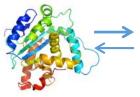
PROTEOMIC ASSESSMENT OF FLUID SHIFTS AND ASSOCIATION WITH VISUAL IMPAIRMENTS AND INTRACRANIAL PRESSURE IN TWIN ASTRONAUTS

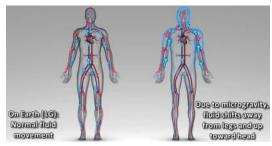
Brinda Rana, PhD Mike Stenger, PhD Vivian Hook, PhD

Specific Aims

To explore proteomic and genomic biomarkers underlying space flight-induced fluid shifts and visual impairment & intracranial pressure (VIIP) symptoms.

The proteome is the set of proteins produced by the genome at a given time. Proteomics captures the state of molecular and cellular processes at a specific time point.


Implications of the Research for Space & Earth


Space: Discovery of molecular pathways involved in the evolution of spaceflight adaptations related to fluid redistribution in-flight and the etiology of visual acuity and ocular changes in-fight and post-flight.

Earth: This project has broader impact on Earthbased clinical areas such as traumatic brain injury-induced elevations of intracranial pressure, hydrocephalus, and glaucoma

Blood Plasma proteins

In-flight Operations

Blood Plasma collection
Ultrasound measures
of fluid shifts
Intracranial Pressure
Intraocular Pressure
Ocular Structure
Blood Pressure
Heart Rate
Vascular Resistance

Pre- and Post-flight Testing

All in-flight operations and:
Tissue hydration
MRI