely refracting (phase) 

objects eclipsing celestial light sources. Perhaps the most important class of such objects 

are exoplanets. Exoplanets have been already mentioned in the context of “conventional” 

intensity interferometry. In this context they are considered as dark spots on their host 

stars. While this may be a good approximation in many cases, our approach provides a 

more accurate treatment accounting for the distance between the planet and the star. This 

correction becomes important when the distance between the light source and the object 

approaches the distance between the object and the observer. Such situations arise in cases 

when the dark objects of interest are black holes, neutron stars, gas and dust clouds, Kuiper 

belt asteroids, and various other non-radiating objects. In the following section we will dis

cuss the variety of such objects and the potential scientific payoff from their study in more 

detail. 

D. Perceived benefits and perspectives 

Historically, new frontiers in astrophysics have opened whenever new observation con

cepts become available. Intensity interferometry has already been considered for imaging 

a variety of stellar phenomena including tidal and rotational distortions, limb darkening 

and others. The proposed approach will enable new revolutionary observation techniques 
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granting astrophysicists the access to some of the most elusive and intriguing objects of the 

Universe: those that do not emit their own light. The scientific value and the impact to the 

state of knowledge of such studies is emphasized in the NASA 2011 Strategic Plan. Specifi

cally, the document states that as a part of NASA’s pursuit to further the understanding of 

how the universe works, explore how it began and evolved it seeks to improve understanding 

of the nature of black holes, dark energy, dark matter, and gravity, as well as to generate a 

census of extra-solar planets and determine their properties. In the latter context the search 

for Earth-like planets is considered to have a special priority. 

In addition to the scientific merits discussed above, our research pursues the technologi

cal priorities defined in the 2010 Decadal Survey for Astronomy and Astrophysics, such as 

a broad support for high-resolution instrumentation for both stellar physics and exoplanet 

searches. In this context, we strive to develop an observation technique capable of advancing 

the optical resolution by potentially orders of magnitude compared to even most ambitious 

direct space telescopes and amplitude space interferometers. This goal is pursued by mul

tiple research groups worldwide, which confirms its underlying principles and emphasizes 

its significance. However, the uniqueness of this JPL research is that we are the first to 

develop application of this technique to non-radiating objects. Observation and imaging of 

dark objects, such as those listed above, is one of the important but most difficult prob

lems in astronomy. It becomes especially challenging when an object can scatter little or 

no star light, so its main optical effect is limited to gravitational bending of optical rays 

from background sources, known as gravitational lensing and microlensing. Objects that 

can potentially cause gravitational lensing, such as black holes, hypothesized dark matter, 

or neutron stars, are among the most intriguing astrophysics objects that are the key to 

understanding the origin and fundamental physical principles of our Universe. 

The technological power of our approach is based on high resolution of intensity interfer

ometers, at the levels that cannot be rivaled by first-order interferometry or telescopes with 

realistic apertures. While the Rayleigh criterion still applies to intensity interferometers, it 

is set not by an individual detector’s aperture but by the entire size of the detectors array. 

Intensity correlation imaging therefore may be compared to the synthetic aperture approach 

with telescope arrays. However while the synthetic aperture approach requires positioning 

of the array element with precision and stability at the level of a fraction of the optical 

wavelength, intensity interferometers only need it at the level of the coherence length. The 
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coherence length, determined by the optical filter bandwidth, may exceed the wavelength 

by orders of magnitude. The optical and electronic path lengths stability requirements are 

relaxed accordingly, which affords larger observation baselines, and consequently, better res

olution. One of the important consequences of this is that the intensity correlation technique 

is practically immune to atmospheric perturbations and in some cases circumvents the ne

cessity of going to space for high-resolution observations. This in turn lifts a large number 

of stringent constraints, which brings about further significant benefits. 

Let us briefly discuss some of the dark celestial objects that may be observable with our 

intensity interferometry technique. 

•	 Exoplanets. In March 2014 NASA’s Kepler mission announced the discovery of 715 

new planets. These newly-verified worlds orbit 305 stars, revealing multiple-planet 

systems much like our own solar system. This discovery marks a significant increase 

in the number of known small-sized planets more akin to Earth than previously iden

tified exoplanets. High-resolution imaging of these planets by intensity interferometry 

technique will allow NASA to acquire information regarding their orbits orientations, 

presence of moons, and possibly the presence and state of atmosphere. Intensity

interferometric analysis of Kepler data is also important for eliminating the false posi

tives and more accurate modeling of the light curve [28]. The false positives may arise 

due to a binary background star that could mimic planetary transient or even due to a 

normal background star offsetting the transient light curve, as has been the case with 

Kepler21b and Kepler14b [29]. 

•	 Kuiper belt and Oort cloud asteroids. These objects are observed while oc

casionally obscuring the background stars [30–36]. Understanding the nature and 

composition of these objects is important for understanding the origin of the Kuiper 

belt and Oort cloud and of the underlying astrophysics. Such understanding may be 

gained by intensity-interferometric study of the objects shapes and sizes. 

•	 Black holes. These objects fall into the category of predominantly phase objects as 

described above. Their close study has great scientific merit. Unfortunately, stellar-

mass black holes are very rare. Nonetheless, a remarkable discovery was reported 

[37] earlier this year of a black hole orbiting a star MWC 656. Investigating of this 
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and similar systems may greatly benefit from our approach. For example, plumes of 

accretion may be revealed. 

• “Phase screens” due to cold gas clouds in space. Such gas clouds are thought 

to be responsible for the “hidden” mass and may present an alternative to “dark 

matter” [38, 39]. Studying their density distribution encoded in the transmitted light 

phase gradient (aka the stellar scintillation) is yet another exciting application for 

high-resolution intensity-interferometric imaging in the optical range. 

Our approach implies a very specific observation scenario, when the object of interest 

passes between a light source and the observer. While perfect alignment of these three 

parties is not required, we have shown theoretically [40] and experimentally (see Section 

III D. below) that the object signature diminishes rapidly as the object moves outside the 

angular size of the source as seen by the observer. It is clear that although stars occultations 

are not uncommon in astronomy, and in fact constitute a base for some types of exoplanets 

[1–3] and Kuiper belt asteroids [30–36] observations, identifying appropriate object-source 

pairs requires a thorough investigation which would amount to a separate research effort. 

Here, we provide only a quick review of potential source candidates. The most promising 

sources are the largest and most distant (in order to increase the observation volume), but 

at the same time the brightest (in order to increase the signal) stars. An list of several such 

stars is given in Table I. Here the full angular sizes of stars θ are given in milliarcseconds 

(mas). The peak emission wavelength λp is found from the black body radiation model, and 

the speckle size is evaluated for this wavelength based on the distance and angular size. The 

speckle size dsp is the full width at half maximum of the transverse auto-correlation function 

of a disk source 
( )2 
J1(2πθx/λp)| G12(x) |2 =	 
2πθx/λp 

(1) 

(see discussion in the next chapter). It is found from the condition 

1.62λp 
dsp ≈ .	 

2πθ 
(2) 

Unfortunately, the stars that are known to have planets have considerably smaller ap

parent magnitude, which implies more difficult observations. Some of such stars that are 

brighter than apparent magnitude 9 are listed in Table II. The angular sizes of stars and 
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planets in this case are smaller and measured in microarcseconds (µas) instead of milliarc

seconds. The planet sizes are inferred from their masses, that are in turn evaluated from 

Doppler measurements of the radial velocity shifts of the host stars. Such inferences may 

not be accurate due to various planetary composition and density. 

TABLE I: Parameters of some stars that could be potentially used for imaging dark celestial objects 

by intensity interferometry.  

Star

Betelgeuse 

Angular 
size (mas) 
51.6

Distance  
(pc) 
197

Apparent 
m agnitude 
0.42

T (K) 

3400 

λ peak 
(nm) 
850 

Speckle 
size (m) 
0.88 

Arctur 20.6 11 -0.04 4300 670 1.7 
A ldebaran 20.4 20 0.85 3900 740 1.9 
Capella A 8.9 12.9 0.91 4900 590 3.5 
α  Centauri A 8.3 1.3 1.3 5300 550 3.5 
Pollux 7.8 10 1.1 4700 620 4.2 
Canopus 6.8 96 -0.72 7400 390 3.0 
Procyon 6.6 3.5 0.34 7700 380 3.1 
Capella B 6.6 12.9 0.76 5700 510 4.1 
Sirius 6.2 2.6 -1 .47 9900 290 2.5 
Vega 3.1 7.7 0.03 9600 300 5.1 
A ltair 2.9 5.1 0.77 7700 380 7.0 
Rigel 2.7 260 0.12 12100 240 4.8 
Deneb 2.3 800 1.25 8500 340 8.0 
Fomalhaut 2.1 7.7 1.16 8600 340 8.8 



Star 

Star size 

(μas) 

Planet 

size (μas) 
Distance 

(pc) 

Apparent 

magnitude 

Temperature 

(K) 

λpeak (nm) Star speckle 

size (m) 

Planet speckle 

size (m) 

1021 108 13.5 4.09 6107 474 24.7 234 

1396 23 6.1 4.254 5401 537 20.4 1216 

921 72 25.4 4.46 6095 475 27.4 352 

1040 28 8.6 4.74 5531 524 26.7 976 

772 90 14.1 5.10 5892 492 33.8 289 

809 73 15.6 5.15 5704 508 33.3 371 

1608 15 123.3 5.26 4379 662 21.9 2422 

671 13 14.4 5.65 unknown unknown unknown unknown 

509 63 25.8 5.70 6180 469 393 

700 68 15.9 5.71 5588 519 405 

469 41 36.5 5.91 6266 462 

48.9 

39.3 

52.3 602 

668 61 39.2 5.94 5697 509 443 

872 119 12.3 5.95 5217 555 

40.4 

33.8 248 

659 18 12.6 5.95 5385 538 1597 

315 28 39.6 5.96 7429 390 730 

611 64 19.9 6.18 5646 513 

43.4 

65.7 

44.6 423 

unknown 21 24.2 6.29 unknown unknown unknown unknown 

632 24 32.8 6.42 5522 525 44.1 1153 

588 15 77.6 6.44 5098 568 51.4 1988 

446 42 26.1 6.45 5559 521 62.0 660 

439 7 23.3 6.47 5765 503 60.8 3747 

unknown 12 68.4 6.49 5164 561 unknown 2564 

unknown 13 25.4 6.50 unknown unknown unknown 2062 

unknown 43 27.6 6.54 5874 493 unknown 614 

unknown unknown 38.0 6.63 unknown unknown unknown unknown 

373 89 17.5 6.67 5311 546 77.8 326 

unknown 12 26.7 6.85 unknown unknown unknown 2199 

Upsilon  An dromedae 

82 G. Eridani 

HD 60532 

61 Virginis 

47 Ursae Majoris 

Mu Arae 

HD 47536 

Nu2 Lupi 

HD 142 

Gliese 777 

HD 169830 

HD 38529 

55 Cancri 

HD 69830 

HR 8799 

HD 217107 

HD 134060 

HD 11964 

24 Sextantis 

23 Librae 

HD 1461 

HD 200964 

HD 96700 

HD 82943 

HD 215456 

14 Herculis 

HD 134606 

HD 40307 517 14 12.9 7.17 4977 582 59.8 2207 

unknown 18 59.2 7.18 4948 586 unknown 1724 

unknown unknown 36.2 7.2 5360 541 unknown unknown 

351 20 64.1 7.25 5445 532 80.4 1409 

unknown 20 44.2 7.27 5760 503 unknown 1312 

HD 177830 

HD 141399 

HD 154857 

HD 155358 

unknown 23 52.7 7.27 5395 537 unknown 1257 

287 9 38.9 7.33 5911 490 90.8 2948 

293 35 35.0 7.44 5742 505 91.5 759 

unknown unknown 38.6 7.48 unknown unknown unknown unknown 

257 4 42.3 7.49 unknown unknown unknown unknown 

410 83 16.6 7.51 4965 584 75.6 373 

unknown unknown 71.1 7.51 6255 463 unknown unknown 

248 27 51.8 7.54 6058 478 103 933 

977 37 18.1 7.57 4875 594 32.3 859 

237 29 64.4 7.61 6039 480 108 870 

226 25 33.7 7.68 5606 517 121 1115 

unknown 17 39.6 7.79 5675 511 unknown 1628 

unknown 24 48.1 7.83 5714 507 unknown 1101 

204 26 55.2 7.86 5888 492 128 1010 

unknown unknown 32.2 7.94 unknown unknown unknown unknown 

unknown 29 34.3 7.98 5666 511 unknown 936 

HD 159868 

HD 10180 

HD 12661 

HD 31527 

HD 93385 

HD 128311 

HD 13908 

HD 11506 

83 Leonis 

HD 74156 

HD 37124 

HD 47186 

HD 187123 

HD 183263 

HD 21693 

HD 65216 

HD 204313 unknown 30 47.2 7.99 5767 502 unknown 884 
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T ABLE II: Parameters of some brightest stars that are known to have a planet, potentially 

suitable for intensity interferometry observations. 

Alternatively to stars, quasars can also be used as light sources. The advantage of quasars  

is their great distance from us (billions of light years) which increases the chance of  occul

tation with a dark object. In fact quasars have produced the most spectacular gravitational  

lensing images even with conventional observation techniques. The disadvantage is their low 

photon flux. The brightest known quasar, 3C 273, has apparent visible brightness of 
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only 12.9. Another potential disadvantage of quasars is that their radiation has strongly 

non-thermal nature, and the presence and degree of thermal photon bunching, providing the 

physical background for intensity interferometry, yet needs to be established. 

From the above examples we see that different types of source-object systems will have its 

own set of key parameters (such as the source photon flux and its attenuation by the object, 

the transient time, the source speckle size, spectral parameters, and others) that may vary 

dramatically from system to system. Therefore each case will require a separate feasibility 

study under its own specific constraints, such as allowed observation time, required detectors 

array size, timing accuracy, observation wavelength and so on. 

To summarize this Section, we would like to emphasize that the optical imaging in as

tronomy will remain an active area of NASA’s deep space exploration efforts for many years 

to come. Developing a novel technology geared to provide new or enhanced data will defi

nitely have a high impact. Potential benefits of our approach will include new capabilities 

for enhanced resolution, which is determined by a large baseline between the two detectors, 

in a way similar to the synthetic aperture approach. These benefits will also include the 

capability for faint object detection, and broader range imaging of extra-terrestrial objects, 

such as Earth-like planets (including those near bright stars), black holes, dust or gas clouds, 

and possibly dark matter. We envision the emergence of new research programs and space 

missions enabled by the technology we currently develop. The ramifications of our research 

may extend beyond the scope of astronomy and astrophysics. Ghost imaging of remote 

objects or of objects with limited access attracts increasing attention from the military and 

national security agencies. 

II. PHASE I GOALS AND ACCOMPLISHMENTS 

The Phase I primary objective has been to evaluate the feasibility of our approach at a 

conceptual level. We investigated the possibility of performing the thermal-light Ghost imag

ing without the optical beam splitter, which has been indispensable in all prior realizations. 

In our approach the object itself plays the role of the beam splitter by creating coherence 

between the detectors in a way that imprints the object’s optical properties onto the mea

sured intensity correlation function. If proved viable, this approach will allow for practical 

application of the correlation imaging technique, in particular for astronomy observations. 
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While the earlier study of ghost imaging provided solid theoretical base for the underlying 

approach, a thorough feasibility study is required prior to launching a large-scale mission-

focused effort. The main goal of the one-year-long Phase I has been to carry out such a 

study and present the recommendations for the Phase II, as to whether such an effort would 

be practical at the present or future level of technology. Three key questions to be answered 

by the Phase I research have been the following: 

1. Is the proposed approach feasible at the fundamental level? 

2. What are the advantages or value added to the conventional approaches? 

3. What would a possible future mission look like? 

To achieve the Phase I goals we carried out the theoretical analysis of the base ghost 

imaging configuration as shown in Fig. 4(b). This configuration choice entailed a more 

complicated analysis and less favorable object observability, compared to the configuration 

of Fig. 4(a). However the considerations of mission feasibility have prevailed and determined 

our configuration choice as a conceptual example of the potential mission architecture. 

The analysis carried for the selected configuration has yielded the positive answer to 

the first Phase I question. This analysis has been further used to provide the theoretical 

estimates of the technique’s expected performance with respect to astronomical objects of 

interest. Based on these estimates, we discuss the practical aspects of ghost imaging in 

space, such as the signal-to-noise ratio (SNR), optical bandwidth, clock synchronization 

requirements, and others, to evaluate the advantages or establish the added benefits of the 

correlation imaging technique. The account of Phase I research has been condensed into list 

of benchmarks summarized below with a brief discussion of the accomplishments. 

A. Introducing the theoretical model 

In this Section we present our fundamental analysis using a simple model object and 

carried out in paraxial planar geometry. We consider a flat source and a flat object placed in 

the source and object planes, respectively. In these planes we introduce the local transverse 

coordinates ρ⃗ for the source and ρ⃗o for the object. We designate Ls as the distance between 

the source and object planes, and L1,2 as the distances between the object plane and the 
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planes of point-like detectors 1 and 2. The local transverse positions of these detectors are 

denoted as ρ⃗1 and ρ⃗2, respectively, as shown in Fig. 10. 

FIG. 10: Relative position of the source, object and detectors in the flat paraxial model. 

Let us assume that the source field is bound by a Gaussian envelope with the width Rs 
2 

E(⃗
− ρ 

ρ, t)e 2 2Rs .and can be written as This model approximates the source with a diameter 
√ 
2Rs(intensity distribution FWHM) equal to . In paraxial approximation, the field at 

detector 1 is related to the field of the source as 

2 
− ρ 2 2 L1 + Ls 

E 2 2R 
1(ρ⃗1, t) = d ρd ρoe s E(ρ⃗, t − )hLs (ρ⃗ − ρ⃗o)T (ρ⃗o)hL1 (ρ⃗o − ρ⃗1) 

c 
, (3) 

Although it looks complicated, expression (3) is actually quite straightforward. It uses the 

paraxial approximation for the optical field propagation function 

eikZ 2|x⃗| 

h 2 Z(x⃗) = e ik Z 

iλZ 
(4) 

that relates the electric field at two spatial points separated by a distance Z along the 

line of sight and by a transverse displacement x⃗ (assuming that x ≪ Z for the paraxial 

approximation) in the transverse directions. A field produced by an extended source in a 

remote point is then given by a convolution of (4) with the source’s own field distribution. 

This procedure yields the field distribution across the object. We then multiply this field 

by the object’s field transmission function T (ρ⃗o) which may be real (for a purely absorbing 

object), imaginary (for a purely phase object, e.g. a thin lens), or complex. Then we repeat 
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the propagation and integration steps to obtain expression (3) for the field at the detector. 

A relation similar to (3) can be written for the field at the other detector. 

Let us consider the intensity correlation observable 

For thermal light, the phase-sensitive term in (5) vanishes [41], and we arrive at 

〈 I1(ρ⃗1, t1)I2(ρ⃗2, t2) 〉 = 〈 E1 
†(ρ⃗1, t1)E2 

†(ρ⃗2, t2)E1(ρ⃗1, t1)E2(ρ⃗2, t2) 〉 . (5) 

where the first term describes the possible ghost image and the second term gives the un

correlated “background” intensity product, which also describes the object’s shadow. To 

separate these effects it is convenient to introduce the normalized Glauber correlation func

tion [42] 

〈 I1(ρ⃗1, t1)I2(ρ⃗2, t2) 〉 = |〈 E1 
†(ρ⃗1, t1)E2(ρ⃗

2 
2, t2) 〉| + 〈| E1(ρ⃗1, t1) |2 〉〈| E2(ρ⃗2, t2) |2 〉 , (6)
 

E 2 
(2) 

† (ρ⃗
 2 
1, t1)E2(ρ⃗2, t2) G12 

g
 (ρ⃗1, t1; ρ⃗2, t2) = 1 + 
|〈 1 

2 

〉| 
= 1 + 〈| E (ρ⃗ , t ) | 〉〈| E (ρ⃗ , t ) |2 

| | 
1 1 1 2 2 2 〉 G11G22 

.
 
 

(7)
 

It is also convenient to consider | G12 |2 as an observable, which can be accessed by mea

suring a correlation of the detector’s photocurrents fluctuations. Indeed, let us assume that 

the detection is performed by two pinhole photo detectors that have equal sensitive areas 

Ad and quantum efficiencies η and are located at ρ⃗1 and ρ⃗2 of the z = L + Ls plane. We 

also assume that the detectors are small enough to neglect the field variation across Ad. 

The stochastic photocurrents generated by these detectors in response to the incident field 

Ed(ρ⃗, t) (here d = 1, 2) have the following first-order conditional moments normalized to 

photoelectrons/s: 

〈 id(t) | Ed(ρ⃗d, t) 〉 = ηAd 

∫

dτ | Ed(ρ⃗d, τ) |2 h(t − τ) . (8) 

In Eq. (8) h(t) is the detectors baseband impulse response, which includes any filtering that 

occurs prior to the correlation measurement. In order to eliminate a featureless background, 

it may be convenient to assume that a DC blocking filter is included in h(t), such that 
∫

dt h(t) = 0. 

The blocked DC photocurrent component provides information regarding the total pho

ton flux blocked by the object, which is at the heart of the photon flux based detection 

methodology, such as used e.g. in the Kepler planetary detection mission. Kepler tracks 

slow intensity variations of a star to detect Earth-sized exoplanets orbiting the star and to 



∫ T/2

C(ρ⃗1, ρ⃗2) ≡ T−1 dt i1(t)i2(t) 
−T/2 

〈C(ρ⃗1, ρ⃗2)〉 = C|〈E1
∗(ρ⃗1)E2(ρ⃗2)〉|2 = C|G12|2,

〈E†(ρ⃗, t)E(ρ⃗′, t′)〉 ∝ δ(ρ⃗− ρ⃗′)Γ(t− t′).
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estimate their orbital characteristics. We tailor our analysis to obtain the additional infor

mation that can be gathered via the intensity correlation technique, in a way that does not 

preclude the observer from also using the mean photon flux registered by each detector. 

Correlation between the intensity fluctuations observed by the two detectors located at 

ρ⃗1 and ρ⃗2 is measured by multiplying the two photocurrents and time-averaging the product: 

, (9) 

where T is the multiplication circuit integration time, or the “coincidence window” if photon 

counting technique is used. The stationary photocurrents correlation measurement converges 

to a time-independent ensemble average, given by 

 , (10) 

where C ≡ η2 A2 [ Γ(t) 2 
d | | ⋆ h(t) ⋆ h( −t)], and ⋆ denotes convolution. Γ(t) is a δ-like function 

whose width corresponds to the optical coherence time. The latter may be determined by the 

spectral filters bandwidth. For a narrow-band source, such that Γ(t) is much broader than 

h(t), the parameter C can be interpreted as a detection volume. For a broad-band source 

this value is reduced proportionally to the square of the h(t) and Γ(t) widths ratio, that 

is, to the number M of detected longitudinal modes. This is consistent with a well-known 

result for Glauber correlation function for a multimode thermal light: g(2) (0) = 1 + 1/M . 

Glauber correlation function will be our main observable in the following analysis. How

ever, let us mention that other types of measurements are possible. In particular, one can 

measure higher-order correlation functions g(m,n) [43–45], the variance of intensities differ

ence (instead of a product) [46–48], or even a multi-detector correlation [49, 50]. The analysis 

based on the field propagation equation (3) can be easily extended to these types of measure

ments. Such measurements will have different dependencies on the optical mode structure 

and on the detector’s quantum efficiencies, and may offer interesting resolution/SNR trade

off opportunities. The possibility of utilizing these measurement strategies distinguishes our 

approach from the conventional intensity interferometry. 

Let us now substitute the fields E1(ρ⃗1, t1) and E2(ρ⃗2, t2) given by (3) into (7) and take 

into account the correlation property of thermal field E(ρ⃗, t): 

. (11) 
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Unless we are interested in color imaging, using narrow-band filters is undesirable because 

they reduce the optical power available for the measurement. On the other hand, short co

herence time requires compatibly fast optical detectors and intensity-correlation circuitry in 

order to ensure single longitudinal mode detection. Therefore to carry out a fair comparison 

between the direct intensity measurement and the correlation measurement, we need to take 

into account the photon flux reduction due to the spectral filtering required in the latter 

case. As an example, let us assume a 1 ps timing accuracy and the central wavelength of 

1 micron. This accuracy requirement may appear unrealistic, since most of contemporary 

time-stamp systems have time resolution worse than 50 ps, while the pulse front jitter in 

commercial photon counting detectors can be as low as 30 ps. However these state of the 

art figures show strong improving trends. Projecting these trends, it is reasonable to expect 

a single-digit picosecond time resolution systems available by the time our concept matures. 

A 1 ps coherence time corresponds to a 3.3 nm wide spectral band around 1 micron 

central wavelength. Comparing the optical power detected within this band to the total 

power radiated by the Sun within the typical sensitivity band of a silicon photo detector 

(see Fig. 11) we find that for a correlation measurement we have in our disposal 0.5% of 

the optical power available for a broad-band intensity measurement. This reduces the SNR 

in a shot-noise limited narrow-band correlation measurement compared to a broad-band 

intensity measurement. 
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FIG. 11: The solar radiation normalized spectral density (from [51]), spectral sensitivity of a typical 

silicon photo diode, and their product. 
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The SNR loss will be less severe for the correlation measurement compared to a color-

resolved intensity measurement, such as may be used in spectroscopy or Doppler measure

ments. In particular, no loss may be suffered at all, if one is interested in a very narrow-band 

measurement, e.g. a measurement with a specific spectral line. A more detailed discussion 

of the direct-intensity vs. correlation measurement SNRs will be given in Chapter III C 

reporting the Phase II accomplishments. 

Let us point out that in addition to the high speed and low jitter requirements placed 

on the photo detectors and correlation electronics, a broad-band correlation measurement 

placed stringent requirements on the clock synchronization between the two detectors, as well 

as on the accuracy of their relative positioning L1 − L2 along the line of sight. Fortunately, 

recent spectacular breakthrough in the field of ultra-precise clocks (in particular, optical 

clocks) has created a powerful stimulus for developing adequate time transfer protocols. 

Synchronization of a pair of stationary clocks down to the required precision is already 

within reach. 

More difficulties would arise in case of space-based observer(s). Then the clock synchro

nization problem is inseparable from the ranging problem, which, in our example of 1 ps 

timing accuracy, should be better than 30 microns. This problem also has a solution. As 

one example, in the recent GRAIL mission Ka-band ranging has allowed for the 10 microns 

ranging precision [52]. Even more accurate ranging is required and is being developed for 

the optical VLBI and synthetic aperture applications, such as LISA. We expect to be able 

to leverage this technology which may be expected to advance even further by the time of 

the “Ghost imaging of space objects” mission design. 

As an alternative, the time synchronization problem can be considerably alleviated if 

one takes the advantage of the fact that in our approach we always rely on the maximum 

correlation, that is, zero delay between the photon arrival times. This will allow us to 

continuously adjust the local clocks so as to maximize the measured correlation function, 

and to monitor the change of this maximal value. In a sense, this would amount to using 

the detected signal as a time-synchronization signal, an approach one might call a stellar 

GPS. 

To continue our analysis we will assume that perfect synchronization between the detec

tors has been achieved and Γ(t − t ′ ) = 1 in (11). We then suppress the temporal part of the 
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G12(ρ⃗1, ρ⃗ ) = d2 ρd2 ρ ′ 2 
2 od ρ

−
o e 

2 Rs T2(ρ⃗o)T1 
∗ (ρ⃗′ o) h 

∗ 
L − ⃗  
s 
(ρ⃗ ρ′ o)hLs (ρ⃗ − ρ⃗o)h ∗ L1 

(ρ⃗′ o − ρ⃗1)hL2 (ρ⃗o − ρ⃗2)
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problem. For the numerator in (7) we derive 

. 

(12) 

In (12) we have introduced T1,2(ρ⃗o) to allow the transmission functions to be different for 

detectors 1 and 2. This will allow us to consider the case when the object (partially) 

obscures the source light for one detector, and scatters it to the other, therefore addressing 

the scenario in Fig. 4(a). In this case one detector receives the direct light from the source, 

while the other only sees the light scattered by the object. In handling such situations we 

still need to make sure the paraxial approximation holds, and that the approximation of a 

flat object remains reasonable. 

For the following analysis it will be convenient to introduce an aperture-limited propa

gation function 
∫ 2ρ 

(Rs) G (Z , ρ⃗ ;Z , ρ⃗ ) = d2 ρe 
− 2R 

a a b b s 
12 h Z 

∗ 
a 
(ρ⃗ − ρ⃗a)hZb 

(ρ⃗ − ρ⃗b) (13) 

for the fields propagating to locations (Za, ρ⃗a) and (Zb, ρ⃗b) from a Gaussian source of thermal 

light that has a width Rs and is located at Z = 0. Equivalently, from the advanced wave 

perspective [53], it describes time-reversed propagation of a photon from ( −Za, ρ⃗a) to the 

source, and then forward in time to (Zb, ρ⃗b). If the source is infinitely large, Rs → ∞ , the 

aperture-limited propagation function (13) becomes equal to a usual paraxial point-source 

propagation function from one detector to the other: 

( 
G1 

∞) 
2 (Za, ρ⃗a;Zb, ρ⃗b) = hZb−Za(ρ⃗b − ρ⃗a). (14) 

The aperture-limited propagation function arises in (7): 
∫ ∫

2 (R ) 
G12(ρ⃗1, ρ⃗2) = d ρod

2 ρ o 
′ hL2 (ρ⃗ ⃗ ⃗ s ⃗

o − ρ⃗2)h 
∗ 
L1 
(ρ′o − ρ⃗1)T2(ρ⃗o)T1 

∗ (ρ′ o)G12 (Ls, ρ′o;Ls, ρ⃗o), (15) 

(Rs) G12 (Za, ρ⃗a;Zb, ρ⃗b)and likewise for G11(ρ⃗1) and G22(ρ⃗2). To evaluate in a general form we 

introduce polar coordinates such that 
∫ ∫ ∫ 2π∞ 

d2 ρ = ρdρ dϕ, | ρ⃗  |2 a − ρ⃗b = ρ2 + ρ2 a b − 2ρaρb cos(ϕa − ϕb) 
0 0 

. (16) 

The angular integration in Eq. (13) yields
 

R eik(Zb 
(

−Za)
 
) k 2  

G s (Z i (ρ /Zb ρ2 /Z
2 a)
b a 

12 a, ρ⃗a;Zb, ρ⃗b) = 2π e −
λ2ZaZ

∫ 

b 

∞ −
[

1 Z −Z 
ρ b a 

( I
∫

( )I

2 +ik × ρdρe 
2R 2ZaZ 

]

I 
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I

ρ⃗b ρ⃗a I
J I

0 kρ 
I

− 
I 

0 Zb Za 

)

. 

(17) 
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Then integrating over the radius we obtain 

( R2 eik(Zb−Za) 
Rs) G (Z s 
12 a, ρ⃗a;Zb, ρ⃗b) = 2π 

λ2 2ZaZb + ikR2 
s(Zb  Za) 

2 ρ 

− 

− −
2 2 

k ⃗ ρ⃗ R ZaZb a s b 
i k  (ρ2 /Z ρ2 
e a/Z )

2 ab b− e 2 Z Zb a 22ZaZ + ikRb s ( Z −Zb a)

 

 

 

 

 

 

(18) 

× . 

In the case of interest (15) we have Za = Zb = Ls, which leads to 

 
R ⃗ 2 
( q 

G s) (L , ρ⃗′ ;L , ρ⃗ ) = q 2 π−1 e i (ρ2 −ρ ′2 ) 
s 

−q2 

o 
|ρ⃗o−ρ′ 

R o o os 
12 s o e | , (19) 

where q−1 = 2Ls/(kRs) is the Gaussian width of the correlation function for a source that 

has Gaussian field distribution introduced above. This value also represents the FWHM of 

a Gaussian source speckle. 

Let us discuss another source of practical significance: a uniform disk. In order to match 
√ 

the total source luminosity, the disk radius has to be 2Rs, as has been discussed above. 

This case can be analyzed by changing Eq. (18) into the form 

[
√ 

R ] eik(Zb−Za) 
2 k 2 2 

G s 

12 (Za, ρ⃗a;Zb, ρ⃗b) = 2π e i (ρ /Zb−ρa/Za)2 b 

λ2Z
∫ 

aZb 
( I

∫

√
2Rs

( )I )

−  Z −Z 

× ikρ2 b a I ρ⃗b ρ⃗a I
ρdρe 2ZaZb J I I

0 kρ 
I

− 
I 

0 Zb Za 

(20) 

. 

For Za = Zb = Ls this yields 
 

[
√ 
2R ′ 

s] q 2 2 J ⃗
1(2 
√
2q ρ⃗o  ρ′ ) 

G12 (Ls, ρ⃗′ o;L R 
s, ρ⃗ ) = q2 π−1 i ρo 

o e ( 
s 

−ρo ) 
| − o |√ 

2q | ρ⃗o − ρ⃗′ o | 
. (21) 

This expression has been used to derive (1). 

The correlation observables (i.e., speckle shapes) for a Gaussian and disk sources calcu

lated according to Eqs. (18) and (21), respectively, are shown in Fig. 12. We see that they 

are very close, which means that the Gaussian source model provides a surprisingly good 

approximation of realistic sources of thermal light in space. We will continue to use it for 

the rest of this section. We will also limit the discussion to a special balanced case when 

L1 = L2 = L. While this case limits possible observation scenario, it allows us to carry out 

exact analytical calculations in many cases of interest, and to evaluate the practical utility 

of our approach. 

To carry out the further calculation it will be convenient to introduce new coordinates: 

⃗ 
√  

x = (ρ⃗o + ρ⃗′ o)/ 2 and y⃗ = (ρ⃗o 
√

− ρ⃗′ o)/ 2. Then substituting (19) into (15) we obtain 

2 2 ⃗ ⃗ 
G12(ρ⃗1, ρ⃗2) = A

∫ ∫

S(x⃗, y⃗)e −2q y e iΔx⃗ eiΣy⃗ e iγx⃗y⃗ d2 xd2 y, (22) 
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FIG. 12: The speckle shapes (intensity correlation observables) for a Gaussian and disk sources of 

equal luminosity are given by the blue and red curves, respectively. 

where 

, 

x⃗ + y⃗ x⃗  ⃗y 
S(x⃗, y⃗) = T2(

∗ −√ )T1 ( √ ) 
2 2 

, 

k 
Δ⃗ = √ (ρ⃗1 − ρ⃗2) 

2L 
, (23) 

k 
Σ⃗ = √ (ρ⃗1 + ρ⃗2) 

2L 
, 

γ = k(1/L+ 1/Ls). 

The Gaussian term in (22) arises from Fourier transform of the source field distribution. 

This suggests that (22) could be generalized for any such distribution, which is then to 

be treated numerically. This approach will be explored in the framework of the Phase II 

research program. At this stage we will limit our consideration to a Gaussian source. 

As a sanity check, let us notice that if we “turn off” the object by setting S(x⃗, y⃗) = 1, 

the integral over d2 x in (22) yields ⃗(2π)2 δ(Δ + γy⃗) integral yields, quite . Then the d2 y 

expectedly, the correlation function of a Gaussian source (19) with increased free-space 

propagation length Ls → L+ Ls: 

→ (R ) 
G s 

12(ρ⃗1, ρ⃗2)  G12 (L+ Ls, ρ⃗1;L+ Ls, ρ⃗2). (24) 

Let us now consider a few example objects and discuss their possible relevance for the 

astronomy applications.
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B. A Gaussian absorber
 

Let us consider an object that has a Gaussian absorption profile. This case can approx

imate e.g. a spherical dust or gas cloud of roughly uniform density. It also can be used as 

a crude model for a planetary occultation of a star. The transmission function of such an 

object can be modeled as 
2ρo 

T (ρ⃗ 22R 
o) = 1 − T0e 

− 
o , (25) 

which gives rise to four terms: 

2 2 2 2(x⃗ +y⃗) (x⃗−y⃗ ) x + y 

S(x⃗, y⃗) = S0 + S1a + S1b + S = 1  T e 
− 2 24R T e 

−
4R + T 2 

2 e 
− 2 2R 

0 o 0 o o 
0− − . (26) 

In (25) and (26) T0 is the amplitude transmission of the most opaque (central) part of 

the object. Consequently, the correlation function also will consist of four terms: G12 = 
(0) (1a) (1b) (2) 

G12 +G12 +G12 +G12 , where the zero-order term corresponds to free-space propagation 
(0) (Rs) (24): G12 = G12 (L + Ls, ρ⃗1;L + Ls, ρ⃗2). A straightforward but cumbersome calculation 

leads to the following expression for both the first- and the second-order terms: 

(

k2RsRo

)2n 
( )

( T )
2 2 2 2 2 2 2 2 2 2k R γ̃ ρ −ρ  k ( ρ⃗ + ρ⃗ ) k R q̃  ( ρ⃗ −ρ⃗ )1 (1,2) i o 2 1 2 0 o 2 1 

G12 (ρ⃗1, ρ⃗ ) = 
−

e
−

2L2 2 2q 2 2 2 2 2 2 2 2R γ e 
−

L q R γ 2˜ + o ˜ 8 (˜ + o ˜ ) L q̃  + R γ̃ 
2 e 

−
2 o 

π(q̃2 + R2 2 
oγ̃ ) 2LLs 

.  (27) 

(1a,b) 
G12 To obtain , we need to substitute in (27) 

2 1 i 
n = 1, q̃ = 2q 2 + , γ̃ = γ ±

4R2 
o 2R2 

o 

. 

(2) 
G12 For , we substitute 

n 2 1 
= 2, q̃ = 2q 2 + , γ̃ = γ 

2R2 
o 

. 

We notice that in the multi-mode case when the speckle size on the object greatly exceeds 

the object size q̃2  2q2 . This situation is to be expected for most of source-object systems 

in space, however we do not need to make this approximation now. 

≈

Let us investigate the result (27) for a set of parameters that can be easily implemented 

on an optical table. In Fig. 13 we show a correlation function g(2) (ρ⃗1 = −ρ⃗2) and the 
intensity profile featuring the object’s shadow. In this simulation an opaque (T0 = 1) object 

is placed between a source with Rs = 1 cm and the detectors plane so that Ls = L = 50 

cm. The object size Ro is varied from zero to 1, 2 and 3 mm. As the object becomes larger 

its shadow becomes deeper and, less intuitively, the speckle size becomes smaller. For larger 

objects the speckle shape also becomes distorted. 
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FIG. 13: The correlation function g(2)(ρ⃗1, ρ⃗2) vs. the distance Δρ = |ρ⃗1 − ρ⃗2 | (a) and the intensity 

profile (b) for a lab parameter set T0 = 1, Ls = L = 50 cm and Rs = 1 cm. The object size Ro is 

varied from zero to 1, 2 and 3 mm. 

Even less intuitive evolution is undergone by the speckle size (the FWHM) as the object 

is moved across the line of sight, imitating a planet passing across the star. To simulate this 

transient we actually changed the detector’s position ρs = (ρ1 + ρ2)/2 while the Ro = 1 mm 

object was fixed on the initial line of sight at Ls = L = 50 cm. The effective displacement 

of the object from the line of sight was then found as ρo = ρsLs/(L+ Ls). 

The speckle size evolution is shown in Fig. 14(a) for two cases: when the object is displaced 

along the line connecting the detectors ρ⃗1 − ρ⃗2 (red curve), and when it is displaced in the 

perpendicular direction (blue curve). The corresponding variation of the detected photon 

flux is shown in Fig. 14(b). The photon flux reaches the minimum when the object is exactly 

on the line of sight and does not depend on the displacement direction, as one could expect 

from the symmetry considerations. 

The speckle width, on the other hand, strongly depends on the displacement orientation. 

This implies that unlike the direct intensity measurement, the correlation (speckle width) 

measurement has a stereoscopic character. Remarkably, the fractional variation of both 

types of observables due to the transient object is approximately 7%, see Fig. 14. In the 

framework of the Phase II research we will prove that this is not a coincidence but a rather 

general feature of the correlation measurement technique: the object signature present in 

the speckle-width measurement has the same relative magnitude as the one present in the 

direct intensity measurement. Of course, to compare the efficiencies of these two types of 

observations one also need to compare the measurements SNR. Analysis carried out in the 

ΔΡ (Μm) Ρ (cm)
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(a) (b) 

FIG. 14: (a) Speckle width as a function of the objects displacement in the direction ρ⃗1 − ρ⃗2 of 

the detectors’ baseline (red) and in the perpendicular direction (blue). (b) Normalized photon flux 

corresponding to the cases from (a). The parameter set is T0 = 1, Ls = L = 50 cm, Rs = 1 cm, 

Ro = 1 mm. 

framework of Phase II research has shown that in this sense the correlation measurement 

technique is at a strong disadvantage. However, as has already been mentioned, our goal 

is not to compete with intensity-based observations, but to upgrade such observations with 

new capabilities. Such a possibility is suggested by the stereoscopic character of the speckle

width measurement shown in Fig. 14(a). Full understanding of this phenomenon has been 

gained in the Phase II research. This understanding has lead to the realization how not only 

the orbital displacement but also full 2D imaging of a dark space object is possible. We will 

discuss this breakthrough in the following chapters. 

Let us now apply our model to an actual astronomical observation carried out by Kepler 

space telescope [1, 2]. Substituting the Kepler-20f parameters [2] into our model we find 

the relative intensity variation of the order of 10−4 , which is consistent with the actual 

observation [2], see Fig. 15. In line with the earlier discussion, we use the actual planet 
√ 
2 as Ro radius times in our simulations. The discrepancy in the dip shape clearly visible 

in Fig. 15 arises from using the Gaussian source and absorber model while the actual star 

and planet are, of course, better described as disks. However the numerical agreement with 

the experiment shows that even a simplistic fully analytical Gaussian model can be useful. 

This has encouraged us to carry out the speckle-width measurement simulation for the 
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(a) (b) 

FIG. 15: The intensity variation for Kepler-20e observed in [2] (a), and computed based on our 

model (b). 

Kepler-20f. The results of these simulations are shown in Fig. 16. As expected, the character 

of the transient observable strongly depends on the orbit plane orientation relative to the 

detectors’ baseline. Again, the magnitude of the speckle width variation, from 3,603.6 m 

to 3,604.2 m, or 1.7 × 10−4 fractional change, is very close to the magnitude of the photon 

flux variation shown in Fig. 15. We view this result as very encouraging and justifying the 

Phase II research effort. 

FIG. 16: The predicted speckle width variation for Kepler-20e depends on the relative orientation 

of the detectors’ baseline and the planet’s orbit. 
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C. Unbalanced arms configuration
 

So far we have assumed that both detectors are located in a plane perpendicular to 

the line of sight. Therefore, within the paraxial approximation, they are equidistant from 

the object: L1 = L2. This assumption makes the measurement of the Glauber correlation 

function equivalent to measuring the shape of the speckle. But this need not be the case. 

In this section we consider a more general situation when  / which may be realized in L1 = L2 

asymmetric configurations, e.g. when the correlation measurement is performed by a ground

based detector jointly with a distant space-based detector, as in Fig. 4(a). Importantly, we 

will continue to assume perfect time synchronization between the two detectors, which in the 

assymetric case can be achieved with an appropriate time delay. Therefore all the effects 

we will observe are going to be of spatial (transverse) rather of temporal (longitudinal) 

nature. It will not be possible to carry out the analytical calculations without making 

further approximations. From (19) we see that the large aperture approximation (14) holds 

when 
2ZaZb 

αs ≡ ≪ 1 
kR2 

s Zb  Za 
. (28) | − |

This approximation is appropriate for evaluation of the first-order terms in (15) where 

Zb  Za = L1 − is large. Indeed, in this case for the optical table geometry λ = 1 µm and 

Rs = Ls = 1 cm we get αs = 1.6  10−5 × . For the Solar system geometry with Rs = 7  105 ×
km (Sun radius), Ls = 1.5  108 × km (the distance from Earth to Sun), and λ = 1 µm, we get 

αs = 5  10−14 × . This parameter becomes even smaller for interstellar distances. Therefore 

when we calculate G12 for a Gaussian absorber described by Eq. (25), the first-order terms 

can be approximated as 

G
(1)
12 (ρ⃗1, ρ⃗2) ≡ G

(
1
1
2
a

∫

) (1b) ∗ 
(L1, ρ⃗1;L2, ρ⃗2) +G12 (L2, ρ⃗
∫

2;L1, ρ⃗1) 
2 

≈ −2 d2 ρ e 
− ρ 2 2Ro h ∗ L1 

(ρ⃗ − ρ⃗1)hL2 (ρ⃗ − ρ⃗2). (29) 

The opposite case of (28) occurs when Za = Zb. If furthermore q2 is much greater than 

all coefficients that multiply ρ2 in all real and imaginary exponents in (15), then (19) can 

be proven to approach a δ-function normalized to unity. This is the small aperture approx

imation, applicable for the second-order terms of (15). Let us point out that within this 

approximation, the object cannot create coherence between the transmitted and scattered 

light unless the speckle size in the object plane approaches or exceeds the size of the object 
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itself. 

For the optical table geometry as described above, q2 exceeds all relevant parameters by a 

factor of at least 3  104 × . The excess factors are much greater in all reasonable astronomical 

geometries. Therefore we derive 

2ρ 
(2) 

G (ρ⃗
−

∫

1, ρ⃗2) ≈ d2 ρ e 2 Ro 
12 h ∗ L1 

(ρ⃗ − ρ⃗1)hL2 (ρ⃗ − ρ⃗2). (30) 

For a Gaussian absorber case with L1 /= L2 we then arrive at the following approximate 

expressions: 

(0) (R ) 
G12 (ρ⃗

s 
1, ρ⃗2) = G12 (L1 + Ls, ρ⃗1;L2 + Ls, ρ⃗2), 

(1) (
√ 
2R ) 

G12 (ρ⃗1, ρ⃗2) = 2G o 

12 (L1, ρ⃗1;L2, ρ⃗2)− , 

(2) (R ) 
G12 (ρ⃗1, ρ⃗2) = G o 

12 (L1, ρ⃗1;L2, ρ⃗2). 

(31) 

It is easy to see that very similar expressions can be derived for the disk-shaped source 

and/or object. 

Let us first evaluate the correlation function g(2) found by substituting (31) into (7) in the 

absence of the object, which is formally achieved by setting Ro = 0. In Fig. 17(a) we show 

this function for a typical optics table parameters (L1  L2 = 1 m, Ls = 1 cm, λ = 1 µm), ≈
while assuming that the detectors are symmetric relative to the line of sight: ρ⃗1 = −ρ⃗2. 
This allows us to use a single scalar parameter ρ, in the same way it was done in Fig. 13 

and will be done in the following. 

The correlation reduction due to non-zero ΔL is clearly visible. We would like to empha

size again that this is not due to a limited coherence length of the source, but because of its 

transverse coherence properties. We can interpret this result as follows. By placing the first 

detector in the plane L1 we define the speckle pattern in this plane as the transverse mode 

structure. These speckles may be further considered as mutually incoherent light sources. 

As light from these sources propagates further, the coherence areas expand as well as over

lap. The expansion causes the widening of the correlation function while the overlap causes 

the contrast reduction due to multimode detection. Using the expression for normalized 

Glauber correlation function for thermal light g(2) (0) = 1 + 1/M relating it to the number 

of detected modes M , we can determine that in our example the longitudinal displacement 

of the detector by ΔL = 6 mm has lead to the number of detected modes M  3. ≈ Note that 

this interpretation differs from the speckle pattern behavior that one might observe e.g. on 
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FIG. 17: (a) The correlation functions g(2)(Δρ) in the absence of an object for Rs = 1 cm L1 = 55 

cm and L2 = L1 +ΔL. (b) The same correlation functions (solid lines) become narrower (dashed 

lines) when a small (Ro = 1 mm) Gaussian absorbing object is inserted in the line of sight at the 

distance Ls = 55 cm from the source. 

a screen. In this case the speckle do not overlap and do not appreciably change in size for 

small longitudinal translations. 

Now let us “turn on” the object and investigate its effect on the correlation function. 

If a small (Ro = 1 mm) object is placed half way between the source and the detectors, 

the correlation function becomes narrower, which means smaller speckles, as can be seen 

in Fig. 17(b). Let us point out that the ΔL = 0 case in Fig. 17(b) is consistent with the 

Ro = 1 mm case from Fig. 13. This agreement validates the large-aperture and small-

aperture approximations made in this Section for an absorbing object. 

To summarize this Section we notice that the previously made assumption L1 = L2 

indeed provides the best intensity-interferometric observability of the thermal light sources 

and of dark objects that may obscure such sources. Therefore we will continue using this 

assumption in the Phase II research. 

D. Phase I summary 

During our Phase I NIAC research effort we have investigated the possibility of perform

ing the intensity correlation “ghost imaging” of dark objects in space illuminated by thermal 

light sources (stars) in the background. Our approach hinges on replacing the beam splitter, 

indispensable for thermal light ghost imaging but infeasible for space applications, with the 

ΔΡ (Μm) ΔΡ (Μm)

ΔL = 6 mm

ΔL = 3 mm

ΔL = 0



35 

object itself. The object size, shape and position are predicted to imprint themselves on the 

intensity correlation properties of the transmitted light, and could be subsequently extracted 

from the correlation measurements. To investigate this concept we limited our discussion to 

fully analytical model relying on a two-dimensional source and an object with Gaussian or 

uniform (disk-like) distribution of luminosity or absorption, in the paraxial approximation. 

We demonstrated the variation of the far-field speckle size due to the presence of the ob

ject. We have shown that the speckle size variation is a non-trivial function of the object’s 

properties and position. In some cases it allows us to obtain the information not available 

from a direct intensity-based observation. As an example of such a measurement we have 

demonstrated how the orbit plane orientation of a transient object can be determined from 

the intensity-correlation measurements. This understanding has encouraged us to apply our 

analytical model to a realistic space object imaging scenario, such as observed in the Ke

pler mission. Prediction for the flux variation following from our model is very close to the 

actual observation. The model also predicted a similar (about 10−4 ) fractional variation of 

the speckle size. 

We have carried out a preliminary SNR analysis for a correlation measurement, comparing 

the SNR expected in such a measurement to the one observed in a direct flux measurement. 

Our analysis has shown that, for parameters typical of the Kepler mission, the correlation 

measurement SNR would be significantly worse than the intensity measurement SNR. The 

situation, however, is expected to improve for narrow-band imaging, e.g. imaging based on 

a selected spectral line. 

To summarize the Phase I results in the context of the key questions posed in the begin

ning of this chapter, we would like to point out the following. 

1. The proposed approach is scientifically sound and conceptually feasible. 

2. The proposed approach can be used in conjunction with the conventional observations, 

providing access to the complementary data, such as e.g. an orbital plane. 

3. Either entirely ground-based, or ground/space based mission architectures can be en

visioned. We believe that the ground-based mission concept more fully takes the 

advantage of the intensity interferometry approach being immune to atmospheric dis

tortions. 



Ghost Imaging concept 
( 1 9 9 5 - 2 0 1 0 ) 

Quantum and classical light field 
correlations opened new dimension 
in optical imaging, offering the novel 
possibilities for background 
suppression, imaging of difficult to 
access objects and relaxed 
requirements on imaging optics. 

Can Gl be used for practical 
purposes? 

NIAC Phase I 
(2011-2012) 

• Formulated the principle, 
• identified the main obstacles, 
• proposed asolution, 
• carried out extensive analytical and 
numerical modeling which has 
proved the validity of our approach. 

Therefore, the answer to the 
question about practical utility is, 

yes! 

NIAC Phase II 
( 2 0 1 2 - 2 0 1 4 ) 

We will: 
• Define specific astronomical 
objects that can be imaged using 
the novel approach, 
• Determine the expected benefits, 
requirements and limitations, 
•Find the most advantageous Gl 
architectures and measurement 

techniques in each case.

Mission 
(b y  2 0 2 4 ? ) 

With a list of astronomical objects 
complete with the expected science 

return, cost benefits and specific 
technical requirements we can 

develop a game-changing technology 
specific to a well defined 

mission concept! 
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Based on these conclusions we decided that further research in this direction would be
 

justified. The programatic relations between the Phase I and Phase II NAIC research and
 

potential future missions as it was perceived in the end of Phase I is shown in Fig. 18. We

had submitted the Phase II proposal, which was awarded.

FIG. 18: Our vision of the relations between the underlying Ghost Imaging concept, the results of 

Phase I research, the Phase II plans, and the future NASA missions. 
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III. PHASE II GOALS AND ACCOMPLISHMENTS
 

The main objective of the Phase II research is to advance the intensity interferometric 

imaging of non-radiating objects towards the level of a viable technology that is ready for 

mission analysis and design. It should be emphasized that we are not suggesting to replace 

conventional observation techniques with this technique. Rather, intensity interferometry is 

envisioned to complement direct observations in such a way that the same detected signal can 

be utilized for two different processing scenarios: conventional and intensity-interferometric 

imaging. 

Successful completion of the Phase II research would significantly upgrade the conven

tional optical observation and detection techniques. While the maturity period of the pro

posed technology is estimated to be of the order of a decade, and the benefiting missions are 

not yet proposed, much can be learned from reviewing the on-going or near-future missions 

that could have benefited from this technology. These include the aforementioned Kepler 

and similar planetary detection missions; Hubble space telescope, aimed to study gravita

tional lenses among other space objects, as well as other space and ground-based telescopes 

included into SOFIA program; GALEX and other similar missions. We would not anticipate 

any conceptual change in an upgraded mission’s architecture. Instead, by adding a second 

observer and implementing a correlation measurement protocol in addition to the standard 

intensity (photon flux) measurement, we expect to significantly increase the science data 

return from these missions. Therefore we plan to significantly enhance the future missions 

scientific return with only an incremental increase of their cost. The additional data will be 

complementary to the intensity measurement data in that it may provide more information 

about the object’s scattering, absorptive and refractive properties as well as the geometric 

relations between the object and source sizes and object-source, object-detectors distances. 

To facilitate the progress of our research in this direction, the following technical tasks 

list was suggested for the Phase II: 

1. Develop advanced numerical models better approximating the real space objects: 

opaque disks, randomly scattering objects, phase objects mimicking gravitational 

lenses. 

2. Investigate the potential benefits of using other types of observables (higher-order 



38 

correlation functions, intensity difference variance). 

3. Carry out a lab demonstration of intensity-correlation imaging of dark objects. 

4. Compile a list of astronomical objects that potentially could be observed by intensity-

correlation imaging. Supplement this list with observation requirements and con

straints specific for each object. 

5. Carry out the data rate, SNR, resolution (if applicable), contrast, observation baseline 

and other fundamental parameters estimates for the selected objects. Verify that 

application of our approach is indeed practical and beneficial. 

The majority of these tasks has been accomplished as reported here. Others, e.g. Tasks 

1 and 2, have lead to a new research direction which was deemed more important and 

potentially more rewarding than the originally planed. As a result, during the Phase II the 

accent has shifted from detection of dark celestial objects and their general characterization 

towards ground-based, high-resolution intensity interferometric imaging. By imaging in this 

context we understand mapping the column density (in the line-of-sight direction) of the 

optical absorption for the amplitude objects, or of the phase gradient for the phase objects. 

This change of the research focus was brought about by an unexpected realization that the 

object’s shape is encoded in the intensity correlation function, gained during developing of an 

advanced theoretical model. We then leveraged the knowledge available from “conventional” 

intensity interferometry to learn how these images can be extracted. The potential benefits 

of this unforeseen capability were thought to be greater than of the original plan, so the new 

path was followed. 

A. Advanced theoretical analysis 

In this analysis we will depart from the Gaussian or disk models for the source and the 

object, and consider more general distributions of their luminosity and opacity, respectively. 

To do this we return to our model geometry shown in Fig. 10. We continue using paraxial 

approximation with the propagation direction denoted as z, and assuming that the source 

and the object are two-dimensional. We also assume that the detectors are coplanar: L1 = 

L2 ≡ L. A departure from the latter assumption has been discussed earlier and concluded 



〈 E ∗ (ρ⃗, t1)E(ρ⃗′ , t2) 〉 = I 2 ⃗
s(ρ⃗)λ Γ(Δt)δ(ρ′ − ρ⃗) , 
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disadvantageous. Let a spatially-incoherent extended source be located at the z = 0 plane. 

For the further analysis we will assume a quasimonochromatic thermal light source with 

the central wavelength λ. In practice, this implies that narrow bandpass filters have to be 

used. We denote the scalar positive-frequency component of the source field as E(ρ⃗, t) e−iωt , 

where ω  2πc/λ  ≡ is the central frequency, and c is the speed of light in vacuum. The field 

amplitude is normalized to the square-root of the photon flux. 

For spatially-incoherent thermal radiation, E(ρ⃗, t) is a Gaussian random function with 

zero mean value but a nonzero phase-insensitive correlation function given by Eq. (11). A 

more complete expression for this function is given by [54, 55]: 

(32) 

where Δt = t2 − t1. In Eq. (32) ρ⃗ and ρ⃗′ are two transverse coordinates in the z = 0 

plane, Is(ρ⃗) is the photon flux density in photons per meter-square per second, and δ(ρ⃗) is a 

two-dimensional Dirac delta function. It arises from a delta-function approximation of the 

spatially-incoherent field’s transverse correlation, which is appreciably non-zero only when 

| ρ⃗′ − ρ⃗ | is of the order of a wavelength. We have assumed in Eq. (32) that the correlation 

function is separable into the product of the spatial and temporal parts, which is generally 

true for quasimonochromatic thermal light. 

Suppose that a dark object with a finite transverse extent is located at z = Ls plane, a 

distance Ls away from the source. The object modifies the incident field by its transmission 

function T (ρ⃗o) which generally may be complex, i.e. may affect both phase and amplitude 

of the incident light. Then, the field emerging from the object plane is given by 

∫ik ∫e Ls 2|ρ⃗o−ρ⃗| 

Eo(ρ⃗o, t) = T (ρ⃗o) d2 ρE(ρ⃗, τ )e ik 2L 
s s , 

iλLs 

(33) 

where τs = t − Ls/c and the integration is performed over the source plane. Likewise, the 

field in the detection plane z = Ls + L is given by 

∫ik ∫e L 2|ρ⃗ −ρ⃗| 

Ed(ρ⃗d, t) = d2 ρE (⃗ 
d 
2 o ρ, τ)e ik L , 

iλL 
(34) 

where τ = t − L/c, the integration is performed over the object plane, and d = 1, 2 represents 

a detector. 

As before, let the detections be performed by two pinhole photo detectors that have 

equal sensitive areas Ad and quantum efficiencies η and are located at ρ⃗1 and ρ⃗2 of the 



1 ⃗ 
K (ρ⃗;L) ≡ ⃗

O
L2 

∫

d2ρ′ Is(ρ⃗′)
−ikρ⃗·ρ⃗′/L.

40 

z = L + Ls plane. We also assume that the detectors are small enough to neglect the 

field variation across Ad. The mean photocurrents generated by these detectors in response 

to the incident fields Ed(ρ⃗, t) are given by Eq. (8). The correlation between the intensity 

fluctuations observed by these two detectors located at ρ⃗1 and ρ⃗2 is given by Eq. (9), and 

the correlation observable by Eq. (10). 

Deriving (10) we took advantage of the Gaussian moment factoring for the fourth-order 

moment of the detected fields [54], combined with the assumption that hm(t) blocks DC. 

Thus, the correlation signature of interest depends on the phase-insensitive correlation func

tion of the detected fields. 

Immediately after the object the coherence has a form 

〈Eo
∗(ρ⃗1)Eo(ρ⃗2)〉 = T ∗(ρ⃗1)T (ρ⃗2)e

ik
ρ⃗ ρ 

 
s ·⃗ d 
L s KO(ρ⃗d;Ls), (35) 

where ρ⃗s ≡ (ρ⃗1 + ρ⃗2)/2, ρ⃗d ≡ ρ⃗2 − ρ⃗1, and 

(36) 

To propagate coherence (35) further in the analytical form we need to make the approxi

mations we have avoided in the earlier example of the Gaussian source and object. We note 

that the Fourier transform relation (36) between Is and KO implies that the latter’s width 

is of the order of λLs/Ds, where the source size Ds is defined as the diameter over which 

the photon-flux density is appreciably greater than zero. This width corresponds to a size 

of the speckle cast by the source onto the object. In many important cases this speckle size 

is much smaller than the object features we wish to resolve. Then we can write 

T ∗ (ρ⃗1)T (ρ⃗2) ≈ | T (ρ⃗s − ρ⃗o) |2 = 1 − A(ρ⃗s − ρ⃗o), (37) 

where we have introduced a displacement ρ⃗o of the object’s center from the line of sight and 

converted the field transmission T to intensity absorption A. Note that in this approximation 

the phase part of T drops out, so a purely phase object would not alter the coherence 

propagation within this model. 

Approximation (37) notably simplifies our analysis for propagating the coherence to the 

detector plane. We derive 

ρ⃗ ⃗ 

 
s ·ρ 

 
d 〈Ed

∗(ρ⃗1)Ed(ρ⃗2)〉 = eikL+LsKO(ρ⃗d;L+ Ls)−KD(ρ⃗s, ρ⃗d) (38) 



∫

∫

( ) 
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where the first term represents the source’s correlation signature in the absence of any object 

(i.e., free-space propagation of light over the distance L+ Ls), and 

∫
ρ⃗s ·ρ⃗ ρ⃗ ·ρ⃗ 

∫

eik 
d ik d o ∫ 

⃗ 

≡
L 

−
L 

⃗ K (ρ⃗ , ρ⃗ ) d2 D s d ξA(ξ)e −
ρ⃗ ·ξd ⃗ ⃗ ⃗ik ⃗ik 2
L d ζKO(ζ;Ls)e

λ2L2 

∫

(ρ⃗o+ξ⃗)·ζ⃗e−ik ρ⃗s
L
·ζ⃗L+Ls

LLs (39) 

is modification due to the object. Using the convolution theorem we simplify expression to 

∫

( ρ⃗s−ρ⃗o ) ·ρ⃗ 
⃗ 

ρ⃗ ·⃗ 

⃗ 
ξ 

KD(ρ⃗s, ρ⃗ ) L−2 ik d 

d = e L d2 ξIs β(ρ⃗ ) ik 
o + ξ  (β  1)ρ⃗ − d 

s A(ξ)e L , − − (40) 

where β ≡ 1 + Ls/L. 

Without a considerable loss of generality, we can now assume that the detectors are 

positioned symmetrically about the line of sight, so that ρ⃗s = 0. Then, substituting Eq. (40) 

into Eq. (38), and then substituting the result into Eq. (10), we arrive at 

I
∫( ) ∫

I 

( ) C I 

2 
q⃗d  I 

C(q⃗ I I

d) ≈ ⃗
I

T 2 2  

( )

s 
L

− β d ξIs β(ρ⃗o + ξ) 
I4β4 β 

A(ξ⃗)e−iq⃗d·ξ⃗ , (41) 

∫ 

T (q⃗) ≡ s d2ρ Is(ρ⃗)e
−iq⃗·ρ⃗, and q⃗d ≡ kρ⃗d/L.where 

To continue the analytical evaluation we have to make our second important approxima

tion, namely 
Do 

β ≪ 1 . 
Ds 

(42) 

In (42) Do is the diameter over which the centered object’s absorption is appreciable. Physi

cally, this means that the angular size of the object (as seen by the observer) is much smaller 

than the angular size of the source. Let us point out that ρoβ/Ds ≪ 1 is not required, so 

the approximation (42) is applicable even to small objects that are far away from the line of 

sight and do not obscure the source. The signal from such objects is of course vanishingly 

small. 

Approximation (42) implies that in the regions where 
( ) 

⃗A(ξ) is non-vanishing, 

⃗Is β(ρ⃗o + ξ) is nearly constant and therefore can be taken out from the integral: 

I
( )

I2 

q
C I q⃗ I

C(⃗d) I I≈ 
4 4 IL β 

T d ⃗ 
s 

Iβ 
− β2Is (βρ⃗o)A(q⃗d)e−iq⃗d·ρ⃗o , (43) 

where 

A (q⃗) ≡ 
∫

d2ρA(ρ⃗)e−iq⃗·ρ⃗. (44) 

In Eq. (43) the first term inside the absolute-square is due to the source alone, while the 

second term is the object-induced modification to the correlation function. It is interesting to 
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notice that in the absence of an object, A(ρ⃗) ≡ 0, the result (43) quite expectedly expresses 

the van CittertZernike theorem. Remarkably, in the absence of the source term, Eq. (43) is 

reduced to 

C 
C Is(βρ⃗o) 

(q⃗ 2 
d) ≈ |A (q⃗d) | , 

L4β2 
(45) 

which again expresses the van CittertZernike theorem, but now for the object. Since the 

object is non-radiating, one may interpret the result (45) as the “speckles of darkness” cast 

by the object. This phenomenon can be viewed as a realization of the Babinet’s principle 

in intensity interferometry. Of course, it is not possible to arrive to the limit (45) by simply 

turning off the source, Is(ρ⃗) ≡ 0, because it would turn to zero the entire expression. 

However this limit can be achieved when the source speckle is much smaller than the object 

speckle, or equivalently, when the source angular size far exceeds that of the object. This 

limit is therefore consistent with approximation (42). If it is satisfied, the source part of the 

correlation function may still be large, but will be localized much tighter than the object 

part, which may have a relatively small magnitude. 

To quantify the relative magnitude of the object signature we note that Ts(0)/Is(0) and 
A (0) are the source and the object effective areas, respectively (or the actual areas, if 

Is = const for the entire source and A = 1 for the entire object). Therefore it is easy 

to see that the ratio β2 A (0)Is(0)/ Ts(0) ≈ (βDo/Ds)
2 ≪ 1 is the fraction of the optical 

power radiated by the source that is absorbed by the object. This proves an important 

statement made earlier, that the object signature in the correlation measurement has the 

same magnitude as in the direct intensity measurement. 

Now we can also understand the earlier discussed stereoscopic aspect of the intensity 

interferometric imaging, which has allowed us to distinguish the orbits orientations for tran

sients, at a more fundamental level. At the heart of this capability is the phase between 

the source and object terms of (43) which can mediate their constructive or destructive 

interference. This phase depends on the object displacement ρ⃗o projected onto the detec

tors’ baseline ρ⃗d, and has no counterpart in conventional observations based on intensity 

measurements. However, considering the synthetic aperture analogy, we notice that this 

phase variation corresponds to the object passing through Fresnel zones of a fictitious tele

scope with aperture ρd. It also should be noted that this exponential arises from a Fourier 

transform of a shifted object A(ρ⃗ + ρ⃗o) and can be absorbed into A (q⃗d) without a loss of 

generality.
 



( ) 

γ ⎝

(

2P
)2

⎠

ΔC(x, θ) ≈ −2 C circ(βxo)J1(πx/β)J1(πγx) cos πxxO cos(θ) 
β πxL2 
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Below we will investigate two analytically tractable examples of objects crossing the line 

of sight of a thermal light source, in close simulation of an exoplanet observation scenario. 

For a disc-shaped source and object, 

⎜ 

  

⎨Is(0) for ρ⃗  rs 
Is(ρ⃗) = Is(0)circ( 

| | ≤ 
| ρ⃗ | /rs) ≡ 

  

⎝0 
(46) 

otherwise, 

and	 
⎜ 

  

 

⎨1 for | ρ⃗ | ≤ ro 
A(ρ⃗) = 

 

⎝0 
(47) 

otherwise, 

where ro ≪ rs. Substituting these into Eq. (43), we can write 

I	 I2 
4 P 2 

I J1(πx/β)	 J1(πγx) I 

C(x, θ) =	 
C 

I	

I

− β2 γ2 circ(βx ) e−iπxxo cos(θ) 
I

o 
IL4β4 πx/β	 πγx 

, (48) 

where x ≡ 2 | ρ⃗d | rs/(λL) is the normalized displacement of the detectors, xo ≡ | ρ⃗o | /rs is the 
fractional displacement of the object relative to the source radius, θ ≡ ρ⃗d − ρ⃗O   is the angle 

between the vectors ρ⃗d and ρ⃗O, P ≡ Is(0)πr2 s is the photon flux of the source, and γ ≡ ro/rs 

is the object-to-source size ratio. 

Let us consider the image signature from a differential observable, which is given by a 

difference of the measurement with no object, and one with an object present, while nothing 

else changes. We will assume that the object is much smaller than the source, γ2 ≪ 1. Then 

a linearized differential observable is given by the cross-term of Eq. (48) as 

. (49) 

To evaluate the magnitude of the object’s signature we need to specify the parameters 

of Eq. (49). Typical values of these parameters are given in Table III for two scenarios: a 

table-top laboratory demonstration, and an Earth-size planet partially occultating a Sun-

size source observed from a distance equivalent to that of Kepler 20f. In Fig. 19 we show 

the results for C(x, θ) and ΔC(x, θ) with a fixed object displacement xo, for both the lab 

and the stellar examples. 

From Fig. 19 we see that the object signature is mainly manifested by the variation of 

the correlation function width. We plot this width in Fig. 20 as a function of displacement 

xo within the range of approximation (42) validity. This plot corresponds to an observation 
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Variable λ [m] Ls [m] L [m] rs [m] rO [m] β-1 γ λL/(2rs) [m] 

Lab 10−6 0.5 0.5 0.01 0.001 1 0.1 2.5 · 10−5 

Kepler 10−6 1.496 · 1011 8.948 · 1018 6.955 · 108 6.371 · 106 1.67 · 10−8 9.16 · 10−3 6.433 · 103 

TABLE III: Parameters for a typical lab demo and a stellar imaging example similar to Kepler 20f. 
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FIG. 19: The normalized correlation measurement observable C(x, θ) (left column) and its object-

induced variation ΔC(x, θ) (right column) for the lab demo case (upper row) and stellar imaging 

case (lower row) are plotted as a function of x for θ/π = 0, (the inner curve), 0.1, 0.2, 0.3, 0.4 and 

0.5 (the outer curve). The object displacement from the line of sight xo is fixed as shown. 

of the object’s transient across the source, crossing the line of sight when xo = 0. While 

the intensity measurement at x = 0 is obviously independent of the transient direction, 

the θ-dependence of the correlation measurement in Fig. 20 is evident. Thus in the stellar 

imaging example, one would be able to learn about the planetary ecliptic plane orientation 
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from this measurement. 
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FIG. 20: Widths of the correlation functions from Fig. 19 normalized to the speckle width 

λL/(2rs) as a function of the object’s transient parameter xo for θ/π = 0, (strongest dependence), 

0.1, 0.2, 0.3, 0.4 and 0.5 (constant). 

Returning to our initial model of Gaussian profiles of the source and object, we have 

Ts(ρ⃗) = e−2|ρ⃗|2/rs2 , A(ρ⃗) = e−2|ρ⃗|2/r2O , (50) 

where again rO ≪ rs. Substituting these into Eq. (43) and carrying out similar approxima

tions, we obtain 
I

2 2 
I

C 2 
P 2 
I x 2 

G −π 2 2 π 2 I 

C = I

I

e β 2 − β2 γ2 e −2β xoe − γ x2
8 − xxo cos(θ)8 e iπ 

I

L4β4 I 

, (51) 

and 
π 

C 
C P 2 2 2 x 2 

2 G 2 ⎝ ⎠

Δ ≈ − γ2 2 π 2 
2 e −2β xo e

− 2 γ x8β e − 8 cos πxxO cos(θ) 
L4β2 

( )

(52) 
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where PG = Is(0)πr
2 
s/2, and all other variables have been defined earlier. For the stellar 

interferometry case with β ≈ 1, we obtain 

and
 

IC 2 2 2 IP 2 

I 

2 G I ≈ e −
π 

C x − γ2 e −π γ2 x −iπx I−2x2 2 xo cos(θ)8 o e 8 e 
4 

I 

L 
, (53) 

( ) 
Δ

C P 2 2 
G 2 −2x2 −π 

γ (1+γ2 
C ≈ −2 e o e )x2 ⎝ ⎠

8 cos πxxo cos(θ) 
L4 

(54) 

In Figs. 21 and 22 we have plotted the same results as before, but now for the Gaussian 

case. 
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FIG. 21: Gaussian case equivalent of Fig. 19. 

Let us note that despite some quantitative difference between the disk and Gaussian 

models considered above, they both capture all essential aspects of the object signature. 

Therefore we can use either the disk model for more realistic approximation of stellar or 

planetary objects, or Gaussian model for more transparent analytical treatment. 



   

 i(ρ⃗, t) ≡ ηAd dτ | Ed(ρ⃗, τ) |2  hlp(t − τ)
∫

〈 〉 〈 〉
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FIG. 22: Gaussian case equivalent of Fig. 20. 

B. On observability of a shadow gradient 

It should be mentioned that while the object shadow observed at any single point does 

not provide information about the transient direction, the shadow gradient may. We need 

to investigate this possibility in order to determine if and when it can compete with the 

stereoscopic feature of the intensity interferometry approach. To compare our intensity 

correlation results with direct intensity gradient measurements, let us evaluate 

(55) , 

where hlp is now the low-pass filter response function, allowing for the dc intensity mea

surement. The field absolute square in the integrand is easily obtained by evaluating the 



〈 〉

〈 〉
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right-hand side of Eq. (38), with the substitutions ρ⃗s = ρ⃗ and ρ⃗d = 0, which yields 

〈|Ed(ρ⃗, τ)|2〉 = KO(0;L+ Ls)−KD(ρ⃗s, 0) =
L2

Ps

β2

⎝ ⎠ ⎦ 

〈 〉 1− β2In
(

βρ⃗o − (β − 1)ρ⃗
)

A(0)
[

. (56)

Here 
∫ 

Ps ≡ d2 ρIs(ρ⃗), and In(ρ⃗) ≡ Is(ρ⃗)/Is(0) is the normalized source intensity. It is 

worthwhile to recall that the mean image signature derived here is based on the same 

assumptions and approximations as the correlation observable derived above. 

Substituting Eq. (56) into Eq. (55) we assume that 
∫ 

dthlp(t) = 1 (i.e., unity dc gain) 

and drop the time variable in the stationary photo current. We arrive at 

〈i(ρ⃗)〉 = η

L

A
2β

P
2

s ⎝ ⎠

〈 〉 1− β2In βρ⃗o − (β − 1)ρ⃗ A(0)
[ ( ) ]

(57)

as the direct observation signature. Here, the first term is the uniform intensity illumination 

due to the unobscured source, and the second term is the variation due to the object. The 

shadow gradient, which could potentially be used for determining the transient direction, 

can be defined as 

( )1

〈i(ρ⃗)〉
∂〈i(ρ⃗)〉〈 〉 ⎝ ⎠

≈ β2 (β − 1)I 
∂ρ ⃗ n 

′ βρ⃗o − (β − 1)ρ⃗ A (0) . (58) 

For the order-of-magnitude estimate, we will assume Gaussian distribution for both the 

source luminosity and the object opacity (50). Then A (0) = πr2 o/2, and the maximum value 

of In 
′ (ρm) = 2/rs is achieved at ρm = rs/2. 

To make a fair comparison with the intensity interferometry measurement, we need to 

multiply the gradient (58) by the measurement baseline, which is of the order of a speckle 

size 2(L+ Ls)/(krs). We arrive at 

∆〈 〉
〈i〉
i ≈

π

λ

R

Ls

s
2

〈 〉 
β3 γ2  . (59) 

We use expression (59) to evaluate the relative intensity variation across the speckle 

width due to the shadow gradient, and compare it with other object’s signatures such as 

the relative intensity variation due to the object’s presence and the normalized variation 

of the speckle width, see Table IV. As expected, the magnitudes of the intensity variation 

signature and of the correlation measurement signature (the first two lines of Table IV) are 

very close. Intensity gradient, on the other hand, provides a far inferior signature (the third 

line of Table IV), which is not useful e.g. for determining the transient plane. This is the 

case because the sharp shadow condition [56] is opposite to assumption (42). Therefore 

we conclude, that the correlation measurement indeed provides the information unavailable 

from the intensity measurements. 
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Observable (normalized) Lab demo Stellar imaging 

Intensity variation 9 × 10−2 2 × 10−4 

Speckle width variation 7 × 10−2 1.7 × 10−4 

Intensity variation per speckle 1.3 × 10−4 1.0 × 10−17 

TABLE IV: Magnitude of the object’s signature in three types of observables and the parameter 

sets from Table III. 

C. Signal-to-noise ratio 

Evaluating the feasibility and efficiency of correlation-based observations in Astronomy 

requires a careful study of the signal-to-noise ratio (SNR), which strongly depends on the 

object of interest and the imaging geometry. The conventional approach to the intensity 

interferometry SNR [41, 57] is based on the analysis of fluctuation of the photo currents 

i1(t) and i2(t) produced by the detectors in response to the incident optical field. This 

analysis can be easily generalized for the photon-counting detectors. The mean values of 

these photocurrents are given in Eq. (8). The SNR of the intensity correlation observable 

C(ρ⃗1, ρ⃗2) given by Eq. (9) is defined as 

SNR ≡ 
〈 C 〉

√

Var(C) 
. (60) 
 

This SNR has been evaluated in [57]. While its general formula is rather cumbersome, 

two important limits can be considered for the thermal light with the single-mode Glauber 

correlation function g(2) (0) = 2. 

In the limit of a qusi-monochromatic source or very high-speed photodetectors and coin

cidence electronics, Tc ≫ TB. For such a “narrowband” case, [57] predicts 

( 

√ 
TTB N 

SNR nb) = √

Tc 1 + 2N(TB/Tc) + 5N2(TB/Tc)2 
, (61) 

∫ T 
N ≡ ηAd(Tc/T ) dt 

0 
〈| Ed(t) |2 〉 (for d = 1, 2) 〈 〉where is the mean photoelectron number 

per longitudinal mode (or equivalently, per coherence time) of the fields incident on the 

detectors, and T is the total time of measurement. The terms in the denominator of (61) 

have intuitive interpretations. The first term, which is independent of N , is due to the 

shot noise of the two detectors. The third term, with the N2 dependence, is excess noise 

resulting from the statistical fluctuations of the incident power on the detectors. This term 
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√ 

(nb) T 
SNRN = ≫1 5TB 

√ 

√ 

√ 

(bb) TN (bb) T 
SNRN 1 = and SNRN = N≫ 2T ≪1 

B(1 +NTc/TB)	 TB 
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is sometimes referred to as relative intensity noise. The middle term, with the linear N 

dependence, is a result of the beating between the intensity fluctuations and shot noise. 

In the shot-noise-limited regime N ≪ 1 holds, i.e., the mean number of photoelectrons 

per mode is very small, and the SNR can be approximated as 

( 

√
nb) TTB 

SNRN≪1 = N 
Tc 

. (62) 

In the opposite regime with many photoelectrons per mode, N ≫ 1, the SNR saturates to 

its maximum value 

.	 (63) 

In the opposite “broadband” limit of slow electronics or a broad-band source, when 

Tc ≪ TB, [57] predicts 

T 
SNR(bb) N 

=	 √ 

TB 1 + 2N + 2N2Tc/TB 

(64) 

which has the following limits: 

. (65) 

The behavior of the N ≫ 1 limit in (65) depends on the product of a large number N 

by a small number Tc/TB. Depending on the relation between these numbers, the SNR may 

continue to increase with the increasing signal, or may reach saturation as in (63). The 

N ≪ 1 limit of (65) is often encountered stellar intensity interferometry. This result is 

usually written as 
(bb) 

√ 

SNRN≪1 = n(λ)Adη TΩB/2,	 (66) 

〈 〉
∫ − T 

n(λ) = T 1 dt 〈| Ed(λ, t) |2 0 
〉where the spectral density  is the mean number of thermal light 

photons per unit area, per unit frequency (around the central wavelength λ) and per unit 

time [59], and the electronic bandwidth ΩB = 2/TB. Equivalently, (66) can be written in 

terms of the photon flux F defined as the number of photons per unit area and per unit 

time within an optical bandwidth Δλ around the central wavelength λ: 

( λ2 
bb) F √ 

SNRN≪1 = Adη TΩB/2 
2πcΔλ 

. (67) 

For direct intensity measurements, the signal is proportional to the electric charge ac

quired during an integration time T : 
∫

〈 〉
T 

Q = dt 〈 i(t) 
0 

〉 ,	 (68) 



√

T N 
SNRQ = , 

Tc 1 +N 
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where the mean photocurrent is given by Eq. (55). In this case the SNR is defined as 

〈 〉
〈 〈 〉 〉

S
〈 Q 

NRQ 
〉≡ √ 

〈 (Q − 〈 Q 〉 )2 〉 
, (69) 

which leads to 

(70) 

where all parameters are as defined before. 

To separate the SNR dependence on the integration time T , which is common to both 

the correlation and direct intensity measurements, it is convenient to normalize the SNR 
√ 

T/Tcto . Fig. 23 shows thus normalized SNR of a direct intensity measurement (70) and 

the asymptotic approximations (62) and (63) of a correlation measurement, as functions 

of the mean photoelectron number per mode. As seen from this figure, the correlation 

measurement SNR can approach the direct intensity measurement SNR for the sources with 

high spectral brightness N ≈ 1. 
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FIG. 23: The normalized intensity SNR (red) and correlation measurement SNR for TB/Tc = 0.1 

(black), 0.5 (green), and 1 (blue). 

The shot-noise limited correlation-based measurements typically have worse SNR than 

direct intensity measurements due to the stronger dependence of the former on the incident 

average photon number N/Tc. However in the excess-noise limited regime, the correlation 

measurements’ SNR improves due to the fact that such measurements can distinguish source 

fluctuations from those caused by an object better than the direct-intensity measurement. 

Note, however, that the plots in Fig. 23 compare the SNRs for equal numbers of pho

toelectrons per mode relying on the assumption TB < Tc. This assumption implies strong 
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spectral filtering which reduces the total photon flux available for the correlation measure

ment. The direct intensity measurement, on the other hand, can integrate over a very wide 

optical bandwidth without penalty. We have already discussed this aspect of correlation 

imaging technique considering the example of Solar spectrum, see Fig. 11 and related dis

cussion. Again, let us keep in mind that the spectral filtering penalty may be reduced for 

intrinsically narrow-band imaging, e.g. imaging using a specific bright or dark spectral line. 

A narrow spectral feature will lead to the higher spectral brightness and give the correlation 

imaging advantage according to Fig. 23. 

The SNR analysis presented above is typically performed for the “conventional” intensity 

interferometry. Here we are interested not in the full intensity correlation signal but rather 

in the signature of a dark object present in this signal. This signature may be weak relative 

to the baseline signature from the source alone and often can be treated as a perturbation. 

The easiest way to detect such a perturbation is by a differential measurement, that is, 

by subtracting the signal of the source without the object from the source with the object 

present. Many observation scenario (such as e.g. planets transients) naturally support 

such a measurement technique. However, while a differential measurement can eliminate 

the source’s baseline and improve the visibility of the object’s perturbation, it will not 

eliminate the noise contributed by the source. Therefore we need to derive the SNR of the 

differential measurement in order to develop a better appreciation for the sensitivity of this 

measurement. 

The differential measurement observable can be expressed as ΔC(ρ⃗1, ρ⃗2) = C1(ρ⃗1, ρ⃗2)  

C0(ρ⃗1, ρ⃗2), 

− 

where C1 is the Eq. (9) measurement with the object of interest present, and 

C0 is the same measurement without the object. As typically these two measurements are 

separated by a duration significantly longer than the coherence time of the photocurrent 

fluctuations, the two measurements can be assumed statistically uncorrelated. Thus, the 

variance of the measurement is, 

Var(C1 − C0) = Var(C1) + Var(C0) ≈ 2Var(C0) (71) 

where the last approximation arises from our earlier observation that the object’s perturba

tion signature is significantly weaker than that of the source. Consequently, in this regime 

it can be assumed that the variance of either measurement will be dominated by the source

induced shot- and excess-noise fluctuations.
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The SNR can, therefore, be expressed as 

S 
| ΔC 

NR 
|≈ √ 

2Var(C0) 
(72) 

which is different from Eq. (60). We have derived the numerator of expression (72) for the 

disk and Gaussian source and object profiles (see Eqs. (49) and (52), respectively), so here 

we focus on the denominator. Using the photocurrent moments discussed above (8), we can 

express the variance as 

∫ ∫ ∫ ∫

Var(C0) = dτ1 dτ2 dτ1 
′ dτ2 

′ Kh(τ1, τ2)Kh(τ1 
′ , τ 2 

′)Ki(τ1, τ2, τ 1 
′ , τ 2 

′ ) , (73) 

where 

, (74) 

and 
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2(τ2 
′ ) | 〉 

(75) 

. 

The terms in Eq. (75) have intuitive physical meaning: the first term is the covariance of 

common-mode fluctuations in the shot noise (i.e., the conditional variance) from the two 

detectors, the next two terms are the covariances between the shot noise fluctuations in one 

detector and the signal fluctuations in the other detector, and the last term is the covariance 

between the signal fluctuations (i.e., the conditional mean-square) from the two detectors. 

In order to evaluate Eq. (73), we first perform Gaussian moment factoring [54] on each 

term in Eq. (75). This yields expressions for every term in Eq. (75) in terms of KD(ρ⃗1, ρ⃗2), 

which is given in Eq. (40). Next, we assume that the ac-coupled photodetector impulse 

responses h(t) are Gaussian-shaped with bandwidth ΩB, namely, 

. (76) 

The second term here represents the dc notch with bandwidth ΩN . Henceforth, we assume 

that ΩB ≫ ΩN and ΩNTc ≪ 1, which allows us to effectively neglect the notch’s contribution 
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to any nonzero-frequency terms. Our final assumption in evaluating the Eq. (73) is that the 

integration time T is much longer than both the detector’s response time (TΩB ≫ 1) and 

the optical coherence time (T/T0 ≫ 1), such that we may approximate Eq. (74) as 
( )

K 1 
h(τ1, τ2) = T− rect 

| τ1 + τ2 | ←− 
[h ⋆ h ](τ2 − τ1) 

T 
, (77) 

←− 
h where ⋆ denotes convolution and denotes time reversal. 

Skipping the steps of evaluating each term in the variance expression, we write the final 

result for the SNR in a differential measurement: 

c 
SNR(diff) os(θd)α 

= √ 
σ2 + σ2 + σ2 
ss se ee 

. (78) 

Assuming symmetric detectors’ positions (ρ⃗s = 0), we can write 

θd = πxxo cos(θ), (79) 

and 
⎜ 

2J (πγx(n)   

⎨

) 
KD (ρ⃗ , c 

≡ s ρ⃗d) irc(βx ) 1 
O 

α = β2 γ2 πγx 

KO(0;L+ LS)   

⎝
 
− β2 x2 
e
 2 Oe
−π2 γ2 x2 /8 

(80) 

where the upper case correspond to the disk model and the lower case correspond to the 

Gaussian model. When γx ≪ 1, β ≈ 1, and βxO < 1 (as in most of the stellar imaging 

cases), both instances simplify to α ≈ γ2  . 

The three terms in the denominator of the SNR(diff) expression are given by 
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(82) 

where
 

is the equal-time correlation coefficient between the photocurrents registered at the two 

detectors, given in terms of KO which is defined in Eq. (36). 
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Just as before, it is useful to consider two limiting cases of the SNR(diff) expression: 

the case of broadband incident light (ΩBTc ≪ 1), and of narrowband light (ΩBTc ≫ 1), 

relative to the photodetectors bandwidth. Because naturally occurring light sources are 

typically broadband and are filtered optically at the measurement plane, the broadband 

limit will usually hold in practical applications. However, with the pseudothermal light 

sources commonly used in the laboratory settings, the narrowband limit can be applicable. 

In the broadband (ΩBTc ≪ 1) limit, the expression of Eq. (78) simplifies to
 

√ 

d b ) N TΩ 
4 2 

( iff− b ≈ √ √B
/2 cos(θd)α 

√
2πΓ 

SNR
1 + 2 πN + π(1 + Γ2)N2 

, (83) 

which has the following low and high signal limits: 

2 
( b λ F √ 

diff−b ) 
SNRN 1 = Adη TΩB/2 cos(θ 

√
4 

d)α 2πΓ2 
≪ 2πcΔλ 

(84) 

(c.f. Eq. (67)), and 

(diff−bb) ΓTΩB 
SNRN 1 = α cos(θd) √ ≫

2π(1 + Γ2) 
. (85) 

Figure 24(a) shows the transition of the normalized SNR from the photon-starved region to 

its maximum, as a function of N . 

In the narrowband (ΩBTc ≫ 1) limit, on the other hand, Eq. (78) yields 

(86) 

. 

In this case the photocurrent correlation time is approximately Tc, so the SNR is now 
√ 

T/Tc. For N
2 TcΩB ≪ 1proportional to , the signature is photon-starved and the SNR has 

a linear dependence on mean photon flux. As N increases to N ≫ 1, the SNR saturates at 

its maximum value, 

√

√

√

√ 

α cos(θd) 2Γ 2/π
(diff T−nb) 

SNRN 1 = √  ≫ Tc 1 + 2( 
√
2 + 1)Γ + (1 + 2 

√
2)Γ2 

. (87) 

Figure 24(b) illustrates the variation of the normalized SNR as a function of N in the 

narrowband case. 

In principle, we can chose the narrow band measurement strategy for an intrinsically 

broadband source by implementing spectral filtering at the detectors so that Ω ≪ ΩB. In 
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FIG. 24: (a) The normalized signal to noise ratio of the differential intensity covariance measure

ment is plotted as a function of N for the broadband case. In this case the normalized SNR is 

independent of the ΩBTc product. (b) The same is plotted for the narrowband case. In this case 

the normalized SNR in the N ≪ 1 regime has a dependence on the ΩBTc product such that a larger 

SNR is attained for larger product, but the maximum (attained when N > 1) is independent of 

this product. In both cases Γ = 1 is assumed. 

the beginning of this section we have already assumed following this approach. It is easy to 

see that such filtering would not change the spectral brightness of the source, and therefore 

will not change N . Comparing Eqs. (83) and (86) in the limit of N ≪ 1 we then find 

(bb) 
(nb) SNR 

SNR √ Stel 
Stel = 

2 
 . (88) 

This result indicates that for a uniformly broadband thermal light source the benefit of 

increasing the correlation function contrast by going into the single-mode detection regime 

via spectral filtering is negated by the consequent signal reduction. Similar conclusion was 

reached in [9] by different reasoning. 

Let us estimate the SNR for the two examples from Table III, assuming Γ = 1 and 

cos(θd) = 1. In the Lab demo case we assume that a laser-based pseudothermal light source 

is implemented and the narrowband limit is appropriate. With such a source the N ≫ 1 

regime can be easily achieved, so we can use the maximum SNR value (87). This yields 
√ √ 

SNRLab ≈ 1.28 β2 2 
LabγLab T/T 2 

c = 1.62 × 10− T/Tc. Thus, with a 1 MHz-wide laser we 

would need approximately 4 ms integration time to obtain a statistically significant signal 
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with SNRLab > 1. Remarkably, for a better measurement with this scenario one needs a 

broader-band laser (provided that it remains narrowband compared to the detectors). 

To evaluate the SNR in a stellar system measurement, let us return to Eq. (84) and 

express the photon flux F via the apparent magnitude Ma of the source using the standard 

expression 
Δ 

F [s −1 m −2 λ 
] = 1.51F0[Jy] 107−Ma/2.5 

λ 
 , (89) 

where the constant F0 depends on the spectral band [58]. We obtain 

(diff) λF √ 
SNR 107 Stel = 1.51 · −M 0 

√
4a/2.5 Adηγ

2 ΓT/TB cos(θd) 2π 
2πc 

, (90) 

where all parameters are measured in SI units. In the following we will assume Γ = 1, 

cos(θd) = 1 as we did for the Lab example above. It is then convenient to rewrite (90) in 

the form 
(diff)

√

SNR ≈ 1.27 · 10−8−Ma/2.5 
Stel Ad[m 2 ]λ[µm]ηγ2 F0 T/TB. (91) 

Returning to the Kepler-20f example, we notice that Kepler-20 is a magnitude 12.497 

star in the V+R spectral band [3], characterized by the central optical wavelength λ ≈ 500 

nm and F0 ≈ 3350 Jy. Let us assume that we have a unity-efficient (η = 1), ultrafast photo 

detectors with TB = 50 ps that are coupled to the same kind of telescopes as were actually 

used in the Kepler mission, with light collection area of 1.54 m2 . Then from (91) we find 

(diff) 
√

SNRStel ≈ 4.63 · 10−5 γ2 
Stel T [s]. (92) 

Substituting γStel = 9.16 · 10−3 form Table III, it is easy to find that in order to reach the 

SNR value of 10−4 , achieved in the direct intensity measurement [2], one would have to 

collect signal for some 6.6 · 108 seconds, or 21 years. 
The discouraging result for Kepler20f system’s SNR is largely due to a very low brightness 

of the host star and very small planet-to-star diameter ratio γ. We however can follow this 

approach to evaluate the systems with more favorable parameters. For this analysis we will 

assume the light collection area Ad = π(2m)2 ≈ 12.6m2 as for the CTA project’s SST1M 

telescope, the full detection efficiency η = 0.5, and the detectors/electronics resolution time 

TB = 1 ns. Then instead of (92) we obtain 

√

(dif) 
SNRStel ≈ 2.53 · 10−7−Ma/2.5 F0γ

2 λ[nm] T [s]. (93) 
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Let us allow some reasonable time for the measurement, e.g. T = 1 hour, and evaluate 

the resulting SNR for intensity-interferometric detection of brighter stars’ exoplanets listed 

in Table II. We skip the systems that lack the information necessary to carry out the 

evaluation. These results are shown in the last column of Table V. 

TABLE V: Parameters of some brightest stars that are known to have a planet, potentially suitable 

for intensity interferometry observations. 

Upsilon 
Andromedae 

Distance 
(pc) 

λpeak 
(nm) 

γ SNR per  1 
hour (10-4) Star Ma F0[Jy] 

13.5 4.09 474 4100 0.105 76 

82 G. Eridani 6.1 4.25 537 3680 0.0168 1.7 
HD 60532 25.4 4.46 475 4100 0.078 30 
61 Virginis 8.6 4.74 524 3700 0.0274 2.8 
47 Ursae Majoris 
Mu Arae 15.6 5.15 508 3930 0.0899 21 

14.1 5.10 492 4000 0.117 37 

HD 47536 123.3 5.26 662 3020 0.00902 0.19 
HD 142 25.8 5.70 469 4100 0.124 24 
Gliese 777 15.9 5.71 519 3850 0.0971 15 
HD 169830 36.5 5.91 462 4180 0.087 9.6 
HD 38529 39.2 5.94 509 3900 0.0912 11 
55 Cancri 12.3 5.95 555 3620 0.137 24 
HD 69830 12.6 5.95 538 3710 0.0272 0.93 
HR 8799 39.6 5.96 390 2670 0.09 0.53 
HD 217107 19.9 6.18 513 3850 0.105 11 
HD 11964 32.8 6.42 525 3770 0.0382 1.2 
24 Sextantis 77.6 6.44 568 3560 0.0258 0.54 
23 Librae 26.1 6.45 521 3850 0.094 7.1 
HD 1461 23.3 6.47 503 3900 0.0162 0.2 
14 Herculis 17.5 6.67 546 3650 0.239 37 
HD 40307 12.9 7.17 582 3400 0.0271 0.3 
HD 154857 64.1 7.25 532 3710 0.0571 1.2 
HD 10180 38.9 7.33 490 3970 0.0308 0.33 
HD 12661 35.0 7.44 505 3900 0.121 4.6 
HD 128311 16.6 7.51 584 3400 0.203 12 
HD 11506 51.8 7.54 478 4000 0.101 3.4 
83 Leonis 18.1 7.57 594 3400 0.0376 0.41 
HD 74156 64.4 7.61 480 4000 0.124 4.0 
HD 37124 33.7 7.68 517 3850 0.109 3.0 
HD 183263 55.2 7.86 492 4000 0.127 3.5 
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We see that only among the exoplanet systems there are many good candidates for 

intensity-interferometric observations with the SNR matching or exceeding that achieved 

in Kepler-20f observations. Of course, the required SNR level will depend on the specific 

measurement, which will be possible to obtain by scaling the results from Table V according 

to Eq. (93). 

To summarize this section, we admit that in general, the SNR of correlation measurements 

and especially of differential measurements detecting small dark objects is considerably worse 

than of direct intensity measurements. Obviously, in order to have a realistic assessment of 

the added value of correlation-based measurements for imaging space objects, one must take 

into account additional factors such as stray light, detector aging, natural variation of the 

source brightness and other practical concerns that are usually omitted in the SNR analyses 

published to date. The detectors’ dark noise, for example, may be particularly important in 

cases when the incident photons flux is low. This implies an extensive analysis that needs 

to be carried out for each potential system of interest individually. We include this research 

into the follow-on proposals that are intended to advance the present NIAC research. 

D. From detection to imaging 

Deriving the correlation observable (43) we have noticed that it captures both the source 

and the object’s images (i.e., the transverse distribution of their luminosity and opasity 

column densities, respectively). This suggests that we can pursue a much more ambitious 

goal than to just detect a dark object’s presence or even to establish its transient direc

tion. We can attempt to reconstruct the object’s image or contour. Following the differen

tial measurement approach, we assume that the source shape is well-known (perhaps from 

intensity-interferometric imaging without the object), and we need to reconstruct the object 

shape. This problem falls into a general category of phase recovery from an absolute-square 

Fourier transform. There are a few well-known approaches to this type of problems such 

as the Cauchy-Riemann [10, 11, 60–62] and Gerchberg-Saxton [63–65] approaches. We have 

adopted the latter approach and optimized it specifically to meet our goals. 

A conceptual diagram of the Gerchberg-Saxton algorithm is shown in Fig. 25. The al

gorithm is based on a cyclic manipulation with the initially unknown image and its Fourier 

transform, of which only the absolute value is known. During this process, additional infor
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FIG. 25: A conceptual diagram of the Gerchberg-Saxton iterative algorithm. 

mation is injected into the cycle. This information may come from various common sense 

considerations, even those apparently unrelated to the object’s shape. Surprisingly, these 

consideration can often be informative enough to allow for complete image reconstruction. 

We have modeled, studied and optimized the Gerchberg-Saxton reconstruction process 

by first encoding an object (supplied in a form of a graphical image, e.g. a photo, or defined 

analytically) into the correlation observable (43), and then processing the result following the 

algorithm shown in Fig. 25. This simulation and analysis were implemented in the Python 

programming language. A specialized software package was created for this purpose, whose 

functional diagram is shown in Fig. 26. 

FIG. 26: A diagram of the image encoding/recovering software package developed at JPL.
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The pristine image can be created by the CreatePng.py program which offers several 

options for basic geometric shapes. Alternatively, the image can be taken as a picture 

or photograph formatted into 16-bit gray scale png file. The image is passed on to the 

G2image2.py program which generates the correlation observables C and C0 according to 

formula (43). These observables are output both in graphic (16-bit gray scale png) and 

double-precision data array formats. The program has options of assuming either Gaussian 

or disk source, and introducing additive and/or multiplicative noise to the correlation ob

servables. It also creates a log file where all relevant parameters of the system are recorded. 

This file is used by the image-reconstruction programs. 

The graphic observables are passed on to the Gerchberg-Saxton2d.py program, which 

realizes the iterative process shown in Fig. 25. In order to make the image recovery process 

more realistic, this program ignores the prior knowledge of the source shapes. Instead, it 

relies on C0 as the sole description of the source. It does, however, requires the a priori 

source shape information: Gaussian or disk. The images obtained from this program are 

compared with the pristine image. 

Similar functions are performed by the Gerchberg-Saxton3.py program, except that it 

takes double-precision data arrays as C and C0 inputs. This array format closely matches 

the potential experimental data, so the purpose of this program is to facilitate the transition 

to the future experimental data analysis. 

To handle this problem numerically, we introduce three reciprocal pairs of grids: a and a ˜ 

b̃ in the object plane, b and in the detection plane, and c and c ̃ in the source plane. Each of 

these grids is related to its reciprocal by a discrete Fourier transform of an N0 × N0 array, 

e.g. a = 2π/(N0ã), etc. Furthermore, discretizing of (43) leads to the following natural 

choice: 

ã = kb/L and c̃ = kb/(L+ Ls). (94) 

During the encoding step, we use Eq. (43) to generate correlation arrays C(ρi,j) and 

C0(ρi,j) with and without the object, respectively. The arrays size is N0 × N0, where by 

virtue of Eqs. (94) N0 = λL/(ab). These arrays represent the correlation measurement 

results with a square array of detectors spaced at b/2. The arrays are then truncated 

to the actual size of the detectors array Nd × Nd, which determines the new object grid 

a ′ = λL/(Ndb) and sets the resolution limit for our image reconstruction. 

Then the Gerchberg-Saxton reconstruction takes place. Our algorithm follows the general 
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guidelines [64, 65], however with a few important modifications. As we already mentioned, 

we abandon our a priori analytical expression for T (q⃗) and restore it from the C0(ρi,j) 

“measurement” in order to more closely simulate an experimental procedure. As an initial 

guess for the object’s shape we take a Gaussian function whose width is consistent with the 

total optical power absorbed by the object: 

. (95) 

Following the Gerchberg-Saxton procedure we then compute A and replace its amplitude 
√ 

C(ρi,j)by the “measurement” , while retaining its phase. After the inverse Fourier trans

form this leads to a new estimate for A which we constrain based on sensible assumptions 

regarding the object. These assumptions are the following: 

1. A(ρ⃗) is real; 

2. A(ρ⃗) = 0 for ρ > ρMax, which means that the object is not too large; 

3. 0 ≤ A(ρ⃗) ≤ 1, which means that the object cannot absorb more than all, or less than 

none, of the incident light; 

4. A(ρ⃗) = 0 or 1, if the object is completely opaque. 

The first constraint can be enforced by taking either the absolute value, or the real part 

of A. Both methods work, as well as their alternation, converging to the same result. We 

prefer the alternation method because it provides an indication of the successful image 

reconstruction, as we will see in the following. It also sometimes leads to a slightly faster 

convergence. 

In the second constraint, the limit ρMax can be determined e.g. from low-resolution 

observations [65], from supplementary knowledge such as the object mass, etc. In the absence 

of such data, we set ρMax to six times the initial Gaussian width (95). 

In the third constraint, imposing the upper limit on the reconstructed function is a new 

requirement, specific to dark objects. In contrast, reconstructing a light source one cannot 

be sure that it does not have very bright spots, so the upper limit is not applicable. 

The last constraint is specific to completely opaque objects, in which case we are limited 

to reconstructing only its contour. When applied, it supersedes the previous constraint. We 
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have found that applying this constraint directly often disrupts the iteration process instead 

of helping it, especially for the objects of complex shapes. A more subtle way of injecting 

a large amount of information implied in the last constraint into the reconstruction process 

is needed. Such a way can be facilitated by modifying the input-output transfer function 

An−1(ρ⃗) → An(ρ⃗) which relates the previous and the next images after all other constraints 

have been applied. We have empirically studied several types of such transfer functions. 

One particularly successful example is shown in Fig. 27. As the reconstruction iterations 

progress, the darker pixels are gradually driven towards unity (opaque), and lighter pixels 

towards zero (transparent). 

FIG. 27: A transfer function (solid line) applied to the object’s absorption profile between 

(n − 1)-th and n-th Gerchberg-Saxton iterations gradually drives it towards black-and-white solu

tion. A dashed line represents an identity transfer function An = An−1. 

The reconstruction process dynamics can be studied by monitoring the normalized vari

ances 
Σ Σ

i,j |An(ρi,j) − An 1(ρi,j)− i, 
σn Σ 2 

|2 j |An(ρi,j) 
, σ̃n Σ

−A |
≡ n 1(ρ

2 
− i,j) 

i,j |An 1(ρ
2 

− i,j) 
≡

| i,j |An (ρ−1 i,j) |
, (96) 

whose square-roots give the fractional change of the object and its Fourier transform at the 
(o) 

σn of σn n-th step. It is useful to separately calculate a part which is due to the “opaque 

object” constraint alone. 

Following a long-standing tradition in the field of Ghost imaging [13], we demonstrate 

the performance of our modified Gerchberg-Saxton algorithm using the initial letters of our 
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institution, JPL, as a test object. This numeric simulation is carried out in a typical optical 

lab settings. The object, which is shown in Fig. 28, was assumed to have 2 mm in length. 

It is placed at L = Ls = 36 cm between the source and the detectors array. The array 

has 1280 ×1024 pixels with 4.65µm spacing (hence, b = 9.3µm) to match parameters of 

the actual CCD camera which was used in our experiment. The source is assumed to have 

Gaussian distribution with Rs = 2 mm, radiating at λ = 532 nm. 

FIG. 28: The test object and its computed shadow as would be seen by the detectors array. 

Geometrical shadow of an object can be found as 

∫2 ∫β 
I(ρ⃗) = 1 − d2 ⃗ξIs(βξ 

πR2 
s 

−  ⃗(β − 1)ρ⃗)A(ξ). (97) 

In our case, this shadow is only some 14% deep, see Fig. 28. It is completely featureless and 

is not useful for the image reconstruction. 
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The correlation function, on the other hand, has a rich structure which encodes the 

object image. In Fig. 29 we plot C(ρi,j) on a logarithmic scale in order to highlight the weak 

features. The outer green and inner red contour lines correspond to C(ρ 2−13 
i,j)/C0(0) = 

and C(ρi,j)/C0(0) = 2−12 , respectively. 

FIG. 29: A logarithmic plot of the correlation function C(ρi,j) reveals the structure which encodes 

the shape of the object of interest. The solid contour lines correspond to C(ρ 2 12 
i,j)/C0(0) = − 

(red) and C(ρi,j)/C0(0) = 2−13 (green). 

We started by realizing a simple version of the Gerchberg-Saxton algorithm, with con

straint 4 disabled by permanently setting the slope of the transfer function in Fig. 27 to 

unity. The real part of the object function was taken when applying constraint 1. Represen

tative images of a 200-iteration cycle are shown in Fig. 30. These images have been rotated 

by 180◦ for convenience; the actual results of this particular run came out up side down, 

which is a normal situation resulting from the Gerchberg-Saxton algorithm ambiguity. 
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FIG. 30: The results of a simple image recovery algorithm. The step numbers are given in the low 

left corner of each frame. 

Variances (96) for this process are shown in Fig. 31. Their general behavior is similar 

to the one observed [64] for luminous objects, when periods of rapid improvement were 

alternating with periods of relative stagnation. Convergence of the process can be improved 

if one alternates taking the real part of the image and its absolute value as the first image 

constraint. The variances behavior and representative images corresponding to this scenario 

are shown in Fig. 32. Here, the same simulated input data has been used, however the 

second quality transition occurs sooner, and the final image is better. Notice that the steps 

when the “absolute value” method was used in constraint 1 have larger variances than those 

when the “real part” method was used. 
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FIG. 31: Fractional change (given by square root of variances (96) ) of the test object’s image and 

its Fourier transform in a simple image recovery corresponding to Fig. 30. 

FIG. 32: Fractional change of the test object’s image and its Fourier transform in the alternating 

algorithm; shown are images 40, 130 and 200. 

So far we have not utilized our knowledge that the test object is in fact an opaque mask. 

To take advantage of this information, we enable the “solid object” constraint. We start 

incrementing the transfer function slope (see Fig. 27) by small steps as soon as both the 

image and its Fourier transform’s evolution becomes stagnant, but will decrement it if either 
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one of the variances (96) starts to grow. The results of such an adaptive Gerchberg-Saxton 

algorithm with the same input data are shown in Fig. 33. Its realization leads to even faster 

convergence with even better result. In fact, the image in Fig. 33 stops appreciably changing 

already after some 125 iteration, at which point it looks practically indistinguishable from 

the original. 

FIG. 33: Left: fractional change of the test object’s image and its Fourier transform in the alter

nating adaptive algorithm; shown are images 10, 75, 125 and 200. Right: the transfer function 

slope. 

Several interesting observations can be made regarding this result. First, the variances 

oscillations due to alternating method of handling the complex-to-real conversion disappear 

as the image improves. This indicates that the image becomes purely real and suggests 

that with the adaptive algorithm, alternating the methods may be unnecessary. We have 

confirmed it in a separate run using only the “Real” method which has produced equally 

good result. Second, the image and its Fourier transform fractional variations become equal 

when a high-quality image has been obtained and no further progress is achieved. This may 

indicate that the process has gone into a loop where the object- and Fourier-space constraints 

repeatedly reverse each other’s effect. Third, the largest part of the object variance is due to 

the “opaque” constraint, which is consistent with the image solutions being predominantly 

real and well confined in space. 

An important question of practical intensity interferometry imaging is the algorithm 

tolerance to additive and multiplicative noise. The additive noise is most important in 
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the dark areas of Fig. 29 where the correlation observable C is small. This type of noise 

can be suppressed by applying a threshold. Therefore the detrimental effect of this type 

of noise is limited by such effect of the threshold. To study this effect we have repeated 

the reconstruction with the same correlation data thresholded at C(ρi,j)/C0(0) = 2−13 and 

C(ρi,j)/C0(0) = 2−12 , which corresponds to discarding the data outside the green (outer) 

and red (inner) contour lines in Fig. 29, respectively. The restored images are shown in 

Fig. 34. These images cannot be improved with more iterations. 

FIG. 34: The image reconstruction results with the threshold set at 2−13 (left) and 2−12 (right). 

The multiplicative noise was introduced by multiplying each pixel value of C(ρi,j) and 

C0(ρi,j) by a random Gaussian function with the mean value equal to unity and a variable 

width σnoise. The reconstruction process failed at σnoise = 0.01C0(0) but converged to 

a practically ideal image at σnoise = 0.001C0(0). In practical realizations of this image-

reconstruction algorithm, the realistic multiplicative noise level can be inferred from the 

SNR analysis discussed in the previous Section. 

To test our approach with an astronomical parameters set, we consider a hypothetical 

Earth-size planet in the Oort cloud (1 ly from the Sun) which occultates Sirius (8.6 ly from 

the Sun, 6µarc sec angular size). The planet would have 0.35µarc sec angular size and 

would absorb some 0.34% of photon flux from Sirius. To make imaging more exciting we 

provide the planet with a Saturn-like ring and a pair of moons 1000 km in diameter. The 

central wavelength is assumed to be λ = 532 nm. The correlation measurements array is 

assumed to consist of 2000 × 2000 data points on a square grid with 2 m period. This does 

not mean that an array of 4 million detectors would be required. As we have seen before, a 

modest-size array of cleverly placed detectors, such as shown in Fig. 8(a), can cover a lot of 

reciprocal space and generate a very large correlation data array, such as shown in Fig. 8(b), 

if all possible pairs of detectors are considered. In general, the resulting data array would 

not be represented on a square grid. We assume the square grid in this simulation in order to 
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accommodate our image reconstruction software. Obviously, modifying our software in such 

a way as to handle the correlation data arrays of any shape would be among the first-priority 

tasks in the follow-on research efforts that will be based on this NIAC project. 

The reconstruction results are shown in Fig. 35. We see that already the first iteration 

yields a nearly faithful image of the planet, but with four semi-transparent moons instead 

of two solid ones, and a few other minor defects. It takes about 50 iterations to eliminate 

the fake moons. At this point the iteration process saturates, meaning that continuing it 

further does not noticeably change the image. 

FIG. 35: The results of a planetary image reconstruction without noise. The step numbers are 

given in the low left corner of each frame. 

In the reconstruction shown in Fig. 35 we assumed noiseless data. Let us now model 

a more realistic case when multiplicative noise is present. Following the analysis from the 

previous Section, we notice that in the present geometry the factor β is no longer close 

to unity: β = 1 + Ls/L ≈ 8.6. A square of this factor needs to multiply the right hand 

side of Eq. (93) for the SNR. Substituting Ma = −1.47, F0 = 1800 Jy, λ = 290 nm and 

γ = REarth/RSirius ≈ 5.37 × 10−3 into thereby modified equation, we find that SNR = 
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0.1 can be reached with a T = 2.8 hour measurement. We have used the noise-encoding 

capability of our correlation simulating software to generate the noisy “measurement” re

sult, and reconsructed the original image using the same set of parameters as before. The 

reconstruction results are shown in Fig. 36. 

FIG. 36: Image reconstruction results for the same system as in Fig. 35 but with strong multi

plicative Gaussian noise present, SNR = 0.1. The step numbers are given in the low left corner 

of each frame. Notice that the images in this Figure are inverted with respect to those in Fig. 35, 

which is a normal situation in Gerchberg-Saxton algorithms. 

Remarkably, a strong (ten times the signal!) noise present at every correlation data point 

did not disrupt the image reconstruction. Its presence only lead to a persistent background 

which nonetheless disappeared after some 50 iterations. This background may be attributed 

to the high spatial frequency component of the noise, which affects the low-frequency part of 

the objects, that is, its bulk size. This effect causes a problem which can be understood by 

reviewing Eq. (95). This equation expresses the object bulk size as the difference between 

the DC components of the correlation arrays with and without the object. For small objects 

this difference is small, and in presence of the DC noise its fluctuation may be significant. 
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To overcome this problem, for the image recovery from the noisy data we still used the 

bulk size estimate obtained from the noiseless measurement. This “trick” is justified by 

the following consideration: since the DC component of the correlation array is simply the 

detected optical power, its measurement can be performed with a much greater precision by 

an auxiliary apparatus relying only on the intensity measurement and not requiring spectral 

filtering and high measurement bandwidth. Running into this difficulty and successfully 

resolving it has been an important experience that will need to be taken into consideration 

in a realistic mission design. 

E. Experimental demonstration 

To gain confidence in our theoretical estimations and numerical simulations, it is highly 

desirable to compare them to actual experimental measurements. To reduce the equipment 

costs, it has been decided to carry out the initial experimental tests with pseudo-thermal 

light sources rather than with real thermal light sources. Pseudo-thermal light sources 

are commonly realized by diffuse scattering of laser light by a rotating ground glass disk 

[22, 46, 47] or by emulsions (e.g., milk [66]). Rotating a disk or allowing the suspended scat

tering particles to experience Brownian motion one can observe a constantly (or discretely) 

changing specular pattern. Each realization of this pattern has exponential distribution of 

intensity. However multiple realizations of the specular patterns have Poissonian character. 

It is easy to see that a composition of these two statistics leads to a statistic of single-mode 

thermal light source. This source effective optical bandwidth is determined by the Doppler 

broadening due to the scatterers motion, and can be made arbitrarily narrow. This allows 

experimentalists to achieve the narrowband regime (see the SNR section for the definition) 

even with slow detection technologies, such as e.g. CCD cameras. This reduces the cost of 

the experiment by orders of magnitude, comparing with equal-size array of high-bandwidth 

detectors, while allowing for the same series of conceptual experimental tests. 

Our pseudo-thermal light source shown in Fig. 37 consisted of a 532 nm laser pointer 

and a slowly rotating ground-glass disk. To achieve single-mode operation, the light has 

been passed through a polarizer before the disk. Furthermore, to achieve Gaussian inten

sity distribution of the source, the laser beam was spatially filtered by passing through a 

single-mode optical fiber. In a later modification, the fiber was replaced by a mode cleaner 
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FIG. 37: Pseudo-thermal light source with a 532 nm laser pointer, built for our experimental 

demonstration. 

consisting of two strong confocal lenses with a 20 micron pinhole in the focal spot, and an 

extra polarizer with the same orientation was added after the scatterer disk to suppress 

depolarization effects. 

We have studied the statistical intensity distribution produced by our source using a 

Thorlabs CCD camera DCU224M. This is an 8-bit monochrom 1280 ×1024 camera with 

4.65 ×4.65 micron pixel size. The camera has advanced configuration control which allows for 

adjusting the gamma-function and disabling the auto-gain and other “features” preventing 

linear operation of most off-the-shelf CCD cameras. Prior to performing measurements with 

our pseudo-thermal light source we verified the camera’s linear response by illuminating it 

through a pair of polarizers and ensuring the cosine character of the camera’s response to 

the angle between the polarizers. Hence the linear power response of our detector array with 

discretized dynamic range extending from 0 to 255 was verified. 

The pixel-value histograms observed with this camera and our pseudo-thermal light source 

(in the stationary speckle field regime when the disk is not rotating) are shown in Fig. 38. In 

these measurements we fixed the optical power and changed the camera exposure from 0.5 to 
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FIG. 38: Histograms of the grayscale pixel values of the CCD camera illuminated by a pseudo-

thermal light source. Each data set is taken for 1000 frames with the same source power but 

different exposure times: 0.5, 1, and 1.5 ms. The run average was 14.7, 28.3 and 41.0, respectively. 

1.0 and 1.5 ms, which has lead to different array averages: 14.7, 28.3 and 41.0, respectively. 

We observed that for low-average exposures the distribution remains exponential with a 

very high accuracy. For higher-average exposures saturation effects at high pixel values are 

evident. However their fractional weight is low, as one can see from Fig. 38. Nonetheless we 

tried to carry the following measurements with low frame averages in order to minimize the 

saturation effects. 

It should be mentioned that averaging multiple speckle fields, we have not been able 

to achieve the expected value of the Glauber correlation function g(2) (0) = 2. The values 

we achieved were 1.89, 1.82, 1.84 for 0.5, 1.0 and 1.5 ms exposures, respectively. The 

reasons for this discrepancy are not clear to us. Let us point out, however, that the single-

mode illumination is not a necessary condition for the thermal light intensity interferometry 

imaging. In fact, the broadband regime discussed above is an extreme example of the 

opposite situation when g(2) (0) − 1 ≪ 1. Therefore not reaching the theoretical value of 

g(2) (0) = 2 should not hinder our experiment. 

The next important step necessary before carrying out the experimental demonstration is
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to determine how much averaging of random speckle patterns is required in order to emulate 

uniform illumination with a thermal light source. The necessity to perform a massive frame 

averaging is the downside of using a pseudo-thermal light source instead of a real thermal 

light source. To perform this analysis a specialized Labview program was written which 

runs multiple averaging cycles with different numbers of frames. The frames are captured 

at 15 fps and processed in real time. For each measurement cycle, the program computed 

the correlation observable (10) as 

(2) 
GAC(x, y) ≡ 〈 I(x, y)I( −x, −y) 〉 − 〈 I(x, y) 〉〈 I( −x, −y) 〉 〈 〉 〈 〉〈 〉. (98) 

In (98) the average is taken over the camera frames (instantaneous speckle patters), and 

x, y denote the pixel position relative to the frame center. The program then excluded the 
√ 

x2 + y2 < 6 ×results from within a vicinity of the source speckle, i.e.	 such that (speckle 
(2) 

GAC width), and computed the variance for the rest of the array. This variance is plotted 

as a function of the number of averaged frames as shown in Fig. 39. 

(2) 
GAC

 
FIG. 39: A screen shot of the Labview program analyzing the variance of the background . 

The graph shows the variance vs. the number of averaged frames (in thousands). 

For a true thermal source this variance in Fig. 39 should approach zero. In our measure-

ment, however, we see that the averaging stops improving (or the improvement dramatically 

slows down) after some 15,000 frames at the level of approximately 7 × 10−3 . Considering the 

run average 〈〈〈 I(x, y) 〉〉x,y ≈ 15 this corresponds to the normalized variance of approximately 

3 × 10−5 . Therefore the correlation observable measured with this technique will remain 
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“grainy” at this level. Applying a threshold discussed in the context of Figs. 29 and 34 of 

the previous Section will be necessary. This threshold will limit the image reconstruction 

quality as illustrated in Fig. 34. 

For the first attempt of 2D image reconstruction we used the object shown in Fig. 40(a). 

This metal object, named “the object 1”, had the full height (the vertical size in Fig. 40) 

of approximately 4 mm. It was suspended on four thin (few tens of microns in diameter) 

Kevlar threads inside of a large frame placed at L = 191.1 cm from the CCD camera array 

and Ls = 88.9 cm from the source. The source was a Gaussian light spot on a rotating 

ground-glass disk (Thorlabs, part number DG20-220), of the radius Rs = 2.15 mm. The 

object was centered on the line of sight, as evident from the shadow shown in Fig. 40(b). 

Thus from the CCD camera perspective, the object fits entirely into the brightest part of 

the source. 

(a) (b) 

FIG. 40: A photograph of the “object 1” used for the first 2D image reconstruction experiment(a) 

and its shadow captured by the CCD camera (b). 

(2) 
GAC The computed correlation observable for the first experiment parameters is shown 

in Fig. 41(a), and the actual data is shown in Fig. 41(b). The agreement between the theory 

and experiment is superficial at best. The most evident discrepancies are in the shape of 

the central maximum and in the contrast of the side maxima. Moreover, the experimental 
(2) 

GAC < 0data contains classically impossible values , outlined with a yellow contour. Inside 

the red contour, the negative value drops below -5% of the peak value, reaching the value 

of -18% of the peak near the centers of the red-bordered dark regions. 
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GAC(x) 〉y = 〈〈 I(x, y)I( −x, y) 〉 − 〈 I(x, y) 〉〈 I( −x, y) 〉〉y〉〈 〈〈 〉 〈 〉〈 〉〉
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(a) (b) 

(2) 
GAC FIG. 41: The theoretical (a) and experimental (b) correlation observable for the “object 1” 

from Fig. 40. 

Clearly, these discrepancies far exceed the statistical variations. It is particularly puzzling 

that the negative (classically impossible) correlation peaks correspond to positive simulated 

peaks. One possible explanation could be that our “pseudo-thermal” light source does not 

properly mimic the thermal light source, which may happen e.g. if the optical field illumi

nating the object and the CCD camera retains significant spatial coherence. The presence 

of a family of concentric circular interference fringes centered near the left edge of Fig. 40(b) 

hints that this may be the case. In any event, while the theoretical correlation matrix plotted 

in Fig. 41(a) is adequate for successful Gerchberg-Saxton image reconstruction, experimental 

data from Fig. 41(b) does not lead to a successful reconstruction. 

To investigate the failure of the object 1 imaging we decided to first study a one-

dimensional case which allows for easier numeric analysis. It also allows us to combine the 

frames average with the average over the rows of pixels, i.e. 〈... 〉y, and to collect high-quality 
data faster. Therefore instead of (98) we construct the observable as 

. (99) 

A diagram of our first 1D experiment is shown in Fig. 42. In this experiment we realized 

one of the most traditional settings in interferometry: a double-slit mask. Analysis of this 

experiment is very simple. We first notice that the speckle size produced by the source on 
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FIG. 42: A diagram of a double-slit experiment with pseudo-thermal source of light and the 

instantaneous speckle pattern observed in this experiment. The drawing on the pattern explains 

how the additional pixel rows averaging is performed in 1-D measurements. 

the mask is much smaller than the mask feature (the slit width). Therefore the mask itself 

can be considered as a secondary pseudo-thermal source of light. Its correlation function in 

the far field obeys the earlier-mentioned van Cittert-Zernike theorem, leading to 

, (100) 

where a and b are the slits width and centers separation, respectively. 

We have used Eq. (100) to compute the theoretically curve shown in Fig. 43(a). No free 

fitting parameters have been used. However a careful collimation of the laser beam incident 
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FIG. 43: Normalized correlation function (a) and intensity distribution (b) observed in experiment 

shown in Fig. 42. 
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onto the ground glass disk was required in order and to eliminate the first-order interference 

fringes and to achieve relatively uniform intensity distribution shown in Fig. 43(b). These 

fringes indicate the presence of the transverse coherence, which has been the prime suspect 
(2) 

GAC for arising the negative regions in the experimental results from Fig. 41(b). 

Perfect agreement between the theory and experiment in Fig. 43(a) validates our under

standing of the physical principles behind the model. To also verify the “speckle of darkness” 

concept which is directly relevant to the imaging of dark objects by intensity interferome

try, we inverted the setup in Fig. 42 and used a double-wire mask instead of a double-slit 

mask, as shown in Fig. 44. In this case, again, we do not observe any tell-tale shadow, see 

Fig. 45(b), while the intensity correlation function is well resolved, see Fig. 45(a). 

FIG. 44: A diagram of a double-wire experiment with pseudo-thermal light source. 
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FIG. 45: Normalized correlation function (a) and intensity distribution (b) observed in experiment 

shown in Fig. 44. 
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In Fig. 45(a) we see a central maximum which is due to both the source and the mask, 

and the secondary maxima that are solely due to the mask. The theoretical description 

of this structure requires a source (Gaussian) term to be added to the right-hand side of 

Eq. (100). The relative weights of these to terms need to be determined. It is important 

to point out that using Eq. (43) for this purpose leads to the theoretical estimate of the 

mask signature exceeding the experimental observation by a factor of several. Using a more 

complex model of Eq. (41) accounting for the object and source convolution, however, leads 

to the perfect consistency. This indicates that the assumption (42) is not sufficiently well 

fulfilled in our experiment, which likely has been another reason for the failure of the first 

2D imaging experiment. Using the source-convolution model of Eq. (41) for our double-wire 

mask entailed, first, scaling the relative visibility of the mask signature by the square of the 

local intensity of the source at the point found by drawing a line through the CCD camera 

center and either one of the wires. Secondly, the rows averaging has to be done with a weight 

which is found by a similar procedure. 

The source-convolution model predicts a strong reduction of the object’s signature visibil

ity as the object is moved away from the line of sight. Indeed, for our double-wire mask this 

means that each wire is effectively illuminated with a different intensity. As with a normal 

double-slit interferometer, this would lead to the loss of the fringes contrast. To verify this 

conjecture, we shifted the double-wire mask by 1 mm in perpendicular to the wires direction. 

Then instead of Fig. 45(a) we observe the intensity interference fringe shown in Fig. 46. A 

dramatic reduction of the object’s fringes is evident. 

The important role of the source intensity distribution when assumption (42) is only 

weakly satisfied suggests that using a disk-like source with uniform intensity distribution is 

better than using a Gaussian source. A disk also serves as a better model for stellar light 

sources. To achieve this in the experiment, we included in our pseudo-thermal light source 

a flat-top laser beam shaper, an instrument sold by the Edmunds Optics which is designed 

specifically to focus a Gaussian beams into a uniform disk spot. 
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FIG. 46: The same correlation function as in Fig. 45(b) after the mask has been shifted by 1 mm 

across the line of sight. 

With this beam shaper in place and projecting a light disk-shaped spot onto the rotating 

diffuser, we proceeded to the second 2D imaging demonstration. In this experiment we used 

a small image of the International Space Station printed on a glass plate, as shown in Fig. 47. 

The mask size, source diameter and distances Ls and L are chosen such that the effective 

source intensity is the same for any point of the mask (in other words, a line drawn through 

the CCD camera center and any point of the mask always ends within the source disk). 

FIG. 47: A diagram of a 2D imaging experiment with a disk-shaped pseudo-thermal light source.
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The correlation observable obtained after averaging of 1.3 million frames is shown in 

Fig. 48(a). Fig. 48(b) shows a computed correlation observable. As an improvement from 

the first 2D imaging experiment, now there is a strong similarity between Figs. 48(a) and 

(b), which allows us to claim consistency between the theory and the experiment in the 2D 

case. However, in spite of the massive averaging, the experimental data has background 

(additive) noise at the level of 1%. In particular this noise leads to the classically impossible 
(2) 

GAC < 0 values of marked red in Fig. 48(a). 
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(2) 
GAC FIG. 48: Measured (a) and computed (b) correlation observables in the ISS imaging experi

ment (see Fig. 47). Each contour line corresponds to 1% increment. 

(2) 
GAC The computed noiseless shown in Fig. 48(b) is more than adequate for quick and 

high-quality reconstruction of a 152 ×152-pixel ISS image which has approximately 40 micro 

radians angular resolution, see Fig. 49 and Fig. 50. This resolution is determined by the 

CCD array size and the distance L, as has been discussed in the previous Section. 
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FIG. 49: The image reconstruction steps for the computed noiseless ISS correlation observable 

shown in Figs. 48(b). Step numbers are given in the lower left corner of each frame. 

(a) (b)
 

FIG. 50: The object variances (96) (a) and the transfer function slope (b) during the image 

reconstruction process in Fig. 49. 

However, having added to the computed correlation observable Gaussian noise at the 

level of 1% to simulate the experimental data, we have not been able to recover the image. 

Fig. 51 shows the result of image recovery attempt for the threshold set at 2% level (an 

optimized value removing most of the noise but preserving most of useful signal). Other 
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FIG. 51: A failed attempt to reconstruct the ISS image from the computed correlation observable 

shown in Figs. 48(b) in presence of 1% additive noise with Gaussian distribution. The threshold 

is set at 2%. Step numbers are given in the lower left corner of each frame. 

threshold values likewise did not lead to success. It is not surprising therefore that recovering 

the image from the experimental data shown in Fig. 48(a) also failed. 

It should be noted that the background noise observed in this measurement exceeds the 

expectations based on the averaging test reported in Fig. 39 by more than an order of 

magnitude. To investigate this problem, we have carried out a reference measurement with 

the ISS mask removed, averaging 1.1 million frames. The average intensity and correlation 

observable from this measurement are shown in Fig. 52. The intensity distribution shows 

some 10% contrast interference fringes due to the bandpass interference filter, polarizers and 

other parallel surfaces. It also shows the shadows due to dust particles on the optics and 

on the CCD array. These features however should not affect the correlation observable by 

the virtue of its construction, see Eq. (98). The correlation observable in Fig. 52(b) features 

the “grainy” structure at the same level as in Fig. 49(a). This structure has a characteristic 

scale comparable to the source speckle size. This may indicate that one possible origin of 

this noise is a stationary scatter which produces speckles that do not average during data 

collection. 
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(a) (b) 

FIG. 52: The mean intensity distribution (a) and correlation observables (b) in the reference 

measurement (with the ISS mask removed). The grey scale in (b) spans the range of 0 to 5%; 

values below zero are given in blue, above 5% in red. 

Further experimental research focused on demonstration of the 2D intensity interfero

metric imaging with a pseudo-thermal light source should include solving the additive noise 

problem as well as development of improved, noise-resilient image-reconstruction algorithms. 

Developing such algorithms can leverage the techniques used in quantum optics for the quan

tum state tomography [67]. 

This work will have to be continued outside the scope of this NIAC effort. It has been 

included in the NASA-APRA proposal (Proposal Number: 13-APRA13-0032) submitted by 

our team in May 2014 which is presently under consideration. The experimental part of this 

3-year, $1M proposal goes beyond using the pseudo-thermal light source and includes lab 

and field demonstrations with actual thermal light source and high-speed detectors. Using 

a true thermal light source will not only advance the project towards its practical goals, but 

also eliminate the averaging-related difficulties which have been proven significant. We have 

already determined the suitable commercially available instrumentation, which includes a 

Hamamatsu L233-55NB light source and 45 GHz bandwidth Newport 1014 detectors coupled 

to Millitech LNA-22-02060 amplifiers and MXP-28-RFSFL balanced mixers to implement 

high-speed signals multiplication. The integrated signals will be acquisitioned by a DAQ 

board such as e.g. National Instruments model 781047. 
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F. On observation of phase objects
 

Phase objects are the objects that refract light without absorbing it. Such hypothetical 

objects provide a useful model for many astrophysical phenomena related to gravitational 

lensing and microlensing [68, 69], and interstellar phase screens due to cold gas clouds 

[38, 39]. They also may be useful for investigating remote atmospheric phenomena and for 

other applications. Therefore there is a strong motivation for high-resolution optical imaging 

of phase objects by means of intensity interferometry. However, best to our knowledge, this 

problem has not been discussed yet. 

One model phase object allowing for the fully analytical treatment in the framework of 

Eqs. (22) and (23) is a thin lens. For an infinitely large thin lens characterized by the focal 

distance f , (23) yields 

 S − ik (ρ2 k 
o−ρ ′2 

(x⃗, y⃗) = e o ) = e−i x⃗y⃗
2f f . (101) 

When this is substituted into (22) we see that the effect of such a lens can be absorbed into 

γ → γf = k(1/L+ 1/Ls − 1/f). Then we quickly arrive to 

q2 
G11 = G22 = = const 

πD2 
|ρ⃗1, 2 , 

q2 ik D− 1 2 2 2 2 

G12(ρ⃗1, ρ⃗2) = e (ρ −ρ )
2L D 2 1 e−(q/D) |ρ⃗2 −ρ⃗1 |

πD2 
, 

2 2 

g12(ρ⃗1, ρ⃗2) = 1 + e−2(q/D) |ρ⃗2−ρ⃗1| , 

(102) 

where D ≡ L(1/L+1/Ls − 1/f) is a dimensionless “out-of-focus” factor. If the lens images 

the source plane onto the detector plane, then D = 0 and the speckles become infinitely 

small while the intensity goes to infinity. The former is a consequence of the thermal field 

statistics (11). The latter is a consequence of the paraxial approximation leading to the 

coordinate-independent intensities in (102). 

On the other hand, if the source is in focus, D = 1, then the light propagates as a 

collimated beam and the speckle size as well as the intensity in the detector plane will be 

the same as in the lens plane. These two test cases validate our general approach to phase 

objects. 

For more complex phase objects we need to follow more advanced theoretical analysis 

explained earlier in this Chapter. However the approximation (37) cannot describe a phase 

object. We have to retain one more term in the power expansion series, which yields 

T ∗ ( ′ ′′ ⃗ 
ρ⃗ )T (ρ⃗ ) = e i[φ(ρ ⃗

′′ )−φ(ρ ⃗ ′ )] ≈ e iρ ⃗
′ ∇φ(ρ ⃗ ′ s )d ⃗ ⃗ ⃗ ⃗ ⃗ . (103) 



87 

In (103) we make our usual approximation that the speckle size the source casts on the 

object is much smaller than the object feature, and define ρ⃗d 
′ ≡ ρ⃗ ′′ − ρ⃗ ′, ρ⃗s 

′ ≡ (ρ⃗ ′′ + ρ⃗ ′ )/2. 

For the correlation observable this leads to 

〈
∫ ∫

  d2 ρ ′ d2 ρ ′ d2 ρ Is(ρ⃗) 
(λ L 2 s d 

s Ls) O S 

⃗ ⃗ ⃗⃗eL ⃗ ⃗⃗ ⃗ ⃗ ⃗ ⃗
e 

E1
∗(ρ⃗1)E2(ρ⃗2)〉 =

e
i
L
k ρ⃗sρ⃗d

d e−
i
L
k ρ⃗sρ⃗ ′

d e−
i
L
k ρ⃗dρ⃗s

′

eiρ⃗d
′∇⃗φ(ρ⃗s

′) e−L
ik

s
ρ⃗ρ⃗ ′ρ⃗s

′ρ⃗ ′
d

ik

, (104) 

where again ρ⃗d ≡ ρ⃗2 − ρ⃗1, ρ⃗s ≡ (ρ⃗2 + ρ⃗1)/2. As before, we will assume that the correlation 

function is measured symmetrically around the line of sight: ρs ≡ 0. In (104) the inner 

integral is taken over the source and the outer integrals are taken over the object. Of the 

latter, the d2 ρd 
′ integral yields a 2-dimensional Dirac δ-function which, when integrated over 

the source plane, shifts the argument of Is(ρ⃗). This yileds 

I
∫ [ ] 

I Ls 
C(ρd  K I ⃗ ) ≈ 

I 

d2 ρ ′ ⃗ ⃗
s k 

∫
[ ]

ρ⃗dρ⃗s
′

e−
i
L
k∇⃗φ(ρ⃗s′)βρ⃗s

′ +Is

 

 

 

 

2

. (105) 

We recognize (105) as a Fourier-transform of the source intensity distribution with a 

shifted argument, which can be viewed as a generalized van Cittert - Zernike theorem. For 

a sufficiently smooth phase object it is reasonable to treat φ(ρ⃗s 
′ ) as a polynomial with de

creasing higher-order terms. Remarkably, the zeroth-order term is removed by the gradient: 

the overall phase is not observable in this type of measurement, which is physically rea

sonable. The linear phase term (such that may be produced by an optical wedge) yields a 

constant argument shift in Is(ρ⃗) which amounts to an apparent shift of the object from the 

line of sight, or equivalently, a phase shift of its Fourier transform. Since our observable is 

phase-insensitive, this effect vanishes as well. 

The next-order, quadratic, contribution leads to the already studied case of a thin lens 

with a focal distance f . For such a lens ∇⃗φ(ρ⃗s ′ ) = −ρ⃗s ′ k/f , so it has the effect of linear 
scaling of the intensity argument: βρ⃗s 

′ → (β − Ls/f)ρ⃗s 
′ , which can be viewed as a change 

in the effective propagation distance: Ls + L → Ls + L − LsL/f . In particular, when 

1/L + 1/Ls = 1/f , this distance becomes zero. This of course corresponds to imaging 

of the source onto the detection plane, in which case we recover our initial assumption of 

δ-correlation of the thermal source field as has been shown earlier. 

Analysis of the higher-order phase terms is less intuitive. However we can already see 

that the problem of reconstructing a phase object can be reduced to recovering a source 

intensity distribution from its Fourier transform absolute square, and then taking the inverse 
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of the result in order to retrieve the object signature. The following example is designed to 

demonstrate the first step, while the second step is intentionally made trivial. 

Let the source have Gaussian intensity distribution 
 

Is(ρ) = exp( ρ2 /R2 
s) with Rs = 

√
− 0.1 

cm. Consider a thin lens with a focal length f=11.36 cm centered on the line of sight 

between the source and detectors array so that L = Ls = 50 cm. As a phase object, we take 

a rectangular x = 0.118 cm by y = 0.25 cm piece of this lens centered at Δx = 0.293 cm 

from the line of sight, and remove the rest of the lens. Then, according to (105), the source 

argument is linearly scaled within the rectangle, and unperturbed elsewhere. The resulting 

modified intensity is shown in Fig. 53(a). 

(a) (b) 

FIG. 53: Numerically modeled intensity distribution of a Gaussian source modified by a rectangular 

phase object (a) and its reconstruction by Gerchberg-Saxton algorithm after 5000 iterations (b). 

Side of each image is 2 cm, array size 680 x 680 pixels. 

Our phase object reconstruction algorithm is similar to the algorithm we used for the 

absorbing objects, except that now we abandoned constraints 2 and 4, and set the upper limit 

to the unperturbed intensity function rather than unity in constraint 3. This considerably 

weakened our set of object constraints, and the image reconstruction took significantly 

longer. The reconstruction result obtained after 5000 iterations is shown in Fig. 53 (b). 

While the image turned out inverted, it has adequate fidelity. 

In this example we assume that we have a priori knowledge that the object is a rectan

gular piece of a thin positive lens. To characterize the phase object we therefore use the 



(

1
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reconstructed source function IG(ρ), in the area G of the phase object (the dark rectangle 

in Fig. 53) in the form IG(ρ) = exp( −[ρ(β − Ls/f)]
2 /R2 

s). We fit it to find f . The fitting 

yields fout = 11.37 cm with the standard deviation σf = 0.19 cm, which is in remarkable 

agreement with the input value f = 11.36 cm. 

Though it may seem artificial, the example with a piece of lens will prove helpful in the 

following analysis. We already mentioned that in general, finding the inverse function of 

the source intensity Is(ρ⃗) after Gerchberg-Saxton reconstruction of this function would be 

required. This can be done e.g. when the phase gradient is strong enough to distort the 

source by more than its angular size, that is, when 

I ILs I⃗ I

Ds ≪ I ∇φ(ρ⃗s) I 
kβ min 

. (106) 

In (106) the subscript min indicates the minimum absolute value of the phase gradient that 

we wish to resolve. In this case we can treat Is(ρ⃗) as a δ-function, which makes the inversion 

trivial: 

(107) 

for the regions G of ρ⃗ where Is(ρ⃗) is a non-zero constant, and ∇⃗φ(ρ⃗) = 0 everywhere else. 

It is easy to see that this corresponds to the region G “filled” with a lens centered on 

the line of sight such that it would image the (point-like) source onto the detection plane: 

1/f = 1/Ls + 1/L. This is the best estimate of the phase object that we can achieve with 

the approximation of Eq. (103). Even though a linear phase gradient such as (107) is not 

a suitable model e.g. for gravitational lenses, it is possible that this model can distinguish 

single from multiple phase objects with high resolution. 

Clearly, the study of phase objects reconstruction from intensity interferometry data 

needs to be continued. One of open questions in this field is to what extent finding of the 

inverse function is possible when the source is not too small or the phase gradient is not 

too strong, that is, when inequality (106) is not strictly enforced. It may be possible to 

leverage additional consideration, such as that the phase gradient function is smooth and 

takes the smallest of possible values, to approximately invert the reconstructed Is(ρ⃗) and to 

∇⃗φ(ρ⃗)find . This research has been proposed to JPL’s Research and Technical Development 

Program as a topic area concept for FY 2015 funding, which is presently being evaluated. 
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IV. DISSEMINATION AND OUTREACH
 

An important goal of NASA’s innovative research programs is to facilitate the transfer 

of NASA technology and engage in partnerships with other government Agencies, industry, 

and international entities to generate U.S. commercial activity and other public benefits. 

Also, as a Federal Agency, NASA requires prompt public disclosure of the results of its 

sponsored research to generate knowledge that benefits the nation. Thus, it is the NIAC’s 

intent that all knowledge developed under its sponsorship be shared broadly by means of 

publishing the research results in peer-reviewed, publicly accessible journals to the greatest 

extent practical. In response to these requirements, we reported our research results in the 

following peer-reviewed papers: 

•	 Ghost Imaging of Space Objects, D.V. Strekalov, B.I. Erkmen and N. Yu, Journal of 

Physics, Conf. Series, 414, 012037 (2013). 

•	 Intensity interferometry for observation of dark objects, D.V. Strekalov, B.I. Erkmen 

and Nan Yu, Phys. Rev. A 88, 053837 (2013). 

•	 Imaging dark objects with intensity interferometry, D.V. Strekalov, I. Kulikov, and N. 

Yu, Opt. Expr. 22, 12339-12348 (2014). 

Our results have also been reported at the following conferences: 

•	 Ghost imaging of space objects, D.V. Strekalov, B.I. Erkmen, and N. Yu, 21th In

ternational Laser Physics Workshop, Calgary, Canada, July 23-27 (2012) (Invited 

talk). 

•	 On using intensity interferometry for feature identification and imaging of remote 

objects, Baris I. Erkmen, Dmitry V. Strekalov, and Nan Yu, SPIE meeting, San Diego, 

California, United States, August 251729 (2013). 

•	 Intensity interferometry for imaging dark objects, Dmitry Strekalov, Baris Erkmen, 

Igor Kulikov and Nan Yu, Workshop on Hanbury Brown and Twiss interferometry, 

Nice Observatory (Nice, France), May 12-13 (2014) (Invited talk). 

•	 Imaging Dark Objects by Intensity Interferometry, D.V. Strekalov, I.K. Kulikov and 

N. Yu, 23-d International Laser Physics Workshop, Sofia, Bulgaria, July 14-18 (2014) 

(Invited talk). 
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Besides the regular conferences attendance, the PI was invited to deliver a lecture on 

this research topic at Max Plank Institute for Physics of Light retreat in Ringberg castle in 

October 2012, and in July 2014. As one indication of successful dissemination of the new 

knowledge gained in this project, the PI has been asked to take a role of the Lead Guest 

Editor and to organize a special issue of the Advances in Astronomy journal dedicated to 

intensity interferometry. This activity is currently in progress. 

At JPL, our research results have been reported at several Section-, Division- and Lab-

wide presentations and published in the JPL’s Interplanetary Network Progress Report 

42-192, (February 15, 2013). A new IPN Report is currently being prepared. The inno

vative technical solutions developed in the course of this research have been disclosed in 

the following JPL’s Novel Technology Report NTR 49465, Intensity interferometry Image 

recovery, submitted on February 12, 2014. 

The NIAC program is viewed as a seedling program designed to validate a novel, revolu

tionary concept and to develop it to a sufficient level to become attractive for other NASA 

offices or for outside funding. Therefore a significant effort was made to secure the follow-on 

funding. The above-mentioned JPL meetings were partly focused on this goal. In addition 

to that, the following proposals have been submitted, see Table VI. Future proposal activity 

is also planned. 

Title Submitted Agency (program) $$ K Status 

Cross-band Ghost Imaging 

of Space Objects August 2014 JPL (CIF) 100 Under consideration 

Intensity interferometry for 

imaging dark objects in space May 2014 JPL (RTD Concept) 200 Under consideration 

Intensity correlation for imaging 

dark objects in space March 2014 NASA (APRA) 992 Under consideration 

Imaging of Spacecraft by 

Intensity Interferometry August 2013 NRO (DII) 450 Program cancelled 

TABLE VI: List of proposals submitted for follow-on funding.
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V. CONCLUSION
 

To conclude this report, we would like to summarize that our “Ghost Imaging of Space 

Objects” NIAC research effort was successful. As anticipated, its main return has been 

the newly acquired knowledge and the understanding of the pathways that lead from this 

knowledge to its applications in observational astronomy. During this research we came 

across several fundamental insights that were not expected at the beginning. We came to 

realize that the ghost imaging of dark objects using background thermal light can be treated 

as a special case of Hanbury Brown and Twiss intensity interferometry in combination with 

the Babinet’s principle for higher-order observables. Extensive recent work performed in 

this field by other research groups worldwide might seem to detract from the conceptual 

originality and novelty of our approach; but at the same time it serves as an encouraging 

indication that the chosen approach is acknowledged in the broader science community as 

promising. This newly found synergy, acknowledged in the CTA newsletter from May 2014 

reporting on the Workshop on Hanbury Brown and Twiss interferometry in Nice, makes 

us confident that our published and otherwise disseminated results will be integrated into 

a larger-scale on-going research effort aimed at performing astronomy observations of both 

bright and dark objects with unparalleled resolution. 

While we are satisfied with acceptance of our results by the international research com

munity as a contribution to the field of intensity interferometry as well as to the on-going 

mission-oriented projects, we also have been aiming at receiving support to continue and 

advance this research at JPL. Several proposals have been submitted in pursuit of this goal. 

Three of them are still under consideration, and we expect to learn about the funding deci

sions soon. These new projects would leverage the results of this NIAC study and extend it 

along well-defined directions that have been discussed above. 

Shifting the main paradigm of our approach towards intensity interferometry entailed 

another important realization, that the actual imaging of dark objects, in a sense of mapping 

the column optical density distribution, is possible by using known numerical techniques, 

such as the Gerchberg-Saxton approach. This insight was also unanticipated in the beginning 

and caused a shift of the research focus from the initial plan. While this focus shift has been 

well-justified and fruitful, it has left several issues unexplored. Some of these issues, too, are 

included in the future research proposals. 
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First among such outstanding questions is the fundamental possibility and practical feasi

bility of ghost imaging in the transmitted-scattered configuration, such as shown in Fig. 4(a) 

and, in fact, on the title page of this Report. The study of this configuration has been deemed 

to have a low priority because of the difficulties and cost of its practical realization. How

ever this study is still interesting from the fundamental point of view because it goes beyond 

the Hanbury Brown and Twiss measurement paradigm, and still may be feasible for the 

near-space objects. In this context, it might be interesting to study the scattered-scattered 

configuration, which completely eliminates the direct source light and therefore may feature 

increased SNR. 

Another question, or rather a series of connected questions, to be studied in the future 

is related to other observables then the Glauber intensity correlation function (7) and its 

variants. One such alternative comes from generalization of Eq.(7) for higher powers m 

and n of the measured intensities. It has been shown [70] that this could lead to higher 

contrast images but perhaps with a worse SNR. The optimization of the powers m and n 

and discussion of the ensuing trade-offs is available in [43]. Applying this technique to our 

imaging architecture may potentially allow us to further increase the imaging contrast and 

background suppression. Another novel detection technique [47, 48] relies on measuring a 

variance of the difference of two detectors signal, rather than on photo counts coincidences 

(i.e., a product). Using correlation observables based on more than two detectors is yet 

another intriguing possibility [49, 50] which may be useful for the phase retrieval task. Ob

taining the “closure phase” between the three detection points could assist or even substitute 

the numerically intensive and intrinsically ambiguous techniques such as Gerchberg-Saxton 

reconstruction. These alternative detection techniques may offer interesting trade-offs in 

terms of the resolution, SNR and instrument requirements, and therefore should be studied 

as a part of future development of this technology. It is important to point out that the 

analytical and numerical computations required for this study are going to be very similar 

to those we performed here. Indeed, the part of the analysis that describes the optical 

field propagation from the source to the detectors, and also includes the object’s model, 

will be the same. This is the most extensive and complex part of the analysis. Therefore 

it is indisputable that this research has successfully formed a theoretical foundation to the 

follow-on effort. We are also confident that it has succeeded in sparking enough interest to 

such follow-on study and technology development to make it imminent. 
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