SURREY Changing the economics of space

### Reduced Risk for a Lesser Cost Approach

Small Satellite Reliability Technical Interchange Meeting February 14, 2017

SATELLITE TECHNOLOGY US



### Introduction

» Reducing mission risk while maintaining reliability... at a low cost

• Surrey approach

 $\odot$  Employing COTS parts where possible

 $\circ$  Fully utilize spacecraft resources

- Power
- Mass
- Data storage/Telemetry



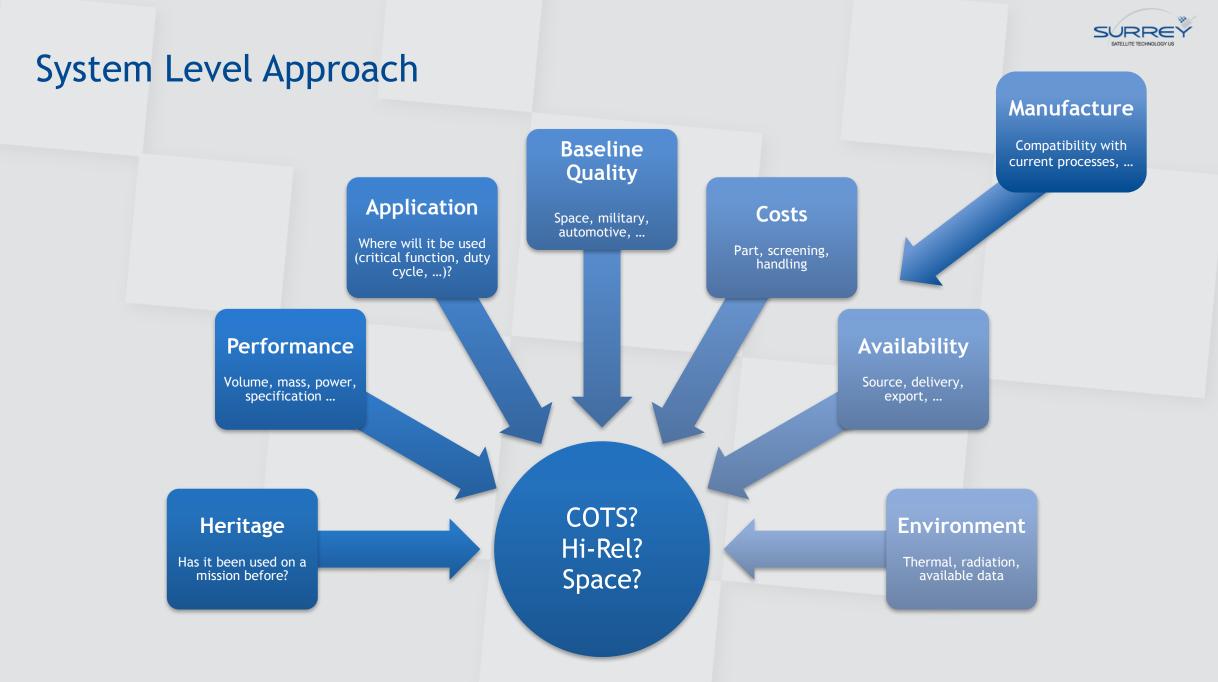
## COTS

#### What do I mean by COTS?

- Standard part, standard design, on the shelf, i.e. bought off a data sheet and not specifically designed for your program
- Commercial COTS, plastic parts etc.
- (Military COTS is not a world wide concept although available in the US)
- Why try to use COTS components?
  - In simple terms ... to drive down the price and schedule of satellite missions
    - o Cost
    - $\circ$  Schedule
    - o Availability
    - o Innovation
- w How to use COTS components?



### An Approach To Using COTS in Small Satellites


» Apply common space industry standards and approaches

- Screening at the part level
- Parts-level analyses
- Provides assurance from the component level upwards
- » A 'bottom-up' approach, often driven by multiple contractual layers
  - Will impact cost and schedule



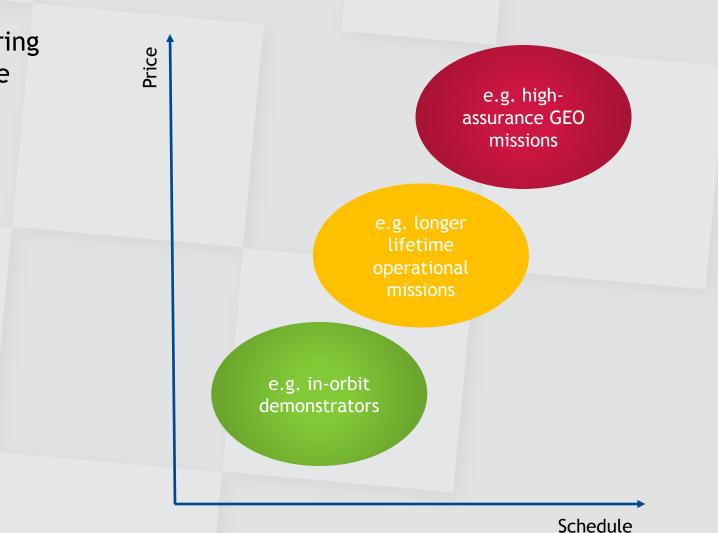
### Another Approach To Using COTS in Small Satellites

- Consider what you want the mission to achieve
  - Technology demonstration, operational, lifetime, environment, etc.
- Consider what the mission price and schedule constraints are
  - Absolute deadline for launch (e.g. frequency filing), limited funding, etc.
- Consider your risk profile
- » A 'big picture', top-down approach
  - Asking the right questions can allow you to <u>achieve</u> mission objectives and <u>value</u> for money





### System Level Approach


- Parts selection is an integrated part of the design process
- » Mission life and mission environment
- Margins
- Redundancy philosophy
- » Radiation exists! so factor it into the system and board design
  - Consider the use of spot shielding by using high density metals (e.g. copper, brass or tantalum)
  - Consider replacing the part altogether with a rad-hard version if shielding is insufficient
  - If a part is sensitive to single event effects (SEE) then consider mitigation measures
    - $\circ~$  Error-detection and correction (EDAC)
    - Triple mode redundancy (TMR)
    - Power system design

» Additional screening and radiation testing of certain critical components (if needed)



### System Level Approach: Adaptability

- Allows adaptation of the solution during the mission design to reach a balance between
  - Mission requirements
  - Risk profile
  - Schedule
  - Price



**Risk Perception** 



### An Example Mission

» Mission in a Medium Earth Orbit (MEO) for a traditional space customer

- What's your first instinct on parts approach? Can you use COTS or not?
- Bringing Into Use (BIU) mission
- Required operational lifetime of 2 years
- Technology demonstration of new payload elements
- Hard deadline for frequency filing, you have just over two years until launch
  - Now what approach are you thinking?



### An Example Mission: GIOVE-A

#### » System Level Approach

- Heritage based (COTS) avionics
- Applied additional shielding
- Introduced select changes in avionics design
- Redundancy in system design

#### Outcome Outcome

- Delivered in 28 months for €28M (~\$31M)
- Launched 28 December 2005 with signals generated 12 January 2006
- Full mission success





### **Mission Level Approach - Shared Resources**

- There is increasing interest in utilizing available resources on space assets, allowing a cheaper alternative and solution
- Accommodate a wide range of payload operational requirements, while ensuring optimal spacecraft resources and data access
  - Leverage proven and demonstrated technical, programmatic, and financial capabilities to provide the end-to-end elements required for successful hosted payload missions
  - Flight-proven, spacecraft buses based on modular designs that are tailored to suit missionspecific payload and launch requirements.
    - Fully utilizing available capacity: Mass; Power; and Data
  - Flexible mechanical configurations accommodate internally and externally-mounted payload modules, supporting a wide range of missions for Earth and space sciences, remote sensing, technology demonstration, space situational awareness, communications, and navigation.



#### History of Hosted Payload Missions

» Surrey has a long history with hosted payload missions stretching back to 1981

# Surrey has hosted over 60 hosted payload missions on 32 of 43 satellites launched

- While there is no "one-size-fits-all" when it comes to providing hosted payload solutions, Surrey combines:
  - A rigorous technical approach and end-to-end solution
  - Inherently adaptable, modular designs
  - A flexible mindset
  - Desire to fully understand each stakeholder's motivations as well as key organizational and mission drivers

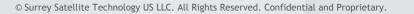


### Heritage and Modular Design

w Extensive flight heritage in multiple configurations



- Incremental controlled changes for platform development
- Starting from the core architecture, platforms are adaptable to many payloads needs
  - Deployable arrays
  - Fine pointing
  - Rapid tasking
  - Data interface options (CAN, RS422, 1553, Spacewire)




### **Example Hosted Payload Mission**

- Solution Strain Stra
  - SST-US owned and operated
  - Primary mission:

Fly a suite of Surrey payloads to demonstrate new platform and payload technologies

- Mission was initially designed for the SSTL-150 platform but interest from additional hosted payload providers led to the platform being grown to the SSTL-150 ESPA platform
- Platform growth allowed for additional mass and power capability that could be offered to a variety of hosted payloads
- Scheduled to launch on SpaceX Falcon Heavy, as part of the USAF Space Test Program





### Conclusion

• Reducing mission risk while maintaining reliability... at a low cost

- System Level COTS
  - Not a blanket approach to use COTS or to use high-reliability components
    - COTS technology is one element that can provide significant reductions in costs and schedule
    - However many grades of components can be used on space missions
      - » Pure terrestrial COTS components
      - » Military standard components
      - » Traditional high-reliability space qualified components
    - Select parts to meet the individual demands of the mission and of the requirements
- Mission Level Hosted Payloads
  - No "one-size-fits-all" when it comes to providing hosted payload solutions
    - Compatible mission pairing
    - Available resources: Power; Mass; Data/Telemetry
    - Flexibility in Spacecraft Design
      - » Flight-proven, spacecraft buses based on modular designs that are tailored to suit mission-specific payload and launch requirements

SURREY Changing the economics of space

### Thank You

#### Surrey Satellite Technology US LLC

345 Inverness Drive South, Suite 100 Englewood, CO 80112

SATELLITE TECHNOLOGY US

(303) 790-0653