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Abstract 

The key objectives of this study are to investigate, both computationally and 

experimentally, which forms, compositions, and layerings of hydrogen, boron, and nitrogen 

containing materials will offer the greatest shielding in the most structurally robust combination 

against galactic cosmic radiation (GCR), secondary neutrons, and solar energetic particles (SEP). 

The objectives and expected significance of this research are to develop a space radiation 

shielding materials system that has high efficacy for shielding radiation and that also has high 

strength for load bearing primary structures. Such a materials system does not yet exist. The 

boron nitride nanotube (BNNT) can theoretically be processed into structural BNNT and used 

for load bearing structures. Furthermore, the BNNT can be incorporated into high hydrogen 

polymers and the combination used as matrix reinforcement for structural composites. BNNT’s 

molecular structure is attractive for hydrogen storage and hydrogenation. 

There are two methods or techniques for introducing hydrogen into BNNT: (1) hydrogen 

storage in BNNT, and (2) hydrogenation of BNNT (hydrogenated BNNT). In the hydrogen 

storage method, nanotubes are favored to store hydrogen over particles and sheets because they 

have much larger surface areas and higher hydrogen binding energy. The carbon nanotube 

(CNT) and BNNT have been studied as potentially outstanding hydrogen storage materials since 

1997. Our study of hydrogen storage in BNNT - as a function of temperature, pressure, and 

hydrogen gas concentration - will be performed with a hydrogen storage chamber equipped with 

a hydrogen generator. The second method of introducing hydrogen into BNNT is hydrogenation 

of BNNT, where hydrogen is covalently bonded onto boron, nitrogen, or both. Hydrogenation of 

BN and BNNT has been studied theoretically. Hyper-hydrogenated BNNT has been 

theoretically predicted with hydrogen coverage up to 100% of the individual atoms. This is a 

higher hydrogen content than possible with hydrogen storage; however, a systematic 

experimental hydrogenation study has not been reported. A combination of the two approaches 

may be explored to provide yet higher hydrogen content. The hydrogen containing BNNT 

produced in our study will be characterized for hydrogen content and thermal stability in 

simulated space service environments. These new materials systems will be tested for their 

radiation shielding effectiveness against high energy protons and high energy heavy ions at the 

HIMAC facility in Japan, or a comparable facility. These high energy particles simulate 

exposure to SEP and GCR environments. They will also be tested in the LaRC Neutron 

Exposure Laboratory for their neutron shielding effectiveness, an attribute that determines their 

capability to shield against the secondary neutrons found inside structures and on lunar and 

planetary surfaces. 

The potential significance is to produce a radiation protection enabling technology for 

future exploration missions. Crew on deep space human exploration missions greater than 

approximately 90 days cannot remain below current crew Permissible Exposure Limits without 

shielding and/or biological countermeasures. The intent of this research is to bring the Agency 

closer to extending space missions beyond the 90-day limit, with 1 year as a long-term goal. We 

are advocating a systems solution with a structural materials component. Our intent is to develop 

the best materials system for that materials component. In this Phase I study, we have shown, 

computationally, that hydrogen containing BNNT is effective for shielding against GCR, SEP, 

and neutrons over a wide range of energies. This is why we are focusing on hydrogen containing 

BNNT as an innovative advanced concept. In our future work, we plan to demonstrate, 

experimentally, that hydrogen, boron, and nitrogen based materials can provide mechanically 



  

  

 

  

 
 

 

   

   

  

     

 

  

 

  

 

  

     

  

      

  

 

 

    

    

 

 

 

   

   

  

  

 

  

 

    

    

  

    

   

 

 

    

  

3 

strong, thermally stable, structural materials with effective radiation shielding against GCR, SEP, 

and neutrons. 

Introduction 

The space environment contains major hazards to space travel, among which are space 

radiation and micrometeoroid and orbital debris (MMOD). The space radiation consists mainly 

of electrons and protons, solar energetic particles (SEP), and galactic cosmic radiation (GCR). 

The GCR is composed primarily of nuclei (fully ionized atoms) plus a small contribution (~ 2%) 

from electrons and positrons. There is a small but significant component of GCR particles with 

high atomic number (Z > 10) and high energy (E > 100 GeV) (Ref. 1). These high energy, high 

charge (HZE) particles comprise only 1% to 2% of the total GCR fluence, but they interact with 

very high specific ionizations and thus contribute about 50% of the long-term space radiation 

dose in humans (Ref. 2). The GCR particles, which are positively charged, interact with 

materials mainly by Coulomb interactions with the negative electrons and positive nuclei in the 

materials and to a much smaller extent by collisions with atomic nuclei in the materials. For 

these reasons, the energy loss of the GCR particles increases approximately with the charge-to

mass ratio of the materials. Hydrogen, with the highest charge-to-mass ratio of any element, 

provides the best shielding (Ref. 3). Since a shield of pure hydrogen is not practicable, hydrogen 

containing polymers make the most suitable candidates for shielding. Additional radiation 

hazards come from neutrons and gamma rays produced in nuclear collisions and from x-rays 

arising after Coulomb interactions. Neutrons are present inside the space structures; these are 

produced as secondaries when the space radiation interacts with the walls of the structures. 

Secondary neutrons are also present on the surfaces of Moon and Mars. 

The objectives and expected significance of the proposed research are to develop a space 

radiation shielding materials system that has high efficacy for shielding all radiations and that 

also has high strength for load bearing primary structures. Such a materials system does not yet 

exist. 

We know that hydrogen is effective at (1) fragmenting heavy ions such as are found in 

galactic cosmic radiation (GCR), (2) stopping protons such as are found in solar particle events 

(SPE), and (3) slowing down neutrons such as are formed as secondaries when the GCR and SPE 

interact with matter. Hydrogen, however, by itself is not a structural material. Polyethylene, 

with its empirical formula of CH2, contains a lot of hydrogen and is a solid material, but it does 

not possess sufficient strength for load bearing aerospace structural applications. The industry 

appears to be stuck with aluminum alloys for primary structures, retrofitted with polyethylene or 

water (H2O) for radiation shielding. Clearly, a newer paradigm or concept is needed. 

The NASA Langley Research Center (LaRC), Jefferson Sciences Association (JSA), and 

National Institute of Aerospace (NIA), as joint owners, have recently synthesized long, highly 

crystalline boron nitride nanotubes (BNNT) using a novel pressure/vapor condensation method.  

The BNNT have extraordinary strength and high temperature stability. The BNNT are made up 

entirely of low Z (atomic number) atoms - boron and nitrogen. Boron (Z=5) and nitrogen (Z=7) 

are larger than hydrogen (Z=1), but they are still small and they are smaller than aluminum 

(Z=13). 

The BNNT can theoretically be processed into structural BNNT, which is thermally 

stable up to 800OC in air, and used for load bearing structures. Furthermore, the BNNT are 

molecules; they can be incorporated into high hydrogen polymers and the combination used as 
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matrix resins for structural composites. The BNNT are nanotubes; their molecular structure is 

attractive for hydrogen storage. 

Boron has one of the largest neutron absorption cross sections of all the elements of the 

periodic table, and nitrogen has a larger neutron absorption cross section than carbon. The 

neutron absorption cross section for the isotope  B10  is 3835 barns, so enriching the BNNT or BN  

(boron nitride) with B10  would produce  even better protection against neutrons.  

Neutrons are produced as secondary radiation when the GCR and solar energetic particles 

(SEP) interact with the walls of the space structure (vehicle, lander, habitat) and also with the 

regolith on the surface of Moon or planets. This secondary neutron radiation has largely been 

ignored in previous space architectures, and yet neutron radiation is known to be damaging to 

humans especially with regard to the formation of radiogenic cancers. 

The possibilities are immense for using BNNT for multifunctional radiation shielding 

structural materials for future space exploration architectures. This early study is focused on a 

visionary aerospace concept. This is an architecture or systems concept, currently at TRL = 1-2 

in maturity, aiming 10 or more years in the future. This is a truly revolutionary concept that 

could redefine the future possibilities for NASA. 

Computations 

During the Phase I research, numerous materials were modeled for their effectiveness at 

shielding galactic cosmic radiation (GCR) and solar energetic particles (SEP). The computer 

code used was OLTARIS (On-Line Tool for the Assessment of Radiation in Space) (Ref. 4). 

OLTARIS is an integrated tool set utilizing the HZETRN (High Charge and Energy Transport) 

code developed at the NASA Langley Research Center. These tools are intended to help 

scientists and engineers study the effects of space radiation on shielding materials, electronics, 

and biological systems. 

The results of our modeling study showed that the higher the hydrogen content of the 

material, the better the radiation shielding effectiveness against both GCR and SEP. Water 

contains hydrogen, but it is a liquid and not a structural material; it can be used as part of the 

total radiation shielding system because water is a necessary consumable for all human 

exploration missions. Polyethylene is a solid material, but it does not have the strength and 

thermal stability to be a structural material for space applications. It also has some outgassing 

and flammability issues and should be encapsulated for many applications. 

How then can we produce a structural material that has high hydrogen content? We 

believe the answer is in BNNT. The structural properties are already verified. Suppose we could 

use the BNNT as the “vehicle” for carrying more hydrogen into the system. BNNT has the 

molecular nanotube structure and has a density of 1.3 - 1.4 g/cm3. It can hold a lot of hydrogen! 

Our OLTARIS modeling study indicates that hydrogen containing BNNT may offer 

excellent shielding effectiveness against GCR and SEP. When wall thicknesses and forms of 

materials that could actually be used to build spacecraft are considered, BN materials perform 

better than liquid hydrogen (LH2) and water. BN + 5% H performs better than state-of-the-art 

polyethylene as seen in Figure 1, where each material is 30-cm thick. 
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State-of-the-Art 

Lower Dose is 
Better 

(Each material is 30-cm thick.) 

Figure 1. 	Calculated exposure to galactic cosmic radiation (GCR) with shielding 

by a wall of the same thickness (30 cm) made of various materials. 

Figures 2 and 3 show our calculated results for GCR dose equivalent and SPE dose 

equivalent, respectively, for BN plus varying weight percents of hydrogen, as functions of areal 

density (g/cm2). In both of these figures, one sees that liquid hydrogen LH2 is the best shield, but 

one cannot build structures out of liquid hydrogen. The next best shield in both figures is the BN 

+ 20% hydrogen.  This is a solid material, and it can be used for structures. 
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Figure 2.  Galactic cosmic radiation (GCR) dose equivalent for BN + H materials. 
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Figure 3. Solar particle event (SPE) dose equivalent for BN + H materials. 

From our Phase I research, we have learned the following: 

  BNNT outperforms current SOA (state-of-the-art) structural materials from a mechanical 

and thermal perspective. 

  BNNT alone does not outperform current SOA radiation shielding  materials  - except for  

the case of secondary neutrons.  

 	 5% (by weight) hydrogen containing BNNT does outperform current SOA radiation 

shielding materials of the same linear thickness, with the increase in protection being 

substantial. 

 	 Several of the key technical challenges for BNNT relate to production (increased yield, 

scalability, and the capability to grow even longer tubes). LaRC is now producing tubes 

again (after relocating the equipment from one facility to another). The work on BNNT 

production is funded from a different program source, and so we were able to leverage 

off this other funding for our NIAC work. This allowed us to focus on radiation 

shielding. 

 	 The major radiation protection challenge for human spaceflight is against GCR. SEP and 

secondary neutrons are also significant challenges, and BNNT can serve as a significantly 
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enhancing solution to these. The team has realized that our focus should be on exploring 

the requirements and needs for a GCR solution, because BNNT can likely provide either 

an enabling or significantly enhancing GCR solution, with the understanding that the 

system thus produced will also provide solutions to the SEP and neutron challenges. 

  We have identified the rationale to explore the hydrogen containing BNNT approach for 

protection against GCR radiation. 

Processing of BN/Polymer Nanocomposites 

The primary objective for our processing work for the Phase I was to process polyimide 

composite films of varying weight percents of hexagonal boron nitride (h-BN). Some of the 

initial films that were made were then tested for tensile strength, hardness, toughness, and glass 

transition temperature (Tg). The remaining films will be utilized in making a 0.5 g/cm2 layered 

specimen for neutron radiation exposure analysis to be conducted at LaRC. 

LaRC-SI (soluble imide) is a thermoplastic co-polymer. It was selected for this study due 

to its high strength and thermal durability, as well as its capacity to be processed into thicker 

structures, not just films. Additionally, LaRC-SI is commercially available in many forms in 

large quantities. Since it is a soluble imide, it can be purchased not only as a powder, film, or 

other solid, but also as a solution, something that can offer many simplistic processing 

techniques for its use in composites. LaRC-SI also contains hydrogen, although not as high a 

percentage content as polyethylene. Compared with polyethylene, though, it offers much higher 

mechanical, thermal, and structural properties. Considering all this, LaRC-SI was deemed an 

excellent choice as the polyimide matrix for the processing of the boron nitride nanocomposites 

for this study. The molecular structure of LaRC-SI is shown in Figure 4, and some of the 

properties of LaRC-SI are given in Table I. 

Figure 4.  Structure of LaRC-SI co-polymer polyimide. 
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Table I.  LaRC-SI polyimide. 

Company Type 
Tg 

(OC) 

Cure 

temp. 

(OC) 

Upper use 

temp. (OC) 

Tensile 

strength 

(MPa) 

Tensile 

modulus 

(GPa) 

Density 

(g/cm3) 

Imitec, 

Inc. 

20% solids 

solution with 

0.5% offset 251 300 230 141 4 1.37 

Hexagonal boron nitride (h-BN) is a structural analog to graphite. It can also be 

purchased in many forms at a commercial level, including powders, platelets, and ceramics. The 

powder form of this compound was selected for use in this study for multiple reasons. To start, 

the use of hexagonal boron nitride (h-BN) allowed for a baseline study comparison for the 

eventual incorporation of boron nitride nanotubes (BNNT) into polyimide nanocomposites. 

Hexagonal BN is a composition analog to BNNT, but BNNT offers much more impressive 

physical properties due to the advanced nanostructure. For example, it is estimated that BNNT 

has a maximum service temperature of 800OC and a Young’s modulus of 1.18 TPa. It is 

expected that the addition of BNNT to composites will greatly improve the material’s strength 

and thermal resistance, among other properties. Additionally, h-BN was selected for this study 

since boron has one of the largest thermal neutron capture cross sections among the periodic 

elements. Borated polyethylene is in fact used commercially as a radiation shielding material. 

The high hydrogen content of the polyethylene is good at slowing down the incident radiation to 

lower energies, such as within the thermal energy region, and then the boron is able to absorb the 

low energy radiation. Together the composite works as a great shielding system. Additionally, 

h-BN was selected for use in this study since it also has some wear-resistance properties due to 

its graphite-like structure. The powder form of the material was selected, as it provided the 

easiest means of incorporating the h-BN into polyimide nanocomposites. Figure 5 shows the 

structure of hexagonal boron nitride (h-BN), and Table II gives some of the properties of h-BN. 

Figure 5.  Structure of h-BN. 
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Table II. Hexagonal boron nitride powder. 

Company Grade 

Particle 

size (μm) 

Surface area 

(m2/g) 

Tap density 

(g/cm3) 

Apparent 

density (g/cm3) 

Saint-Gobain 

PSHP 

605 6 7 0.35 2.2 

Momentive 

Performance Materials NX1 0.8 20 0.12 2.2 

The solvent used in the processing was N-methylpyrrolidone (NMP), which is an organic 

solvent. Figure 6 shows the molecular structure of NMP, and Table III gives some additional 

information for the NMP used in this study. 

Figure 6.  Molecular structure of NMP. 

Table III. N-methylpyrrolidone (NMP) solvent. 

Company Grade Boiling point (OC) 

Fisher Biotech peptide synthesis grade 202-204 

A total of forty-three high-quality films were processed for this study, with varying weight 

percents of h-BN - specifically 0%, 5%, 10%, and 20%.  Twenty of the films were reserved for 

the fabrication of the layered neutron radiation exposure specimen.  The average measured 

thickness of each film was around 0.3-mm thick.  The average density of each film with the 10% 

h-BN was around 1.42 g/cm3. Characterization of these films will be continuing, including 

neutron exposure testing in LaRC’s 1-Curie americium-beryllium source. 

Technical Work Plan for Hydrogen Containing BNNT 

The major focus for the next phase of our research effort is to study the major feasibility 

issues associated with the cost, performance, development time, and key technologies pertinent 

to the development of the hydrogen containing BNNT concept for radiation shielding. LaRC is 

already making high-quality BNNT, so we have a readily available supply of the tubes for our 

work. Simultaneous with our work on hydrogen containing BNNT, a sizable effort at LaRC is 

underway on the further development of the BNNT with other program funds. This other work 

is focused on increased production yield and also on decreased costs for production and 

purification of the BNNT. 

There are two paths for introducing hydrogen into BNNT: 
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  Hydrogen storage in BNNT 

  Hydrogenation of BNNT (hydrogenated BNNT) 

The first approach is the hydrogen storage  route.   A number of studies have been 

published about hydrogen storage nanostructured materials.   Nanotubes have been favored to 

store hydrogen over particles and sheets because  they  have  more surface  area and higher 

hydrogen binding  energy.   Carbon nanotubes and boron nitride nanotubes have been studied as 

outstanding hydrogen storage materials since 1997  (Ref. 5).   Theoretical ab initio  calculations 

showed that BNNTs are  a preferable medium for  hydrogen storage compared with CNTs 

because of the heteropolar binding nature of their atoms  (Ref. 6).   BNNT bonds, because of their 

ionic character, offer 40% higher binding e nergy  of hydrogen than CNT  bonds.   The point  

charges on the tube’s wall induce a dipole on the hydrogen molecule resulting in more  efficient 

binding  (Ref. 7).   The binding energy in BNNTs is even greater than that in planar BN sheet by  

about 10%, which is presumably due to the buckling (curvature with sp 3  nature) of  BN bonds.   

The diffusion of hydrogen is therefore slower in small diameter BN nanotubes than in larger 

diameter ones  (Ref. 8).   Therefore, the hydrogen desorption temperature of BNNT is expected to 

be much higher as well, which is beneficial for use in high temperature environments.   

Experimentally, multiwall bamboo-like BNNT showed up to 2.6  wt% hydrogen storage  (Ref. 9),  

and collapsed structure  BNNTs could store up to 4.2  wt% hydrogen  (Ref. 10)  even at room 

temperature, which is significantly higher than for  CNTs.   The majority  (95%) of the adsorbed 

hydrogen was  safely stored up to 300 to 450OC.  

The BNNTs produced by NASA LaRC (Ref. 11) may store much higher hydrogen than 

the reported BNNTs because they can provide much higher specific surface area (SSA) with 

thinner and longer tubes. They can provide also smaller pores among the bundles, which allows 

more effective absorption of hydrogen with higher heat of adsorption (Ref. 12). 

Figure 7 shows hydrogen storage in different types of nanotube bundles - carbon NTs and 

boron nitride NTs. The photographs are taken from grand canonical Monte Carlo simulations 

(modified from Ref. 7). 

Figure 7.	 Hydrogen storage in different types of nanotube bundles – 
carbon NTs (left) and boron nitride NTs (right). 

Several theoretical studies to improve the hydrogen storage capacity have been published.  

Defects on the BNNT wall can improve the hydrogen storage. The vacancies reconstruct by 
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forming B-B and N-N bonds across the defect site, and the defects offer smaller charge densities 

that allow hydrogen molecules to pass through the BNNT wall for storing hydrogen molecules 

inside the BNNT (Ref. 13). In addition, metal (rhodium, nickel, palladium, or platinum) doped 

BNNTs can store more hydrogen molecules because hydrogen interacts highly with metal atoms 

due to the hybridization of the metal d orbital with the hydrogen s orbital (Ref. 14). The thin, 

long LaRC BNNTs possess well-defined inner tube storage to take up hydrogen more effectively 

compared with bamboo or herringbone type BNNTs. Nitric acid treatment can open the tips of 

the tubes and create minor defects to expedite hydrogen uptake into the tubes also. 

Our study of hydrogen storage in LaRC BNNTs will be performed - as a function of 

temperature, pressure, and hydrogen gas concentration - with a hydrogen storage chamber 

equipped with a hydrogen generator. A quartz hydrogen chamber (Carbolite, Ltd.) and a 

pressure chamber (5100 Reactor, Parr Instrument Company) will be used, both of which are 

already available in our laboratory (Fig. 8). The uptake hydrogen content will be analyzed with a 

modified surface analyzer (Nova 2200e, Quantachrome) and TGA-mass spectroscope (STA 409, 

Netsch). 

Figure 8.	 Left: a quartz hydrogen chamber (Carbolite, Ltd.). Right: a 

pressure chamber (5100 Reactor, Parr Instrument Company). 

The second approach is the hydrogenation  of BNNTs, with hydrogen bonded  covalently  

onto  boron or nitrogen or both.   The hydrogenation of BN and BNNT has been studied 

theoretically  (Refs. 13  and 15).   Hyper-hydrogenated BNNTs can be created with hydrogen 

coverage up to 100%  of the individual atoms,  theoretically.   Therefore, higher hydrogen content 

can be  achieved by this approach compared with the hydrogen storage approach;  however, a  

systematic  experimental hydrogenation study has not been reported.   Although high hydrogen 

containing  BNNTs can be achieved, this approach may sacrifice  to a certain extent the other 

attractive  structural and thermal characteristics of  BNNTs by disrupting  p  conjugated sp 2 BN 

bonding.   An optimum degree of hydrogenation should,  therefore, be determined depending  on 

the missions to be applied.  

A hydrogen plasma quartz chamber and a low-pressure hydrogenation chamber with a 

catalyst will be employed for hydrogenation. Raman, FTIR, and TGA-mass spectroscopy will be 

used to assess the degree of hydrogenation. 

Combining both hydrogen storage and hydrogenation approaches may provide 

synergistically improved radiation shielding effectiveness because modified sp 2 bonds on 

BNNTs can afford more hydrogen storage. We shall try both approaches. 
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Once we have produced thermally stable high hydrogen containing BNNTs, we shall then 

incorporate them into high hydrogen, high performance polymers. NASA LaRC has world-class 

high performance polymer synthesis expertise and facilities, so this shall be the easiest part of 

our research. The resulting polymeric materials or nanocomposites will be characterized at 

LaRC for a number of relevant mechanical, dynamic mechanical, and thermal properties for 

space structural applications. 

We shall also characterize the hydrogen containing BNNT composites for their radiation 

shielding effectiveness. They will be tested in the LaRC Neutron Exposure Laboratory. This 

facility has a 1-Curie americium-beryllium source and an indium foil detector with a 

programmable counter. High energy proton and high energy, heavy ion beam testing will also be 

conducted at outside facilities. Historically, we have conducted our radiation beam testing at the 

NASA Space Radiation Lab (NSRL) located at the Brookhaven National Lab (BNL), the 

Lawrence Berkeley National Lab (LBNL), and the HIMAC (Heavy-Ion Medical Accelerator in 

Chiba) facility in Japan. We plan to continue radiation testing at one or more of these facilities. 

We shall also continue our OLTARIS radiation transport modeling studies to compare the 

experimental results with the theoretical predictions. 

We intend to explore different forms of our new materials - films, fibers, yarns, fabrics, 

thick castings, and composites. We intend to explore applications of these forms within the 

mission concept, protecting humans in crew habitable volumes. 

The modeling effort started in Phase I of this work will be continued. Recent and 

continuing modifications to the OLTARIS (On-Line Tool for the Assessment of Radiation in 

Space) code are helping to increase the fidelity of this modeling and, in particular, there is 

ongoing work to better model the effects of radiation on electronics as well as to incorporate the 

effects of secondary neutrons. As the materials development cycle progresses, there will be an 

iterative process to determine how the new formulations affect the radiation shielding 

capabilities as well as give feedback on required changes to the materials. The modeling work 

will also inform the systems analysis study as well as influence the design of experiments to be 

conducted at the radiation beam testing facilities. These experiments generally tend to be 

expensive to set up, conduct, and analyze and, therefore, the modeling work will be essential to 

maximizing the benefits that can be obtained from them. In addition to calculating the influence 

of hydrogen on the radiation shielding, there will be a concerted look at the effects that layering 

different materials has on the radiation environment within the spacecraft. This comes from the 

appreciation that spacecraft, habitats, and extravehicular activity suits are inherently multilayered 

structures, as well as the need to look at the possible synergistic shielding effects that different 

materials layers might have. Among the data that can be obtained from the OLTARIS code are 

the identities and fluences of the species that result from the interaction of the incoming radiation 

with the various components of the shield and structure. Using this information and numerical 

modeling using Genetic Algorithms (GAs), it is intended to further optimize the deployment of 

materials layers for the most effective shielding. GAs are robust search algorithms that are used 

in a range of optimization problems and will be used to optimize the sequence of materials that 

best attenuates the expected secondary particles. 
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Pathway to Flight 

As part of the future activities, the team will define a pathway for bridging the 

“technology valley of death” between the fundamental materials systems technology research 

and flight, merging the results of the fundamental research, materials systems development, and 

systems analysis activities into an integrated plan that outlines the remaining challenges and 

defines a path to flight that overcomes those challenges. Central to the development of this plan 

will be the mission concept, which will provide a common structure for connecting the bottoms-

up research and top-down analysis and serving as a vision for the fundamental research and 

materials systems development activities and providing context for the systems analysis 

activities. This “systems” development approach will focus the team’s energy, ensuring that the 

research and analysis activities drive the technology towards flight. 

The fundamental research activities will develop the approach for getting hydrogen into 

the BNNTs - through hydrogen storage, hydrogenation, or both - and then processing and 

characterizing the nanocomposites in different useful forms. This research will retire an existing 

challenge (identification of an approach for getting hydrogen into the BNNTs), assess the 

properties and performance of different hydrogen containing forms, and identify any key 

challenges associated with the initial processing of the hydrogen containing BNNT into various 

forms. The nanocomposite forms will then be manufactured into materials systems that will be 

tested on the ground for radiation shielding effectiveness, with the materials system options 

assessed being aligned to the mission concept. This approach will ensure that the materials 

system options selection is guided by the initial systems analysis activities, which will focus on 

characterizing the radiation shielding performance of different materials systems for deep space 

habitation systems. Insights obtained from manufacturing these materials systems will also be 

used to inform later systems analysis activities, which will assess the cost and risk impacts of and 

identify alternative uses for the materials systems. 

This integrated approach merges the fundamental research, materials system 

development, and systems analysis activities together to ensure a complete, systematic, end-to

end assessment that will identify the remaining key challenges - so that a realistic, measured 

pathway to flight can be layed out for the mission concept, protecting humans in crew habitable 

volumes. 

This investigation into developing a space radiation shielding system using BNNT 

leverages LaRC’s existing facilities, ongoing research, and licensing agreements. LaRC 

synthesizes BNNTs using an operational production apparatus consisting of a laser (5-kW CO2 

laser), chiller, pressure vessel, boron feedstock, N2 gas feed, interlocks, cameras, mirrors, 

ventilation system (because of the nanoparticles produced), and the appropriate enclosures, blast 

shields, and utilities for safety and operation. High power laser energy is used to vaporize boron 

while in a high-pressure nitrogen atmosphere to produce highly crystalline BNNTs. The 

optimization and scale-up of BNNTs are currently funded research efforts; the resulting data 

(materials property and composite processing data) can be leveraged at no cost to this radiation 

study.  A suite of BNNT patents has been licensed from NASA and its joint owners. This 

provides scale-up opportunities for the baseline material and enables the possibility of future 

large-scale structural components in our roadmap transition plan. LaRC currently has a draft 

Space Act Agreement in review to work collaboratively with the company that licensed the 

technology, in order to advance jointly the science and development of BNNT technologies. 
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A detailed reference mission concept (RMC) will be developed early in this investigation 

to serve as a common structure for connecting the bottoms-up research and top-down systems 

analysis. A technology infusion impact assessment will then be performed against this RMC, 

with a performance-only assessment being developed and a performance, cost, and risk 

assessment being subsequently developed.  To perform the assessment, detailed implementation 

options for infusing technologies will be developed and then assessed in the context of deep 

space mission architectures. Mission concepts used for the assessments will include Mars 

conjunction-, Mars opposition-, 1-year Near Earth Asteroid (NEA), and 2-year NEA class 

missions. 

The pathway to flight definition will be finally developed. The technology- and system-

level challenges that need to be resolved before flight will be updated to reflect findings from 

earlier study activities. A preliminary pathway to flight will then be iteratively developed by the 

team that (a) provides a realistic technology development path to flight, (b) defines the 

technology- and system-level challenges that need to be resolved prior to flight with anticipated 

retirement paths, (c) identifies the key enabling technologies, their current state of technology 

readiness, and planned/possible maturation paths, and (d) provides targeted infusion points for 

Mars, NEA, or lunar architecture being actively considered by HEOMD. An assessment of 

alternative applications for the technologies will also be provided as part of the pathway to flight, 

with the common development paths between each alternative application and the mission 

concept application being identified. 

Concluding Remarks 

During this NIAC Phase I study, we have accomplished the following: 

 	 We have established, computationally, that hydrogen (H) containing BN and BNNT 

materials (hereby named HBN materials) can outperform the state-of-the-art polyethylene 

with respect to radiation shielding. Since BNNT materials are vastly superior with 

respect to mechanical and thermal properties, our HBN materials have the potential to be 

disruptive, multifunctional, structural radiation shielding materials. This is a 

Revolutionary Breakthrough! 

 	 We have made a sizable supply of hexagonal boron nitride (h-BN) containing LaRC-SI 

polyimide nanocomposite films.  We have begun characterizing these materials for 

structural materials properties and radiation shielding effectiveness. 

  We have developed a technical work plan using existing LaRC equipment for producing 

hydrogen containing BNNT (i.e., HBN). 

  We have developed a comprehensive computational, experimental, and systems analysis  

approach  for proceeding  on a pathway to flight.  
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