NEEMO 23 EVA & Science Operations

Summary of Results

EVA-EXP-0071

EVA Exploration Working Group

September 17, 2019

David Coan (EVA)
Trevor Graff (ARES)
Jordan Lindsey (EVA)
Natalie Mary (EVA)
Matthew Miller (ARES)
Adam Naids (EVA Tools)
Cameron Pittman (ARES)
Mary Walker (EVA Tools)
Kelsey Young (ARES)
AGENDA

• Exploration EVA & Science Operations
• NEEMO 23 Mission Overview & Goals
 • Mission Overview
 • ESAT & EVA Team
 • Enabling EVA Science Operations for Lunar Surface Missions
 • Development & Integration Themes Focused on at NEEMO 23
 • EVA-Specific Goals for Integrated Operational Testing such as NEEMO 23
 • Relevancy for Science-Driven EVA Operations

• EVA & Science Objectives and Results
 • Exploration EVA Objectives Tied to Knowledge & Capability Gaps
 • ARES Proxy Planetary Science Objectives
 • EVA Informatics
 • EVA Tools & Equipment
 • EVA Concepts of Operations

• Summary of NEEMO 23 and Relevance to Artemis 2024
• Recommendations for Future Integrated EVA Testing at NEEMO
• Recommendations for Potential NEEMO 24 Mission
• Questions & Answers
• Backup Materials and Additional Information
EVA & Science Objectives per the Mission Objective Request (MOR) for NEEMO 23

"The primary objectives for the EVA Office & ARES/Science Division during NEEMO 23 are to develop informatics capabilities for the xEVA System (including xEMU), evaluate tools and equipment for operating on natural bodies, and examine concepts of operations for planetary missions. The major objectives and components for evaluation on this mission include 1) an augmented vision heads-up display; 2) integrated informatics to allow the crew to operate more effectively; 3) a support system that enables Intravehicular (IV) crewmembers to efficiently manage large amounts of data while directing an EVA; 4) an equipment transportation system for planetary operations, including wheeled and spacesuit-mounted capabilities; 5) tools for core sample acquisition; 6) integrated EVA and science operations during a lunar mission that includes signal outages/blockages; and 7) equipment and techniques for rescuing an incapacitated EVA crewmember."

"The results of the NEEMO mission will inform updates to the Exploration EVA System Concepts of Operations document (EVA-EXP-0042), facilitate closure of EVA capability gaps, and address Curation and Analysis Planning Team for Extraterrestrial Materials (CAPTEM) and Formulation Assessment and Support Team (FAST) findings for EVA collection of science samples. Take-aways from the mission will provide data for hardware design maturation to assist in road-to-flight, especially for the EVA science sample collection and storage tools, and assess xEVA system needs for all Exploration destinations."
NEEMO 23 MISSION OVERVIEW & GOALS
Overview

- 9-day saturation mission from Aquarius underwater habitat
- Exploration EVA, ARES, Gateway, and ISS related objectives
- External partner marine science and neuroscience
- Numerous participating organizations across NASA, JSC, and ESA
- External partnerships with DoD (Navy), Research Institutions, Universities, and Industry

Key Dates

- Full JSC Crew Training Week: May 13-17, 2019
- ARB Crew Training Week: June 3-8, 2019
- Engineering Saturation Run: June 10-13, 2019
- NEEMO 23 Mission: June 13-21, 2019

Crew Members

- Samantha Cristoforetti (Astronaut, CDR) European Space Agency (ESA), ISS Expedition 42/43
- Jessica Watkins (Astronaut Candidate) NASA
- Shirley Pomponi (Marine Scientist) Florida Atlantic University
 Harbor Branch Oceanographic Institute
- Csilla Ari D’Agostino (Neuroscientist) University of South Florida
- Mark “Otter” Hulsbeck (Habitat Technician) Florida International University
- Tom Horn (Habitat Technician) Florida International University
- Adam Naid (EVA Tools Engineer) NASA, Backup Crewmember

Mission Management Team (MMT – EISD/READy)

- XI / Trevor Graff
 Astromaterials Research & Exploration Sciences (ARES) | Integration Lead
- XI / Kelsey Young
 Astromaterials Research & Exploration Sciences (ARES) | Science Lead
- XM / Marc Reagan
 Exploration Mission Planning Office (EMPO) | Mission Director & IVA Lead
- XM / Bill Todd
 Exploration Mission Planning Office (EMPO) | Project Lead
- XX / David Coan
 Extravehicular Activity Office (EVA) | EVA Lead
NEEMO 23 ESAT & EVA Team

Engineering Saturation (ESAT) Crew & Core Team [SEATEST V]

- 4-day saturation test with experienced NASA aquanauts to configure equipment and run initial evaluations of objectives with subject matter experts
- First Aquarius saturation mission since Hurricane Irma
- EVA Lead, EVA PI, MCC Ops, Dive Team Lead, Working Diver
- Integration Lead, ST Ops, Dive Lead, Working Diver
- Science Lead, Working Diver, ST Ops

- **David Coan**
 Aquanaut | NASA EVA Office | EVA SME
- **Trevor Graff**
 Aquanaut | NASA ARES | Science SME
- **Tom Horn**
 Aquanaut | Florida International University | Habitat Technician
- **Mark “Otter” Hulsbeck**
 Aquanaut | Florida International University | Habitat Technician
- **Marc Reagan**
 Aquanaut | NASA EMPO
- **Bill Todd**
 Aquanaut | NASA EMPO

- Core Topside Team
- **Adam Naids**
 Acting EVA Lead | NASA EVA Tools
- **Kelsey Young**
 Acting Mission Director | NASA ARES

EVA & Science Operations

- David Coan (XX)
 EVA Lead, EVA PI, MCC Ops, Dive Team Lead, Working Diver
- Trevor Graff (XI)
 Integration Lead, ST Ops, Dive Lead, Working Diver
- Kelsey Young (XI)
 Science Lead, Working Diver, ST Ops

EVA Tools & Equipment

- Adam Naids (EC7)
 EVA Tools Lead, Working Diver, MCC Ops
- Mary Walker (EC7)
 EVA Tools, Working Diver Prospect, MCC Ops

IV Workstation & EVA Support System

- Cameron Pittman (XI)
 EVA Support System & IV Workstation, MCC Ops
- Matthew Miller (XI)
 EVA Support System & IV Workstation

MCC Ops Support for EVA

- Jordan Lindsey (XX)
 MCC Ops
- Natalie Mary (XX)
 MCC Ops

EVA Partners & Collaborators (POCs)

- Herve Stevenin
 ESA, LESA
- Paul McMurtrie
 U.S. Navy, Diving Equipment RDT&E Program Manager
- Dennis Gallagher
 U.S. Navy, DAVD Project Manager
- Tomas Gonzalez-Torres
 Iowa State University, Suit Mounted Tools Harness
- James Stoffel
 UND, EVA Repair of 3D Printed Hab

Plus a whole host of science partners from ARES, FAU, and FIU
ENABLING EVA SCIENCE OPERATIONS FOR LUNAR SURFACE MISSIONS

Extravehicular Activity Office (EVA/XX)
The Extravehicular Activity Office is charged with responsibility to serve as the EVA program management authority within NASA. The EVA Exploration Group within the office focuses on developing the Exploration EVA (xEVA) System for a wide range of destinations being considered by NASA, identifying and closing gaps in knowledge and capabilities, and defining future concepts of operations for EVA. An EVA Exploration Engineering & Operations Specialist is filling the critical roles of NEEMO Mission Management Team (MMT) member, EVA Lead, working diver, and EVA equipment expert, along with assisting the Mission Director. The EVA Lead has responsibility for all mission objectives and tasks conducted during EVA excursion operations, including integrating an executable EVA timeline with traceability back to EVA gaps and relevant objectives.

Astromaterials / Science Operations
Scientists from the Astromaterials Research and Exploration Science (ARES/XI) Division at JSC are leading the integrated science operations of NEEMO 23. This organization helped prepare the Apollo astronauts for lunar science operations, and continues today providing scientific support and curatorial facilities for human and robotic planetary exploration. Key science aspects incorporated and evaluated during this year’s NEEMO mission include the investigation of an integrated science support team during scientifically-driven EVA, sampling procedures, sampling tools, operational techniques, contamination mitigation strategies, storage and transport of science equipment and samples, traverse planning, handheld instrumentation, and integrated human-robotic operations. NEEMO 23 science tasks include marine science research as an analog for planetary surface geologic and scientific research. The Science Team will investigate and fill the roles of two NEEMO 23 Science Team Co-Leads, two working divers, a SciCom operating from a Science Backroom, a Science Documentarian, and a Science Officer, or Liaison, to the primary MCC. The flight-like environment in NEEMO is vital in testing this science support team structure as exploring the relationship between a separate science control center and the traditional MCC necessitates a full mission team.

The primary goal for the EVA Office during NEEMO 23 is to develop informatics capabilities for the xEVA System, evaluate tools and equipment for operating on natural bodies, and examine concepts of operations for planetary missions. The major objectives and components for evaluation on this mission include 1) an augmented vision heads-up display, 2) integrated informatics to allow the crew to operate more effectively, 3) a support system that enables Extravehicular (IV) crewmembers to efficiently manage large amounts of data while directing an EVA, 4) an equipment transportation system for planetary operations, including wheeled and spacesuit-mounted capabilities, 5) tools for core sample acquisition, and 6) integrating EVA and science operations during a lunar mission that includes signal outages.

From the Mission Days 5-6 Status Report

Evaluation of the Augmented Vision Device

The NEEMO 23 Science Team, ensuring realistic lunar proxy science objectives to the mission
Development & Integration Themes (4-T's) Focused on at NEEMO 23

Tools
- EVA Tools & Systems
 - Handheld Tools for Building & Repair
 - Handheld Tools for Science
 - Power Tools
 - Tool Transport & Stowage Systems
 - Mobility & Compatibility Requirements
 - Crew Rescue Systems

Instrumentation
- In-Situ Analytical Instruments
- Instrument Packages & Payloads

Sample Collection
- Sample Acquisition & Handling
- Contamination Mitigation
- Transportation & Stowage

Techniques
- Exploration Operations
 - Procedure Development
 - Communication Methods & Protocols
 - Data Visualization & Management
 - Timeline Tracking & Scheduling

- EVA Operations
 - EVA Concepts of Operations
 - Advanced EVA Capabilities

- Science Operations
 - Traverse Planning
 - Science Decision Making Protocols
 - Sample Acquisition & Documentation

- Robotic Operations
 - Autonomous vs Crew Controlled
 - Human-Robotic Interfaces

Technologies
- Emerging Technologies
 - Informatics & Intelligent Systems
 - Virtual/Hybrid Reality Environments
 - Medical & Human Performance
 - EVA Support Systems & IV Workstation
 - Advanced Spacesuit Developments

- Technology Collaborations
 - Commercial Connections
 - University & Institute Collaborations
 - Other Government Agencies Links
 - International Partnerships

- Innovations Incubator
 - Rapid Testing & Development
 - Idea Generation & Gap Recognition

Training
- Cross-Disciplinary Training
 - Involvement of Multiple Disciplines
 - Sharing Between Diverse Skill Sets
 - Extensive Expertise & Experiences

- Training Opportunities
 - Exploration Training
 - Science Training
 - EVA & Space Suit Training
 - Tool & System Training
 - Student Opportunities

- Astronaut Crew Training
 - Expeditionary Opportunities
 - Leadership Opportunities
 - Mission Realistic Environments
EVA-Specific Goals for Integrated Operational Testing such as NEEMO 23

The primary goal for EVA is to inform the Exploration EVA System Concept of Operations by exploring the combination of Operations and Engineering with Science for Exploration destinations in a mission-like environment:

- Advance the future of the Exploration EVA System and operations
- Understand EVA capability needs and concepts of operations for a wide range of Exploration destinations being considered by NASA
- Assess the system and architectural interactions between Operations, Engineering, and Science
- Determine and document closures to gaps in EVA capabilities and knowledge
- Develop and document concepts of operations for EVA at the Exploration destinations (EVA-EXP-0042)
- Realize the needs of EVA equipment and enable the development of concepts for design maturation on the road-to-flight
- Evaluate initial concepts for Artemis
NEEMO EVA science activities included deployment of handheld instrumentation, context descriptions, imaging, and sampling. The marine science activities and associated research objectives serve as an appropriate proxy for planetary surface exploration activities. Integration, coordination, and education from diverse disciplines and organizations.

Remote Sensing
In-situ Instrumentation
High-grading Samples
Context Descriptions
Documentation

Science Operations
Traverse Planning
Operational Flexibility
Human-Robot Ops
Crew Science Training
EVA & SCIENCE OBJECTIVES AND RESULTS

EVA INFORMATICS
EVA TOOLS & EQUIPMENT
EVA CONCEPTS OF OPERATIONS
ARES PLANETARY SCIENCE OBJECTIVES
The primary goal for EVA is to inform the *Exploration EVA System Concept of Operations* by exploring the combination of *Operations* and *Engineering* with *Science* for Exploration destinations in a mission-like environment.

<table>
<thead>
<tr>
<th>EVA Objectives</th>
<th>EVA Knowledge/Capability Gaps</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Navy Diver Augmented Vision Display (DAVD)</td>
<td>- EVA Suit Heads-Up Display</td>
</tr>
<tr>
<td>"EVA Augmented Vision Heads-Up Display"</td>
<td>- Mixed / Augmented Reality Capability</td>
</tr>
<tr>
<td>- Spacesuit HUD concept development for NASA</td>
<td>- EVA Graphical Display</td>
</tr>
<tr>
<td>- Operational assessment of DAVD for NAVSEA</td>
<td>- EVA Short Range Navigation</td>
</tr>
<tr>
<td>- Surface navigation for EVA</td>
<td>- IV Support System for EVA Operations</td>
</tr>
<tr>
<td>- EVA Support System and IV Workstation</td>
<td>- Tools for Science Sampling on a Surface EVA</td>
</tr>
<tr>
<td>- EVA digital cue cards</td>
<td>- Subsurface samples (core)</td>
</tr>
<tr>
<td>- Core Sample Acquisition System (Honeybee Robotics)</td>
<td>- Tool Carrier Device</td>
</tr>
<tr>
<td>- Modular Equipment Transportation System (METS)</td>
<td></td>
</tr>
<tr>
<td>- Wheeled Equipment Transport (WET)</td>
<td>- Tool Attachment/Harness for Surface EVA</td>
</tr>
<tr>
<td>- Suit-mounted Equipment Carrying System (SECS)</td>
<td>- Surface EVA Incapacitated Crewmember Rescue</td>
</tr>
<tr>
<td>- Pioneering construction</td>
<td></td>
</tr>
<tr>
<td>- ESA’s Lunar Evacuation System Assembly (LESA 2.0)</td>
<td></td>
</tr>
<tr>
<td>- Integrated EVA operations with science tasks</td>
<td></td>
</tr>
<tr>
<td>- Lunar-focused with signal blockages</td>
<td>- Integrated EVA Flight Control Methodology</td>
</tr>
<tr>
<td>- Comparison of crew IV vs ground IV</td>
<td>- Tools for Interacting with EVA Over a Comm</td>
</tr>
<tr>
<td>- Integrating informatics during EVA</td>
<td>- Latency (Blockage)</td>
</tr>
<tr>
<td>- Use of advanced informatics concepts during EVA</td>
<td>- Flexible Execution Methodology for EVA</td>
</tr>
<tr>
<td>- Flexible Execution Methodology (Fexecution)</td>
<td>Science Operations in Undefined Environments</td>
</tr>
</tbody>
</table>
In Situ Instrumentation Deployment

- Coral In Situ Metabolism (CISME) experiment deployment techniques and time constraints are analogous to high priority geologic instruments (XRF, XRD, LIBS, etc.)
- N23 Science Operations objectives focus on feasibility of EVA deployment of in situ tools real-time and efficacy of 1 vs 2 person operations
- Define areas through crew feedback that can be streamlined in support of future space applications involving non-destructive sample analysis

Opportunistic Sampling

- Sponge spawning and fertilization only if observed on EVA
- Specialized crew training and subsequent EVA 'flexecution'

Geological Sampling

- Determine the feasibility for novel sampling science operations techniques including (1) scouting, (2) “sterile” sample collection, and (3) real-time sample preservation by the NEEMO crew.
- Assess multiple sampling techniques including pneumatic coring and chiseling to efficiently collect high volume (~30) of individual samples while simultaneously minimizing contamination risk.
- Assess workload of crew sampling with 1 vs 2 crewmembers

Targeted Geologic and Biomolecular Small-Volume Sampling - The “Stinger”

- Demonstrate the feasibility of collection of a diversity of targets using a new small volume sampler—the "Stinger"
- Enables collection of high-resolution samples without damaging fragile structures
- Collect and preserve samples *in situ*
EVA INFORMATICS @ NEEMO 23

U.S. NAVY DIVER AUGMENTED VISION DISPLAY (DAVD)

- Evaluate a potential concept for an EVA Augmented Vision Heads-Up Display that allows for real-time data update, augmented cue input, procedure viewing, and task direction capability, which is relevant for spacesuit (xEMU) development
 - “…this would be invaluable for EVA.” – Shuttle/ISS 7-EVA experienced astronaut
- Assess the concept of using an area scanning system (side-scan sonar) for EVA crewmember self-navigation, and IV and MCC situational awareness
- Utilize the DAVD system during topside dives and saturation excursions
- Testing plan
 - Topside test dives (EVA & ARES)
 - Saturation test dives (EVA & ARES)
 - Saturation mission evals (NEEMO crew)
 - TBD follow-on testing in the NBL

IV SUPPORT SYSTEM FOR EVA

- Evolve and evaluate a Support System that utilizes a digital timeline execution and life support system management tool to support the IV crewmember during an EVA
- Examine use of OpenMCT and Playbook
- Incorporate DAVD
- Continue looking into developing an efficient IV workstation

EVA DIGITAL CUE CARDS

- Refine and evaluate digital cue cards to capture data on what information set is ideal to enable additional EVA crew autonomy
DAVD AS AN EVA AUGMENTED VISION HEADS-UP DISPLAY @ NEEMO

Objective

• Evaluate DAVD as a potential capability concept for an EVA Augmented Vision Heads-Up Display – allowing for real-time data update, augmented cue input, procedure viewing, task direction capability, and navigation – for spacesuit (xEMU) development

Implementation

• Utilized Navy-provided DAVD mounted inside a NASA-provided KM37 dive helmet
• Sent real-time data to the EVA crewmember from the IV workstation via DAVD for task direction

Mission Summary

• Evaluated during ESAT by an EVA SME, however system shut down during evaluation, likely due to water intrusion into cable connection on helmet
• Attempted evaluation during mission by an astronaut, however system shut down again, and was not recovered before splash-up

Crew Debrief Comments

• A HUD would be very useful and effective for the xEMU

EVA Results (Key Take-Aways)

• Initial evaluation showed promise for having multiple types of data displayed to an EVA crewmember
• Usable data displayed during eval included EVA status and consumables, cue cards, and video

Recommendations

• Update xEVA con ops to provide extended details on utilizing HUD-type data during lunar surface operations
• Feed forward into technology development of the xEMU xINFO subsystem
• Evaluate upgraded DAVD in the NBL and then again at NEEMO 24
• Add EVA gap for an xEVA suit heads-up display type of capability and associated cognitive loading

Lunar 2024 Relevance

• xEVA Suit not likely to have a HUD for 2024
• Subsequent missions will benefit from the deployment of an informatics system that displays EVA/suit data, procedures, and allows for near real-time information from the IV and Science Team
Objective
- Evaluate an area scanning system for EVA crew self-navigation
- Evaluate an area scanning system for IV and MCC tracking of EVA crew location
- Demonstrate 3D area scanning for situational awareness and EVA crew self-navigation

Implementation
- Utilized Navy-provided Kongsberg MS1000 sector scan sonar
- Utilized TrackLink system from Shark Marine
- Utilized Navy-provided CODA Echoscope C-500 3D sonar

Mission Summary
- Sonar evaluated during ESAT, but largely not used by crew during the mission
- TrackLink set up for the mission, but largely not used by the crew due to reliability challenges
- Crew left physical tags at the science location samples were taken

Crew Debrief Comments
- Didn’t really use TrackLink for EVA navigation or tracking of the EVA crew

EVA Results (Key Take-Aways)
- Initial evaluation showed promise of utilizing an area scanning system for IV and MCC situational awareness of EV crew
- Initial evaluation demonstrated potential of EVA self-navigation with area scanning system data displayed to an EVA crewmember via a HUD

Recommendations
- Update xEVA con ops to provide extended details on utilizing an area scanning system for EVA navigation and SA during lunar surface operations
- Feed forward into technology development of the xEMU xINFO subsystem
- Evaluate both the Kongsberg MS1000 sector sonar and CODA Echoscope C-500 3D sonar at NEEMO 24
- Add EVA gap for navigation on a planetary surface

Lunar 2024 Relevance
- Subsequent missions will benefit from the deployment of an area scanning system for IV and MCC situational awareness of EVA crew, and for EVA self-navigation on a planetary surface
EVA Support System & IV Workstation

Objectives
• Evaluate what kind of tools (support system) the IV crewmember will need in order to effectively handle the large amount of information and tasking that they must contend with while actively directing an EVA
• Examine potential EVA task/timeline tracking systems (Playbook), along with tracking of EVA suit data and consumables
• Assess hardware/software needs for a workstation, including ways to minimize what’s required for operations to reduce space and launch mass

Implementation
• Open MCT for consolidating input data, visualizing telemetry
• Life support system tracking tool with simulated spacesuit data
• Playbook Tactical EVA Execution Feature
• Programmable keypad (El Gato Stream Deck)

Mission Summary
• Configured IV workstation in hab with physical keypad with hotkeys for accessing predefined IV workstation software configurations
• Observed crew using the predefined software setup to effectively manage information during EVAs

Crew Debrief Comments
• Effective for EVA task/timeline tracking
• Easy to set up, liked the hot key
• Liked the live science task and sample tracking
• Allowed IV to effectively track EV suit data and consumables

EVA Results (Key Take-Aways)
• Predefined software and window layouts can strongly enable IV operator effectiveness by minimizing the overhead workload of initializing and maintaining an IV workstation
• Easily accessible hotkeys for accessing default layouts significantly improve the likelihood that IV operators can access IV workstation functionality
• Integrating IV workstation software design/selection into the EVA planning process significantly improves IV operator effectiveness

Recommendations
• Continue developing IV workstation layout and functionality through analog xEVA missions
• Add EVA gap for an EVA support system & IV workstation

Lunar 2024 Relevance
• Lunar 2024 and subsequent missions will benefit from the deployment of a workstation that displays EVA/suit data, procedures, and allows for real-time information to be sent from the IV to the EV crew

Evolution of EVA Support System for IV Operator

Evolution of EVA Support System for IV Operator

NEEMO 20
NEEMO 21
NEEMO 22
NEEMO 23
Objective
• Evaluate digital cue cards for EVA crew that allow crew to operate more effectively and autonomously while offloading IV tasking

Implementation
• Utilize an iPad in an iDive underwater housing to demonstrate the potential for a single device for cue cards/procedures, images/video, instrument control, etc.
• All EVA-accessed and required information will be put into a digital cue card set that’s loaded on the iPad

Mission Summary
• Crew utilized the cue card set to view the overview traverse and procedures during the EVAs

Crew Debrief Comments
• Having IV read steps was more effective
• Used cue cards extensively at IV workstation and before EVA to prep
• Used by EVA for METS setup on first day (then knew what to do)
• More illustrations and less words
• Flow chart layout would be useful

EVA Results (Key Take-Aways)
• Most useful for IV to read from and get quick reference information to crew

Recommendations
• Continue to work cue card development from a cloud based source for faster reaction time for IV support
• Avoid over populating the cue card with words
• Add EVA gap for xEVA suit digital display

Lunar 2024 Relevance
• xEVA Suit informatics system will likely not have digital cue card capability, subsequent missions will benefit from the capability of the EVA crew to view images and procedures
• Evaluation of the tools and techniques at NEEMO and other analogs directly lead to development of the proper equipment for planetary surface EVA operations
OBJECTIVES COMPLETION STATUS FOR xEVA INFORMATICS

#1: Diver Augmented Vision Display (DAVD) [EVA AVHUD]

<table>
<thead>
<tr>
<th>Status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed</td>
<td>Evaluate the DAVD system during topside dives and saturation excursions by NASA SME/stakeholders and astronaut crewmembers</td>
</tr>
<tr>
<td>Partially Completed</td>
<td>Evaluate DAVD as a potential capability concept for an EVA Augmented Vision Heads-Up Display – allowing for real-time data update, augmented cue input, procedure viewing, task direction capability, and navigation – for spacesuit (xEMU) development</td>
</tr>
<tr>
<td>Not Completed</td>
<td>Assess the concept of using an area scanning system (side-scan sonar) for EVA crewmember self-navigation, and IV and MCC situational awareness</td>
</tr>
</tbody>
</table>

#2: EVA Navigation and Crew Tracking [Navy Sonar]

<table>
<thead>
<tr>
<th>Status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed</td>
<td>Evaluate an area scanning system for IV and MCC tracking of EVA crew location</td>
</tr>
<tr>
<td>Partially Completed</td>
<td>Evaluate an area scanning system for EVA crew self-navigation</td>
</tr>
<tr>
<td>Not Completed</td>
<td></td>
</tr>
</tbody>
</table>

Technology Prototype: HUD Helmet with DPP and Tether to main workstation

<table>
<thead>
<tr>
<th>Status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed</td>
<td>Demonstrate real-time images from Sector Scan – live feed</td>
</tr>
<tr>
<td>Partially Completed</td>
<td>Demonstrate real-time images from Echoscope 4G C500 SURFACE – close to 1st person perspective imaging but not mapping</td>
</tr>
<tr>
<td>Not Completed</td>
<td>Demonstrate Images and drawing pop-ups on HUD Display</td>
</tr>
<tr>
<td></td>
<td>Demonstrate On-Screen navigation direction</td>
</tr>
<tr>
<td></td>
<td>Demonstrate TEXT messaging communication with Diver</td>
</tr>
</tbody>
</table>
#3: EVA Support System and IV Workstation

<table>
<thead>
<tr>
<th>Completed</th>
<th>Partially Completed</th>
<th>Not Completed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evaluate what kind of tools (support system) the IV crewmember will need in order to effectively handle the large amount of information and tasking that they must contend with while actively directing an EVA</td>
<td>Incorporate DAVD into the workstation</td>
<td></td>
</tr>
<tr>
<td>Assess hardware needs for a workstation, including ways to minimize what’s required for operations to reduce space and launch mass</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evolve and evaluate a Support System that utilizes a digital timeline execution and life support system management tool to support the IV crewmember during an EVA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Examine potential EVA task/timeline tracking systems (Playbook), along with tracking of EVA suit data and consumables</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Examine use of OpenMCT to display data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continue looking into developing an efficient IV workstation</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

#4: EVA Digital Cue Cards

<table>
<thead>
<tr>
<th>Completed</th>
<th>Partially Completed</th>
<th>Not Completed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refine and evaluate digital cue cards to capture data on what information set is ideal to enable additional EVA crew autonomy</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Evaluate EVA tools and hardware for end-to-end science core sample acquisition
Iterate core bit technology developed by Honeybee Robotics
Evaluate curation system capabilities
Look for ways to compensate for the limited down-force that crew is able to put into a sampling operation due to lower gravity levels
Answer what efficiencies are gained/lost with having 2 crew work together to sample compared to 1 crewmember separately.

Evolve and test the Modular Equipment Transportation System (METS), a concept for manually transporting & stowing equipment and samples on exploration traverses
Examine improvements to the Wheeled Equipment Transport (WET; i.e. cart)
Refine the Suit-Mounted Equipment Carrying System (SECSy) to more effectively transport smaller tools

IHMC and Harbor Branch Oceanographic Institute objective to evaluate sampling tool
Include in EVA ops con to evaluate tools and techniques for collecting astrobiology samples during an EVA

Integrate and evaluate Lunar Evacuation System Assembly (LESA 2.0), ESA’s next version of their crew rescue concept
Integrate and evaluate various ESA geological sampling tools, including scoops and sample markers
EVA SCIENCE SAMPLE ACQUISITION TOOLS

Objective
- Evaluate EVA hardware and operations for subsurface (core) and regolith science sampling in a surface/partial-g environment
- Determine the feasibility for novel sampling science operations techniques including (1) scouting, (2) “sterile” sample collection, and (3) real-time sample preservation by the NEEMO crew
- Gap addressed: EVA-GAP-45 “Tools for Science Sampling on Surface EVAs”

Implementation
- Apply a breakaway core bit technology developed by Honeybee Robotics with an underwater battery powered drill to acquire core samples
- Use small tools, such as forceps, to stow samples for curation

Mission Summary
- The rotary percussive handheld drill coupled with the Honeybee core bit worked well to retrieve sponge samples

Crew Debrief Comments
- Didn’t feel like they had to put in a lot of force when using the rotary percussive drill

EVA Results (Key Take-Aways)
- A rotary percussive power tool alleviates some of the issues with being able to apply the input force needed to acquire a core sample

Recommendations
- Pursue an EVA multiuse rotary percussive handheld power tool for use on planetary surfaces

Lunar 2024 Relevance
- The Honeybee breakoff core technology can and should be utilized for taking core samples of rock on the moon
- A rotary percussive handheld power tool will enable core sample acquisition for 2024 and subsequent lunar surface missions
- Evaluation of the tools and techniques at NEEMO and other analogs directly lead to development of the proper equipment for planetary surface EVA operations
Objective
- Demonstrate the feasibility of collection of a diversity of targets using a new small volume sampler— the “Stinger”

Implementation
- Utilized the Stinger developed by IHMC and FAU

Mission Summary
- Stinger was successfully utilized for taking multiple small volume sponge samples

Crew Debrief Comments
- Mechanism worked
- Got good info for improvement
- Preservation worked well

EVA Results (Key Take-Aways)
- A tool that enables acquisition of multiple small samples may benefit any mission in terms of providing a lower mass solution for a science tool

Recommendations
- Develop and evolve small sample of devices that would help reduce overall system mass

Lunar 2024 Relevance
- Mission may benefit from a small volume core sample acquisition tool in order to return a larger number of smaller samples
- Evaluation of the tools and techniques at NEEMO and other analogs directly lead to development of the proper equipment for planetary surface EVA operations
Objective
- Integrate and evaluate various ESA EAC geological sampling tools, including scoops and sample markers
- Gap addressed: EVA-GAP-45 “Tools for Science Sampling on Surface EVAs”

Implementation
- ESA NEST (Nearby Equipment Support Trolley)

Mission Summary
- Astronauts tested the geological sampling tools and NEST during task-specific evaluations

Crew Debrief Comments
- Add capability for opening the grabber on the jaws for easier dumping of samples into bags
- Likely not worth having a window – know you picked it up because it’s no longer there, and challenging to do any big picture observations through a window
- Hook is good for contingency, but not as a nominal use
- Have markers connected to each other for easier handling of one larger item

EVA Results (Key Take-Aways)
- The sampling tools, based on Apollo heritage equipment, work well for acquiring science samples
- The tools transport device (NEST) demonstrated that an intelligently designed system will allow for multiple tools to be moved on a planetary surface in an efficient manner

Recommendations
- Continue evolving EVA equipment transport systems to find the most compact and low mass possible that still serves the mission science goals

Lunar 2024 Relevance
- All planetary surface missions, beginning with the first Aretmis mission in 2024, will need an effective equipment transport system
- Results from these evaluations at NEEMO will directly feed into design decisions for the Artemis Lunar Tool carrier
Objective
• Evaluate Modular Equipment Transport System (METS) for manually transporting/stowing tools and samples on exploration traverses
 o Evaluate the Wheeled Equipment Transport (WET) for transport of large equipment in a mobile carrier
 o Evaluate the Suit-mounted Equipment Carrying System (SECS) for transport of small tools on an EVA spacesuit
• Gap addressed: EVA-GAP-43 “Tool Transport on Surface EVAs”

Implementation
• The Modular Equipment Transport System (METS) is a method for transporting equipment from one location to another, grouping hardware into Modules for the appropriate planned activities
 o WET – configurable wheeled carrier, with attachments for modules and science instruments
 o SECS – a forearm stowage device and thigh module attached to the suit after egress

Mission Summary
• The METS worked as designed to provide a method for transporting the equipment necessary to complete the EVA and Science objectives.

Crew Debrief Comments
• Wheeled Equipment Transport
 • A small deployable workstation/foldable table would be helpful that could be set up away from the METS
• Suit-mounted Equipment Carrying System
 • Make deployment quicker
 • Add a Swiss army knife type device
 • SABRE was actually nice, everything was accessible and quick

EVA Results (Key Take-Aways)
• Having equipment grouped intelligently into modules can be useful when there is a lot of equipment, but it is also constraining and requires accounting for every piece of equipment

Recommendations
• Develop the lunar surface tools set with the modular concept that will allow for use over multiple missions and for multiple tasks

Lunar 2024 Relevance
• The results from these evaluations at NEEMO will directly feed into design decisions for the Artemis Lunar Tool carrier
Objective
- Evaluate a new EVA incapacitated crewmember rescue concept developed by ESA at the European Astronaut Centre
- Gap addressed: EVA-GAP-46 “Incapacitated Crewmember Operations”

Implementation
- Utilized the new concept Lunar Evacuation Systems Assembly (LESA)
- LESA allows an incapacitated crewmember to be lifted up and secured to a Moon EVA Litter for transport back to a habitat/rover

Mission Summary
- LESA was used to successfully demonstrate rescue of an EVA incapacitated crewmember

Crew Debrief Comments
- The more it’s self-deployable the better
- Could be a single use device
- Possibly combine with NEST (or some other tool carrier)

EVA Results (Key Take-Aways)
- A rescue device will be critical for all planetary surface missions
- LESA demonstrated a critical capability, but the challenge now will be to make the system smaller
- Combining rescue capability with other equipment (such as tool transport) will be a critical efficiency

Recommendations
- Continue developing and testing an EVA rescue system
- Combine the rescue capability with other nominal use equipment (such as tool transport system)

Lunar 2024 Relevance
- All planetary surface missions, starting with 2024, will need some sort of device to assist an EVA crewmember in rescuing an incapacitated suited crewmember and getting that crewmember back to a safe haven
- Evaluation of the techniques at NEEMO and other analogs directly lead to development of the proper tools and equipment for planetary surface EVA operations
#5: Core Sample Acquisition System

<table>
<thead>
<tr>
<th>Completed</th>
<th>Partially Completed</th>
<th>Not Completed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evaluate EVA hardware and operations for subsurface (core) and regolith science sampling in a surface/partial-g environment</td>
<td>Evaluate EVA tools and hardware for end-to-end science core sample acquisition</td>
<td>Answer what efficiencies are gained/lost with having 2 crew work together to sample compared to 1 crewmember separately.</td>
</tr>
<tr>
<td>Look for ways to compensate for the limited down-force that crew is able to put into a sampling operation due to lower gravity levels</td>
<td>Iterate core bit technology developed by Honeybee Robotics</td>
<td>Evaluate curation system capabilities</td>
</tr>
</tbody>
</table>

#6: Modular Equipment Transportation System (METS)

<table>
<thead>
<tr>
<th>Completed</th>
<th>Partially Completed</th>
<th>Not Completed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evolve and evaluate the Modular Equipment Transport System (METS), a concept for manually transporting & stowing equipment and samples on exploration traverses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Examine improvements to the Wheeled Equipment Transport (WET; i.e. cart) for transport of large equipment in a mobile carrier</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Refine and evaluate the Suit-Mounted Equipment Carrying System (SECS) to more effectively transport smaller tools on an EVA spacesuit</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MOR Objectives Completion Status for xEVA Tools & Equipment

| #7: Lunar Evacuation System Assembly (LESA) |
|---------------------------------|-----------------|-----------------|
| Completed | Partially Completed | Not Completed |
| Evaluate a new EVA incapacitated crewmember rescue concept developed by ESA at the European Astronaut Centre |

| #8: ESA Geology Sampling Tools |
|--------------------------------|-----------------|-----------------|
| Completed | Partially Completed | Not Completed |
| Integrate and evaluate various ESA EAC geological sampling tools, including scoops and sample markers |

| #13: Science Sampling Tools |
|------------------------------|-----------------|-----------------|
| Completed | Partially Completed | Not Completed |
| Evaluate small volume sampler (Stinger) |
| Evaluate CISME for characterizing local area (corals and other organisms) |

| #17: Suit Mounted Tool Harness [Iowa State University] |
|--|-----------------|-----------------|
| Completed | Partially Completed | Not Completed |
| Evaluate a new suit mounted tool harness for carrying small tools on an EVA spacesuit |
INTEGRATED EVA SCIENCE OPS

- Evaluate Exploration EVA operations that predominately include science tasks
- Assess lunar-focused science-driven EVA operations with an MCC-based ST providing direction
- Examine con ops with interaction between the MCC ST & the crew over lunar (real-time) comm and with signal outages (scheduled LOS and terrain shadows)
- Assess con ops with MCC/ST generating data (graphics) real-time and sending to IV, and IV sending that data to EV crew’s HUD
- Compare a crew IV vs ground IV for science operations

FLEXECUTION DURING EVA

- Appraise a flexecution methodology while utilizing a Science Team and authentic proxy science
- Assess capability for real-time alteration of science-driven EVA timeline

INTEGRATING INFORMATICS FOR EVA

- Evaluate use of advanced informatics concepts during an EVA
- Assess utilizing an area scanning system with data sent to EVA crew for self-navigation

EVA OPS W/ SCIENCE INSTRUMENTS

- Evaluate scenarios for operating on the lunar surface utilizing science instruments and tools

PIONEERING

- Investigate the feasibility of a Critical Contingency EVA Habitat Tile Remove & Replace of a 3D-Printed ISRU Lunar Habitat
Integrated Mission Control Operations

Objective
- Analyze integrated EVA science operations to determine what functions/capabilities are needed to enable a Mission Control Center (MCC) and integrated Science Team to effectively operate and actively direct EVA operations with science tasks over a lunar signal (comm & data) latency and blockage.
- Evaluate flexible execution methodology and decision making protocols for science tasks during EVA operations.

Implementation
- An onshore MCC Flight Control Team (FCT) that includes a Mission Director, EVA Officer, CAPCOM, and other system/subject matter experts.
- An onshore Science Team that includes a Science Lead, subject matter experts, and Science Communicator (SCICOM).
- Mission (flight) rules volume and mission priorities, heightened mission tempo and pressure with additional flight control rigor, spacesuit telemetry, FCT GO/NO GO calls, and IVA task/experiment timeline.

Mission Summary
- This mission was designed perfectly to assess this objective and is the only testing environment at this time that allows for the evaluation of this objective.

Crew Debrief Comments
- Used combination of voice and mission log.
- Voice is better for time sensitive.
- Mission Log was helpful for lists.
- Mission log was helpful for comm split – SCICOM on science and CAPCOM on pioneering.
- Mission log was helpful to keep track of what crew completed during LOS.

EVA Results (Key Take-Aways)
- Working in this new paradigm will require a shift in how EVA operations are managed in MCC.
- There is still a lot of work to do to figure out the proper roles and responsibilities and communication protocol.

Recommendations
- Continue evaluating the mission control structure for science-driven EVAs at NEEMO and bring the FOD community into the loop.
- Utilize the FOD wiki platform to test the capability of Just In Time Training (JITT) to improve efficiency during upcoming EVA operations.
- Add EVA gaps for Integrated EVA Flight Control Methodology and for Flexible Execution Methodology for EVA Science Operations in Undefined Environments.

Lunar 2024 Relevance
- All planetary surface missions, beginning with Artemis’s 2024 flight, will require a paradigm shift from the current flight control method.
- Incorporating a Science Team into the Flight Control Team will be critical for successful science return.
- Concepts being evaluated for integrating a Science Team with the MCC team at NEEMO will directly benefit the 2024 mission and all flights beyond.
Objective
- Evaluation scenarios for operating on the lunar surface utilizing science instruments and tools
- Evaluate CISME for characterizing local area (corals and other organisms)
- Gap addressed: EVA-GAP-137 “In-Situ Tools”

Implementation
- Coral In Situ Metabolism (CISME) experiment deployment techniques and time constraints are analogous to high priority geologic instruments (XRF, XRD, LIBS, etc.)

Mission Summary
- Complications with the CISME units led to delay of the ops until well into the mission
- Crew successfully deployed and used the CISME instruments to analyze sponges in the local area

Crew Debrief Comments
- Helped to have a 2nd person as an extra set of hands
- Efficient on MD08 when both working on separate CISME simultaneously
- By day 15, would be more proficient at doing it separately
- Trouble shooting was helped by having a 2nd person
- CISME was a good analog for portable field instruments, though maybe a bit larger, good in terms of flexibility

EVA Results (Key Take-Aways)
- Handheld science instruments for planetary missions should be easily operable my a single EVA crewmember

Recommendations
- Look for geology relevant tools that will provide for a higher simulation quality

Lunar 2024 Relevance
- The Artemis 2024 mission may include science instruments that will be deployed during surface EVA operations
- Evaluation of the techniques at NEEMO and other analogs directly lead to development of the proper tools and equipment for planetary surface EVA operations
Objective

- Evaluate pioneering/construction tasks on a planetary mission

Implementation

- Build a new coral nursery tree structure on the bow end of the hab
- Rebuild the Mercury Nursery
- Utilize the “EVA 3DP-HAB Repair” initiative as a feasibility study to evaluate the potential associated tools, methods, and concept of operations required for a Critical Contingency Extravehicular Activity (CCE) Repair of a 3D-Printed In-Situ Resource Utilization (ISRU) Lunar and Martian Habitat

Mission Summary

- Crew successfully installed the coral card arms on both the Bow and Mercury coral tree nurseries
- Crew completed a tile repair on the lunar 3D-printed sample

Crew Debrief Comments

- None directed at pioneering tasks

EVA Results (Key Take-Aways)

- Transport of all of the necessary parts for pioneering tasks may be challenging on a planetary surface

Recommendations

- Expand evaluations of various pioneering tasks at NEEMO and other analogs in order to drive out the detailed challenges with conducting engineering tasks in partial-gravity on a planetary surface

Lunar 2024 Relevance

- The Artemis 2024 mission and all planetary surface missions beyond will likely involved a multitude of different types of pioneering/engineering tasks
- Pioneering tasks will be critical for long term infrastructure development on the moon
- Evaluations at NEEMO and other analogs will be critical for effectively designing the tools and equipment needed for pioneering tasks
#9: Integrated Mission Control Operations for Exploration

<table>
<thead>
<tr>
<th>Completed</th>
<th>Partially Completed</th>
<th>Not Completed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analyze integrated EVA science operations to determine what functions/capabilities are needed to enable a Mission Control Center (MCC) and integrated Science Team to effectively operate and actively direct EVA operations with science tasks over a lunar signal (comm & data) latency and blockage</td>
<td>Assess lunar-focused science-driven EVA operations with an MCC-based Science Team (ST) providing direction</td>
<td>Assess con ops with MCC/ST generating data (graphics) real-time and sending to IV, and IV sending that data to EV crew’s HUD</td>
</tr>
<tr>
<td>Evaluate flexible execution methodology and decision making protocols for science tasks during EVA operations</td>
<td></td>
<td>Compare a crew IV (in hab) vs ground IV for science operations</td>
</tr>
<tr>
<td>Evaluate Exploration EVA operations that predominately include science tasks</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Examine con ops with interaction between the MCC ST & the crew over
 • Lunar comm latency
 • Signal outages (scheduled LOS) | | |
MOR Objectives Completion Status for xEVA Concept of Operations

#11: Flexible Execution Methodology (Flexecution)

<table>
<thead>
<tr>
<th>Completed</th>
<th>Partially Completed</th>
<th>Not Completed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appraise a flexecution methodology while utilizing a Science Team and authentic proxy science</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

#12: Exploration Science

<table>
<thead>
<tr>
<th>Completed</th>
<th>Partially Completed</th>
<th>Not Completed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identify, image, and measure corals with CISME in order to characterize the area</td>
<td>Sponge samples (30-40) to map Gulf – area around hab is a gap in their data</td>
<td>Identify, sample, and image a precursor sample with multiplex Stinger</td>
</tr>
<tr>
<td>Assess real-time feedback from a ST</td>
<td>Test precursor sample DNA inside the habitat</td>
<td>Follow-up sample on a later EVA based on DNA results</td>
</tr>
</tbody>
</table>

#14: Science Instruments

<table>
<thead>
<tr>
<th>Completed</th>
<th>Partially Completed</th>
<th>Not Completed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evaluation scenarios for operating on the lunar surface utilizing science instruments and tools</td>
<td></td>
<td>Assess strategies for gaining efficiencies</td>
</tr>
</tbody>
</table>

#15: Coral Restoration (Nursery Pioneering): Coral Nurseries Rebuild

<table>
<thead>
<tr>
<th>Completed</th>
<th>Partially Completed</th>
<th>Not Completed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Build a new hab-mounted coral nursery tree</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rebuild the Mercury (shallow) nursery</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Summary of NEEMO 23

- Provided initial look at a HUD system in a dive helmet for xEVA informatics capability development
- Navy received good feedback for improving and hardening the DAVD system for production and deployment to fleet divers
- Allowed for crew evaluation of EVA science sampling tools and transportation systems
- Assessed a concept for rescuing an incapacitated crewmember on lunar surface missions
- Evaluated aspects of integrated flight operations for a lunar surface mission that incorporates direct input from a Science Team

Relevance to the Artemis Lunar 2024 mission

- Evaluated initial surface EVA concepts of operations for Artemis
- Assessed system and architectural interactions for EVA science operations in a natural surface environment
- Informed updates to the lunar surface section of EVA-EXP-0042, the Exploration EVA System Concept of Operations document that describes the operations required for the 2024 mission
- Enabled design maturation of EVA equipment that will be utilized on lunar surface missions
- Evaluation of the tools, techniques, and technologies at NEEMO (and other analogs) will directly lead to development of the proper methods and equipment for planetary surface EVA operations
Recommendations for Testing at NEEMO

- Execute a smaller-scale efficient mission that's focused on the tools, techniques, and technologies needed for EVA and Science Operations on the Artemis Lunar 2024 mission and beyond
 - Focus on science-driven EVA concepts of operations development for a planetary surface, including science sample acquisition
 - Target NASA-relevant objectives with less (or no) external PI objectives
 - Conduct true end-to-end EVA operations, with full deploy and stow of equipment and samples
 - Evaluate the current EVA lunar tools suite
- Evaluate the improved DAVD system as an xEVA HUD concept
- Evaluate the communication and decision making protocols for incorporating near real-time feedback and direction from a Science Team
 - Incorporate FOD for MCC operations and development of flight control techniques
- Incorporate HHP evaluations being done for Exploration EVA
- Perform initial checks of equipment, tasks, and possibly even train crew in the NBL before the mission
 - Utilize the 2+ hour of tightly controlled tests at the NBL to directly lead into end-to-end NEEMO missions that mimic Artemis missions
RECOMMENDATIONS FOR POTENTIAL NEEMO 24 MISSION

Outline of Potential NEEMO 24 Mission Plan

• **NBL**: Testing of initial concepts and equipment
 - Properly dial-in lunar weigh outs, using lunar-like boots and a PLSS volume
 - Utilize for EVA tool testing, initial procedure development, initial training, etc.
 - Conduct HUD testing and initial equipment verification

• **ESAT**: Testing of equipment for mission and initial SME evaluations of concepts
 - Conduct an ESAT run with SMEs well in advance of the mission in order to allow for time to modify equipment and develop procedures
 - Establish and verify comm link from EVA crew to MCC/ST
 - Set up sampling tool test area and tasks, and conduct initial evaluations
 - Verify functionality of DAVD, and conduct initial evaluations
 - Finalize and verify EVA procedures

• **NEEMO 24 mission outline**:
 - Run a ~7-day mission that mimics the current plan for the Artemis 2024 mission
 - Execute mission evaluations of tests initially performed in the NBL
 - Crew the mission with 1-3 SMEs and 1-2 astronauts that understand the NASA needs for EVA & Science during surface ops
 - Minimize IVA experiments to allow for the proper planning and prep tempo of daily EVAs on the lunar surface
 - Use the habitat as a lander to evaluate tasks such as egress and descent to the surface via a ladder
Thank you!

Questions?
BACKUP MATERIALS AND ADDITIONAL INFORMATION

- Additional Objectives & Results Info
- EVA Science Operations
- Minimum Requirements for Success Completion Status
- Review of NEEMO as an Analog for EVA
- Overview of a NEEMO EVA
- Engineering Saturation Run (ESAT)
- Support Dive Operations & Dive Safety
- Other EVA-Related Information
- History of NEEMO Crew
ADDITIONAL OBJECTIVES & RESULTS INFO

EVA INFORMATICS
EVA TOOLS & EQUIPMENT
EVA CONCEPTS OF OPERATIONS
Mission Overview

NEEMO 23 will test a combination of Exploration EVA and ISS/Orion related objectives. On the EVA side, there will be a highly integrated EVA Operations and Science Team comprised of members with expertise in EVA strategic planning and architecture integration, astromaterials and science operations, marine science, and coral restoration. Specifically, we will be conducting Lunar-relevant EVAs. Authentic marine science will be conducted, under the guidance of Florida Atlantic University-Harbor Branch, as a proxy for the planetary science concepts and strategies we envision for future human surface operations. Once again, we will be teaming up with the Coral Restoration Foundation (CRF) and Florida International University (FIU) to help set up and monitor deep long-term coral nurseries at Aquarius Reef Base, which supports ongoing research and restoration efforts. A system for rescuing an incapacitated crewmember on the lunar surface which is sponsored by ESA will also be evaluated. On the ISS/Orion side are a number of objectives supporting use of a scanning electron microscope, Counter Measures equipment, autonomous reality (AR) procedure execution, evaluation of concepts and technologies to improve efficiency and reduce the footprint of an IV workstation, a technology for very precise tracking of people and devices onboard a habitat, and studies related to physiological response to oxidative stress. In addition to numerous participating organizations across NASA JSC, collaborators include

- NASA ARC, KSC, GSFC, and JPL;
- International Partner Agencies: ESA
- Research Institutions: Institute for Human and Machine Cognition, Coral Restoration Foundation;
- Department of Defense: Naval Sea Systems Command (NAVSEA), Office of Naval Research, Naval Experimental Dive Unit, Panama City;
- Universities: Florida International University (FIU), University of South Florida (USF), Florida Atlantic University (FAU)
- Industry Partners: Draper, Altair, Aexa Aerospace, Honeybee Robotics, Shark Marine
- Non-Profit Partners: Coral Restoration Foundation
An EVA Augmented Vision Heads-Up Display (AVHUD) would allow for real-time data update (pushed by MCC and/or hab IV), augmented cue input, procedure viewing, enhanced task direction, and self-navigation capability. This type of system would enable Exploration mission concepts of operations baselined by the EVA Office (ref. EVA-EXP-0042, Exploration EVA System Concept of Operations), especially those on natural planetary surfaces. An EVA AVHUD is also relevant for current spacesuit (xEMU) development efforts and the xINFO system. The U.S. Navy’s Divers Augmented Vision Display (DAVD), developed by Naval Sea Systems Command (NAVSEA) and Naval Surface Warfare Center (NSWC) Panama City, will be tested as an AVHUD concept. It utilizes binocular lenses that allow for viewing a multitude of data types, incorporates real-time instrumentation feed (e.g., sonar), and allows for augmented reality input in a heads-up display. The DAVD system uses a sector and 3D sonar real-time feed to allow for diver self-navigation.

Evaluation of the DAVD system during the mission will double as an operational assessment on the performance of the DAVD prototype for the U.S. Navy. This provides a unique opportunity in the design process, and will be part of developing the system for their fleet divers. NAVSEA will also benefit from the mission by obtaining data for additional goals, including operational utilization of the Kongsberg MS-1000, operation of the CODA Echoscope C-500, and development of 3D underwater models and maps.
IRON MAN FOR DEEP SEA AND DEEP SPACE

Ironman Modernizes Aquaman

By Jacob Burkey, Public Affairs Officer, NSWC Panama City Division

NSWCHONIA Director, NSWC Panama City Division's Director of Business Augmented Visual Displays (DAVOD) project team has successfully surpassed all expectations in the first in-water testing Oct. 5-6, 2017.

Sponsored by Naval Sea Systems Command, Navy Divers and Salvage (OAWSA, 000), Panama City’s project team was asked to see how well the DAVO prototype performed in the intended environment.

The DAVO is a bimodal head-up display (HUD) that is mounted inside the Edguy Morgan VI (EMVI) dive helmet and the MDCO Full Face Mask (MFF). The prototype uses commercial off-the-shelf lenses and custom 3D printed truss systems for the helmet and headmount versions.

Dive supervisors relay high-resolution visual mission data to the HUD via an Ethernet cable to the diver’s primary communicator. Divers can easily view text messages, video, photographs, instructions, and augmented reality images even in murky, zero visibility conditions. They can also see their mission location during the dive mission via scanning, stereoscopic imagery, just like a virtual games.

The breakthrough head-up display technology can be used for other types of work conducted in low or zero visibility conditions — even in outer space.

- Dennis Gallagher
DAVOD Project Manager

DAVOD is one of NSWC Panama City’s most recent prototype and high-speed imaging initiatives. Total concept to first test took less than two years.

This is our first life-cycle project,” said DAVOD mechanical engineer Alfonso Richer. “It feels really good to see our team come so far in such a short time and for all the right reasons.”

The DAVOD project and tests were made possible by innovation and collaborative efforts between NSWC PCO and local commands. NSWC PCO welcomed Fleet divers and commanding officers from the Naval Experimental Diving Unit, Naval Diving and Salvage Training Center, and the Center for Explosive Ordnance Diving to participate in the tests.

“DAVOD has multiple applications — military diving, public safety/first responder, scientific diving, as well as for commercial use,” said Gallagher. “The breakthrough head-up display technology can be used for other types of work conducted in low or zero visibility conditions — even in outer space.”

Other space!

Representatives from the National Aeronautics and Space Administration’s (NASA’s) Johnson Space Center were on hand to observe the DAVOD tests, and are in discussions with NSWC PCO to explore a possible collaborative development for the next-generation Europa Waterfall Activity (EWA) space suit’s enhanced display capability.

Ironman and Aquaman: Aquamen and Aquawomen.

The saga continues...

Panama City, Florida - Ironman is one step closer to modernizing Aquaman, at least for the U.S. Navy’s Fleet.

Naval Surface Warfare Center Panama City Division's Director of Business Augmented Visual Displays (DAVOD) project team has successfully surpassed all expectations in the first in-water testing Oct. 5-6, 2017.

Sponsored by Naval Sea Systems Command, Navy Divers and Salvage (OAWSA, 000), Panama City’s project team was asked to see how well the DAVOD prototype performed in the intended environment.

The DAVOD is a bimodal head-up display (HUD) that is mounted inside the Edguy Morgan VI (EMVI) dive helmet and the MDCO Full Face Mask (MFF). The prototype uses commercial off-the-shelf lenses and custom 3D printed truss systems for the helmet and headmount versions.

Dive supervisors relay high-resolution visual mission data to the HUD via an Ethernet cable to the diver’s primary communicator. Divers can easily view text messages, video, photographs, instructions, and augmented reality images even in murky, zero visibility conditions. They can also see their mission location during the dive mission via scanning, stereoscopic imagery, just like a virtual game.

The breakthrough head-up display technology can be used for other types of work conducted in low or zero visibility conditions — even in outer space.

- Dennis Gallagher
DAVOD Project Manager

DAVOD is one of NSWC Panama City’s most recent prototype and high-speed imaging initiatives. Total concept to first test took less than two years.

This is our first life-cycle project,” said DAVOD mechanical engineer Alfonso Richer. “It feels really good to see our team come so far in such a short time and for all the right reasons.”

The DAVOD project and tests were made possible by innovation and collaborative efforts between NSWC PCO and local commands. NSWC PCO welcomed Fleet divers and commanding officers from the Naval Experimental Diving Unit, Naval Diving and Salvage Training Center, and the Center for Explosive Ordnance Diving to participate in the tests.

“DAVOD has multiple applications — military diving, public safety/first responder, scientific diving, as well as for commercial use,” said Gallagher. “The breakthrough head-up display technology can be used for other types of work conducted in low or zero visibility conditions — even in outer space.”

Other space!

Representatives from the National Aeronautics and Space Administration’s (NASA’s) Johnson Space Center were on hand to observe the DAVOD tests, and are in discussions with NSWC PCO to explore a possible collaborative development for the next-generation Europa Waterfall Activity (EWA) space suit’s enhanced display capability.

Ironman and Aquaman: Aquamen and Aquawomen.

The saga continues...

Panama City, Florida - Ironman is one step closer to modernizing Aquaman, at least for the U.S. Navy’s Fleet.

Naval Surface Warfare Center Panama City Division's Director of Business Augmented Visual Displays (DAVOD) project team has successfully surpassed all expectations in the first in-water testing Oct. 5-6, 2017.

Sponsored by Naval Sea Systems Command, Navy Divers and Salvage (OAWSA, 000), Panama City’s project team was asked to see how well the DAVOD prototype performed in the intended environment.

The DAVOD is a bimodal head-up display (HUD) that is mounted inside the Edguy Morgan VI (EMVI) dive helmet and the MDCO Full Face Mask (MFF). The prototype uses commercial off-the-shelf lenses and custom 3D printed truss systems for the helmet and headmount versions.

Dive supervisors relay high-resolution visual mission data to the HUD via an Ethernet cable to the diver’s primary communicator. Divers can easily view text messages, video, photographs, instructions, and augmented reality images even in murky, zero visibility conditions. They can also see their mission location during the dive mission via scanning, stereoscopic imagery, just like a virtual game.

The breakthrough head-up display technology can be used for other types of work conducted in low or zero visibility conditions — even in outer space.

- Dennis Gallagher
DAVOD Project Manager

DAVOD is one of NSWC Panama City’s most recent prototype and high-speed imaging initiatives. Total concept to first test took less than two years.

This is our first life-cycle project,” said DAVOD mechanical engineer Alfonso Richer. “It feels really good to see our team come so far in such a short time and for all the right reasons.”

The DAVOD project and tests were made possible by innovation and collaborative efforts between NSWC PCO and local commands. NSWC PCO welcomed Fleet divers and commanding officers from the Naval Experimental Diving Unit, Naval Diving and Salvage Training Center, and the Center for Explosive Ordnance Diving to participate in the tests.

“DAVOD has multiple applications — military diving, public safety/first responder, scientific diving, as well as for commercial use,” said Gallagher. “The breakthrough head-up display technology can be used for other types of work conducted in low or zero visibility conditions — even in outer space.”

Other space!

Representatives from the National Aeronautics and Space Administration’s (NASA’s) Johnson Space Center were on hand to observe the DAVOD tests, and are in discussions with NSWC PCO to explore a possible collaborative development for the next-generation Europa Waterfall Activity (EWA) space suit’s enhanced display capability.

Ironman and Aquaman: Aquamen and Aquawomen.

The saga continues...

Panama City, Florida - Ironman is one step closer to modernizing Aquaman, at least for the U.S. Navy’s Fleet.

Naval Surface Warfare Center Panama City Division's Director of Business Augmented Visual Displays (DAVOD) project team has successfully surpassed all expectations in the first in-water testing Oct. 5-6, 2017.

Sponsored by Naval Sea Systems Command, Navy Divers and Salvage (OAWSA, 000), Panama City’s project team was asked to see how well the DAVOD prototype performed in the intended environment.

The DAVOD is a bimodal head-up display (HUD) that is mounted inside the Edguy Morgan VI (EMVI) dive helmet and the MDCO Full Face Mask (MFF). The prototype uses commercial off-the-shelf lenses and custom 3D printed truss systems for the helmet and headmount versions.

Dive supervisors relay high-resolution visual mission data to the HUD via an Ethernet cable to the diver’s primary communicator. Divers can easily view text messages, video, photographs, instructions, and augmented reality images even in murky, zero visibility conditions. They can also see their mission location during the dive mission via scanning, stereoscopic imagery, just like a virtual game.

The breakthrough head-up display technology can be used for other types of work conducted in low or zero visibility conditions — even in outer space.

- Dennis Gallagher
DAVOD Project Manager

DAVOD is one of NSWC Panama City’s most recent prototype and high-speed imaging initiatives. Total concept to first test took less than two years.

This is our first life-cycle project,” said DAVOD mechanical engineer Alfonso Richer. “It feels really good to see our team come so far in such a short time and for all the right reasons.”

The DAVOD project and tests were made possible by innovation and collaborative efforts between NSWC PCO and local commands. NSWC PCO welcomed Fleet divers and commanding officers from the Naval Experimental Diving Unit, Naval Diving and Salvage Training Center, and the Center for Explosive Ordnance Diving to participate in the tests.

“DAVOD has multiple applications — military diving, public safety/first responder, scientific diving, as well as for commercial use,” said Gallagher. “The breakthrough head-up display technology can be used for other types of work conducted in low or zero visibility conditions — even in outer space.”

Other space!

Representatives from the National Aeronautics and Space Administration’s (NASA’s) Johnson Space Center were on hand to observe the DAVOD tests, and are in discussions with NSWC PCO to explore a possible collaborative development for the next-generation Europa Waterfall Activity (EWA) space suit’s enhanced display capability.

Ironman and Aquaman: Aquamen and Aquawomen.

The saga continues...
Sponsored by Naval Sea Systems Command Supervisor, Diving and Salvage (NAVSEA 00C), and developed by the Naval Surface Warfare Center Panama City Division

The DAVD system
- Binocular heads-up display (HUD) mounted inside a Kirby Morgan 37 (KM37) dive helmet and a MK-20 Full Face Mask (MK20 FFM)
- Prototype uses commercial lenses (Lumus) and custom 3D printed frame/mounting systems

DAVD capabilities
- Allows a topside dive supervisor to relay visual mission data to the HUD via an Ethernet cable
- Divers can view text messages, video, photographs, instructions, and augmented reality images
- Divers can also utilize real-time sector scanning sonar imagery for navigation
- Allows for operations even in murky, zero visibility conditions

During diver testing, DAVD operated as advertised, with Navy divers able to utilize it for navigation, identification of objects, and for receiving task instructions real-time
APPLICATION OF DAVD FOR xEVA INFORMATICS

NASA Exploration EVA Spacesuit and Operations

- An EVA Augmented Vision Heads-Up Display (HUD) would allow for real-time data update, augmented cue input, procedure viewing, enhanced task direction, and self-navigation capability
 - Enables Exploration mission concepts of operations baselined by the EVA Office, especially those on natural planetary surfaces
 - Relevant for current spacesuit (xEMU) development efforts and the xINFO system
- DAVD system abilities translate into capabilities needed by NASA for the Exploration EVA Suit and planetary operations

Enhanced ISS EVA Training

Utilize MK20 FFM version of DAVD to view procedures and graphics sent by Test Conductor

Potential Spacesuit (xEMU) Development

DAVD Mounted Lenses
DAVD Projection System
DAVD System in Suit
xEMU HUD
DAVD EQUIPMENT: DIVER-WORN, CONTROL BOX, AND SONAR

- **DAVD Generation 1 Prototype**
 - Lens mounted into KM37 Diver-worn canister for data
 - 300’ data umbilical from canister (on diver) to control box (inside hab)

- **Control box that takes data from laptop and pushed into lenses**
 - Display for IV to see what diver sees
 - Box will be inside the hab and connected to the IV workstation

- **Kongsberg MS1000 Sonar**
 - Sonar head on stand
 - Interface box (connects to laptop)
 - Handheld controller for directing sonar
 - 300’ cable from sonar head to interface box (in hab)
Objective

- Evaluate DAVD as a potential capability concept for an EVA Augmented Vision Heads-Up Display – allowing for real-time data update, augmented cue input, procedure viewing, task direction capability, and navigation – for spacesuit (xEMU) development

Implementation

- Utilize DAVD mounted inside a KM37 dive helmet
- Send real-time data to the EVA crewmember from the IV workstation via DAVD for task direction
The EVA Support System & IV Workstation will utilize a combination of Marvin, Open MCT (Mission Control Technologies), and Playbook. Marvin is an open-source digital timeline execution and life support system management tool designed to support Intravehicular Activity during EVA. It provides synthesized timeline status information in the form of timeline margin which adjusts throughout the execution of the EVA (e.g. how much time beyond the completion of planned timeline tasks can the life support system currently provide), and displays simulated EMU telemetry data. Open MCT is “a next-generation mission control framework for visualization of data on desktop and mobile devices”, and it “is being used by NASA for data analysis of spacecraft missions, as well as planning and operation of experimental rover systems”. Playbook is a crew planning and timeline tool being developed for use on ISS and future missions.
IV Workstation

The EVA Office will evaluate the role that an intravehicular (IV) support system can play during EVA. The IV workstation and decision support system will utilize existing NASA software, including Playbook and Open MCT, both developed by NASA Ames Research Center. Playbook will support timeline management (both during and outside of EVA), MCC to IV text communication, and EVA informatics management. Open MCT is a general-purpose visualization and layout engine that will be utilized to visualize telemetry, emplace science data entry within the IV workstation, and manage live video feed windows. Lastly, a physical, programmable keypad called an El Gato Stream Deck will be trialed as a workspace configuration tool. Physical keys on the Stream Deck will automatically launch and arrange workstation windows to standardize workspace configurations. The associated IV workstation focuses on examining ways to minimize the amount of equipment and manual effort required for operations, hence reducing space and launch mass needed, while also supporting IV crew member productivity. Lessons learned from using this on NEEMO will feed forward into Gateway requirements.

IV Workstation supporting an EVA
EVA DIGITAL CUE CARDS

Objective

• Evaluate digital cue cards for EVA crew that allow crew to operate more effectively and autonomously while offloading IV tasking

Implementation

• Utilize an iPad in an iDive underwater housing to demonstrate the potential for a single device for cue cards/procedures, images/video, instrument control, etc.

• All EVA-accessed and required information will be put into a digital cue card set that’s loaded on the iPad

This document does not contain any export control information (#20205009473)
TEST OBJECTIVE QUESTIONS – INFORMATICS

• What capabilities of an “EVA Augmented Vision Heads-Up Display” (EVA AVHUD) allow for effective and efficient EVA operations at Exploration destinations?
 • Does an EVA AVHUD allow for pertinent real-time data updates, augmented cue input, procedure viewing, and enhanced tasking direction?
 • Does an EVA AVHUD allow for effective self-navigation capability, especially on a natural planetary surface?
 • What aspects and capabilities of an EVA AVHUD are relevant for the xEVA System, including current spacesuit (xEMU) development efforts and the xINFO system?

• What functions/capabilities are needed in an EVA Support System and corresponding IV Workstation that allow an IV to effectively control EVA operations with input from MCC/ST over a signal (comm) latency and/or blockage/outage?
 • How effective was the EVA task/timeline tracking using Marvin/OpenMCT and/or Playbook? What improvements are desired, warranted, or required?
 • How efficient was the science task and sample tracking? What improvements are desired, warranted, or required?
 • Was the IV and MCC able to track the real-time location of the EV crew? What improvements are desired, warranted, or required?
 • Did the support system allow the IV to effectively track EV suit data and consumables? What improvements are desired, warranted, or required?
 • What equipment is needed for an effective workstation?

• Do EVA Digital Cue Cards allow crewmembers to execute more efficient EVA operations? What improvements are desired, warranted, or required?
Other key integrated EVA and science aspects incorporated and evaluated during this NEEMO mission include detailed sampling procedures, effective sampling tools and techniques for biological sampling in a challenging environment, contamination mitigation strategies, storage and transportation of equipment and samples (via the Modular Equipment Transportation System), various traverse planning methods, utilization of hand-held instrumentation, and methods and techniques for operational flexibility.

The use of in situ instrumentation will be evaluated during the NEEMO mission through the use of the CISME instrument (Coral In-Situ Metabolism Experiment). The CISME instrument requires crew time to set up the instrument and then there is a 20 minute instrument integration time where the crew will be hands-off the instrument. After 20 minutes, the crew will return to tear down and move the instrument to a new location. The NEEMO mission will include the use of two CISME instruments so the crew can work more efficiently through their workflow. There will be 1+ EVA where the crew collects only CISME data and then returns to the CISME work area on a subsequent EVA to sample. There will be 1+ EVA where the crew alternates between collecting CISME data and sampling at their discretion. The NEEMO team will thus be able to evaluate workflow efficiencies of using both in situ instrumentation and traditional sampling strategies.
Objectives

• Evaluate EVA hardware and operations for subsurface (core) and regolith science sampling in a surface/partial-g environment

Implementation

• Apply a breakaway core bit technology developed by Honeybee Robotics with an underwater battery powered drill to acquire core samples
• Use small tools, such as forceps, to stow samples for curation
MODULAR EQUIPMENT TRANSPORT SYSTEM (METS)

Objective

- Evaluate Modular Equipment Transport System (METS) for manually transporting/stowing tools and samples on exploration traverses
 - Evaluate the Wheeled Equipment Transport (WET) for transport of large equipment in a mobile carrier
 - Evaluate the Suit-mounted Equipment Carrying System (SECS) for transport of small tools on an EVA spacesuit

Implementation

- The Modular Equipment Transport System (METS) is a method for transporting equipment from one location to another, grouping hardware into Modules for the appropriate planned activities
 - WET – Configurable wheeled carrier, with attachments for modules and science instruments
 - SECS – a forearm stowage device and thigh module attached to the suit after egress
EVA STAGING AREA

- Structure near hab to stow and configure EVA equipment
- Support divers will populate each day
- Aquanauts will stow all equipment there at the end of each EVA
NEEMO 23 will provide an opportunity for the European Space Agency (ESA) European Astronaut Centre (EAC) EVA group to integrate and evaluate the next version of their crew rescue concept, known as the Lunar Evacuation System Assembly (LESA 2.0). LESA was created by the Neutral Buoyancy Facility (NBF) Operations & EVA Training Unit of the ESA Astronaut Training Division. Among all identified operational requirements for lunar EVA exploration, the capability to rescue an incapacitated EVA crewmember on the Moon’s surface is one of the most critical and is applicable to any lunar EVA. LESA is a first prototype of a capability to enable the safe and quick recovery of an incapacitated EVA astronaut (fallen down on the Moon’s surface) by only one rescuer wearing an EVA suit, followed by the quick transport of the victim to the closest safe haven (pressurized rover, lander, Moon base, etc.). The NEEMO environment offers the capability to simulate the 1/6G lunar gravity (via negative buoyancy fine-tuning) and to provide a realistic lunar surface environment (sandy, large area and uneven terrain). LESA operations will be evaluated by the aquanauts during several surface EVAs. Crew feedback will help ESA to enhance the LESA hardware and its operations. ESA will also expand upon their lunar surface mission knowledge by integrating and evaluating various geological sampling tools, including scoops and sample markers.
Objective

- Evaluate a new EVA incapacitated crewmember rescue concept developed by ESA at the European Astronaut Centre

Implementation

- Utilized the new concept Lunar Evacuation Systems Assembly (LESA)
- LESA allows an incapacitated crewmember to be lifted up and secured to a Moon EVA Litter for transport back to a habitat/rover
LESA 2.0

- New feature will of test will have crew utilize an empty spacesuit simulator (Comex suit) as the incapacitated crewmember
- Test area will be near the stbd-aft side of the hab
- Comex suit will need to be restrained overnight, possibly on chain running from stbd side of hab
ESA GEOLOGICAL SAMPLING TOOLS & EQUIPMENT TRANSPORTATION

ESA NEST (Nearby Equipment Support Trolley)
ESA LESA & GEO TOOLS FROM NEEMO 23 MISSION STATUS REPORT

ESA Lunar Surface Geological Sampling Tools
ESA has recently combined the EVA expertise from the Space Training Team of the Neutral Buoyancy Facility (NBF) at European Astronaut Centre with the planetary geological knowledge and skills provided by the ESA PANGAEA astronaut training in order to develop and test prototypes of Lunar Surface Geological Sampling Tools. These EVA tools take into account the legacy of the Apollo geology operations and the EVA suit constraints and movement limitations as well as scientific requirements from state of the art lunar geology sampling operations. A first version of these tools were tested by ESA on a volcanic field of the Lanzarote island (Spain) during Lunar geological traverse EVA simulations in November 2018. Upgraded versions of these Lunar EVA tool prototypes have been further developed to be tested and evaluated in NEEMO 23, taking into account the lessons learned from the Lanzarote Lunar EVA simulations and from underwater tests in the ESA-NBF simulated lunar gravity. All these tools are integrated into the ESA Nearby Equipment Support Trolley (NEST). This additional prototype is a multi-purpose tool carrier designed to allow easy transport of equipment to the sampling site during a lunar geology traverse and to increase EVA crew autonomy by enabling all lunar geology sampling operations to be done on each site by a single crew member.

The NEEMO environment offers the unique capability to simulate the 1/6G lunar gravity environment (via negative buoyancy fine-tuning) and to provide a lunar surface like environment (sandy areas with rock floats, outcrops and uneven terrain). The NEEMO 23 evaluations will help inform the design of these ESA Lunar tool prototypes on their development path toward their potential use in future geology operations on the Moon surface.

Jessica evaluating the NEST and a lunar regolith sample device

Lunar Evacuation System Assembly
The Lunar Evacuation System Assembly (LESA) was created by the ESA EVA Training Unit from the ESA Neutral Buoyancy Facility (NBF) of the Space Training Team located at the European Astronaut Centre (EAC) in Cologne, Germany. Among all identified operational requirements for lunar EVA exploration, the capability to rescue an incapacitated EVA crewmember on the Moon’s surface is one of the most critical and is applicable to any lunar EVA. LESA is a first prototype of a capability to enable the safe and quick recovery of an incapacitated EVA astronaut (fallen down on the Moon’s surface) by only one rescuer wearing an EVA suit, followed by the quick transport of the victim to the closest safe haven (pressurized lander). A first prototype of LESA was tested in NEEMO 22. Crew feedback from these tests helped ESA to enhance the LESA hardware operation. A second version of LESA was evaluated by the NEEMO 23 astronauts, taking into account their body memory of the EVA suit constraints. In addition ESA brought an EVA Space Suit Simulator from the company COMEX (France), which was used in the COMEX underwater test "Apollo 11 under the sea" off shore of Marseille (France) in 2011. In NEEMO 23 the suit played the role of the Incapacitated Crew to increase the realism of the rescue operation with the suit having an apparent weight underwater equivalent to the weight of an EVA suited astronaut on the Moon.

Samantha performing the simulated rescue of an incapacitated crewmember using LESA

This document does not contain any export control information (#20205009473)
TEST OBJECTIVE QUESTIONS – TOOLS & EQUIPMENT

• How effective is the Core Sample Acquisition System (provided by Honeybee Robotics) for taking handheld core samples during an EVA? What improvements are desired, warranted, or required?
 • What improvements are desired, warranted, or required for taking handheld EVA core samples, especially in terms of applying the required force into the tool?
 • What improvements are desired, warranted, or required for curation of core samples?

• How effective is the Modular Equipment Transportation System (METS) for transporting equipment and samples to and from a habitat during a planetary surface EVA?
 • What improvements are desired, warranted, or required in the wheeled Equipment Transport (WET)?
 • What improvements are desired, warranted, or required in the Suit-mounted Equipment Carrying System (SECSy)?
The NEEMO mission will also evaluate the merits of putting the IV crewmember in different locations to support Science Team objectives, alternating between the habitat and the shore-based science trailer (mimicking a Mission Control Center position). Should future exploration architectures include no ground-based habitat with IV support during EVAs, it is likely that those EVAs will need to be coordinated from Earth. This NEEMO mission will include at least two EVAs where the IV position is located in the shore-based science trailer. One of these two EVAs should be a nominal communications day and one should be a day where the 30 minute communication blockage takes place. During the latter case, a habitat IV should be available for one hour to take over before, during, and just after the comms blockage.
Objective

- Analyze integrated EVA science operations to determine what functions/capabilities are needed to enable a Mission Control Center (MCC) and integrated Science Team to effectively operate and actively direct EVA operations with science tasks over a lunar signal (comm & data) latency and blockage
- Evaluate flexible execution methodology and decision making protocols for science tasks during EVA operations

Implementation

- An onshore MCC Flight Control Team (FCT) that includes a Mission Director, EVA Officer, CAPCOM, and other system/subject matter experts
- An onshore Science Team that includes a Science Lead, subject matter experts, and Science Communicator (SCICOM)
- Mission (flight) rules volume and mission priorities, heightened mission tempo and pressure with additional flight control rigor, spacesuit telemetry, FCT GO/NO GO calls, and IVA task/experiment timeline
MM-3 NEEMO MISSION MANAGEMENT TEAM (MMT) AUTHORITY
A. The NEEMO MMT, chaired by the Project Lead, is responsible for policy decisions and strategic planning.
C. The MMT has authority and responsibility for all strategic decisions affecting objectives and mission plans.
D. Any deltas or deviations from the plan will be approved by the MMT.
E. Any mission rule deviations or changes will be approved by the MMT.
F. The MMT determines and designates the roles and responsibilities for team members (e.g., Mission Director, Capsule Communicator (CAPCOM), EVA Lead, EVA Officer, Science Lead, Science Communicator (SCICOM), Science Officer, etc.).

MM-5 MISSION DIRECTOR (MD) AUTHORITY
A. The Mission Director has authority for all mission objectives.
B. The Mission Director will be in charge of the execution of the mission, and is responsible for the Mission Control Center (MCC) and Science Team (ST) operations.
C. The Mission Director is in charge of the mission timeline, and provides final inputs and approval to the Mission Planners
D. The Mission Director is responsible for the communications system and directing support from the Comm Lead
E. The Mission Director may delegate responsibility for tactical operational decisions as required (e.g., to the CAPCOM).

MM-6 CREW COMMANDER AUTHORITY
The NEEMO Crew Commander has direct on-scene responsibility for NASA objectives for the crewmembers selected by NASA, and for maintaining in-situ operations.

MM-7 EXTRAVEHICULAR ACTIVITY (EVA) LEAD/OFFICER AUTHORITY
A. The EVA Lead has authority for all EVA mission objectives and tasks conducted during EVA operations.
B. The EVA Lead has responsibility for integrating all tasks and objectives to be performed during an EVA.
C. All EVA plans and products (e.g., cue cards and procedures) require approval from the EVA Lead (or designee) before being uplinked to the crew.
D. The EVA Lead is responsible for all EVA hardware and tools. The EVA Lead may delegate some responsibility to the EVA Tools Lead.
E. The EVA Lead is responsible for ensuring that the crew and topside dive operations have required equipment and support to complete tasks during the EVA
F. The EVA Lead has responsibility for the EVA Officer, EVA Coordinator, EVA Dive Boat Lead, and all other EVA-related personnel.
 i. The EVA Officer is the flight/mission controller responsible for execution of the EVA
 ii. The EVA Coordinator is the flight/mission controller responsible for coordinating support and out-of-sim activities to ensure successful completion of EVA tasks
 iii. The EVA Tools Lead has accountability for the EVA equipment
 iv. The EVA Dive Boat Lead is the head support diver for the day, is responsible for coordinating dive support operations with the EVA Lead

MM-8 SCIENCE LEAD AUTHORITY
A. The Science Lead has authority for all science tasks conducted during EVA operations and ensuring their successful completion.
B. The Science Lead is responsible for coordinating with external science partners
C. The Science Lead has responsibility for the SCICOM, the Science Officer, Science Documentarian, and all other EVA-related Science personnel.
 i. The SCICOM is the flight/mission controller responsible for providing direction to the crew for science tasks, and has the following duties and responsibilities during the EVA...
 ii. The Science Officer – RESERVED
 iii. The Science Documentarian is the Science Team member responsible for recording science data during the EVA.
D. The Science Lead is responsible for integrating science tasks with the EVA Lead and Flight Control Team.
EVA-5

MCC AND ST OPERATIONS DURING EVA

A. The MCC Flight Control Team (FCT) has final authority for deciding GO/NO GO before and during an EVA

1. Any continuation or extension will be based on mission timeline for the day.
2. The FCT will evaluate the ability to achieve a full length EVA if the EVA starts late based on the mission timeline for the day.
3. GO/NO GO call for transition between major task blocks on the EVA timeline or to different zones will be based on the best available suit consumables telemetry as determined by the EVA Officer.

B. The Mission Director (or designee) has authority on determining whether an EVA will continue based on the mission timeline and EVA suit status.

C. The EVA Officer (or designee) will determine whether the next task block on the timeline can be started based on spacesuit consumables and timeline status, and will provide recommendations to continue or extend an EVA to the Mission Director (or designee).

D. The Science Officer has responsibility for coordinating science tasks with the rest of the FCT.

E. During science-driven tasks, the Science Team SCICOM has responsibility for science task blocks on the timeline.

1. SCICOM will directly provide the crew input within any given task block on the timeline.
2. SCICOM will keep the MCC FCT informed of status through voice loop communication with the Science Officer (formerly Science Liaison) in MCC.
3. The ST will receive a GO from the MCC FCT, based on recommendations from the EVA Officer, before instructing the crew to proceed with the next task block on the timeline.
4. Any significant deviations or deltas to the timeline will be discussed between the ST and FCT.

MM-10

EVA CHAIN-OF-COMMAND

A. The EVA Lead has final authority for safeguarding EVA equipment.

B. The Science Lead has final authority for safeguarding science equipment.

C. The EVA chain-of-command during the mission is as follows:

1. Mission Director
2. EVA Lead
3. Science Lead

D. The EVA chain-of-command during EVA operations is as follows:

1. Mission Director
2. Crew Commander
3. EVA Officer
4. SCICOM
5. CAPCOM

E. The Science Team chain-of-command during EVA operations is as follows:

1. Science Lead
2. SCICOM
3. Marine Science Principle Investigators

F. Decisions and GO/NO GO for EVA operations and tasks will adhere to the following chain-of-command (in order from start to finish):

1. The Science Team will determine the science and sampling plan and deltas.
2. The EVA Officer (or designee) will determine if the operations, spacesuit consumables, and EVA equipment supports the plan/deltas.
3. Mission Director (or designee) has final authority for implementing/executing any EVA plan or task delta.
Objective
• Evaluate pioneering/construction tasks on a planetary mission

Implementation
• Build a new coral nursery tree structure on the bow end of the hab
• Rebuild the Mercury Nursery
• Utilize DAVD to direct the crew real-time through the tasks
3D Habitat Repair

The "EVA 3DP-HAB Repair" initiative is a feasibility study that evaluates the potential associated tools, methods, and concept of operations required for a Critical Contingency Extravehicular Activity (CCE’s) Repair of a 3D-Printed In-Situ Resource Utilization (ISRU) Lunar and Martian Habitat. Additionally, the study investigates solutions for coral reef restoration via 3D-printed biomimetic habitats utilizing ISRU & alternative materials, promoting coral larvae settlement and providing a safe haven for marine species.

Along with NASA’s current space Technology Roadmaps for Habitation & EVAs, NextSTEP’s ISRU Technology Research, and the Centennial 3D-Printed Habitat Challenge, this study will provide an initial analysis of this integrated system focusing on the functional abilities, environmental and human factors on a 3D-printed habitat.

With the support of NASA and the Department of Space Studies at the University of North Dakota, the successful outcome will contribute to the design and concept of operations requirements for Deep Space Gateway, long-duration Planetary Missions, and advancement in technologies. These will help answer some of NASA’s Human Research Program (HRP) EVA Risks and Lunar & Martian Human Exploration Strategic Knowledge Gaps (SKGs). Additionally, understanding and advancing the nature of 3D-printed habitats will help contribute to habitats for all living things on and off this "Faint Blue Dot we call home."

Exploring in-situ repair options on a 3D Printed habitat material
SCIENCE TASKS DURING EVA

- Exploration
- Science Instruments
- Science Sampling
- Curation
Drill Sampling Protocol

NOTE: Prevent cross contamination by brushing drill bit thoroughly between samples. Inspect to confirm no tissue remains.

1. EV1: Provide perm. tag # of coral being sampled.
2. EV1: Attach core bit to drill and tighten chuck.
3. EV2: Depress plunger as far as possible to remove excess seawater.
4. EV2: Join syringe to preservation reservoir via connector.
5. EV2: Draw back on plunger of syringe containing the sample and flood syringe with preservant. Minimize human contact and environmental discharge.
6. EV2: Cap sample-containing syringe and stow securely in preservation box.
7. Repeat until sampling is complete.

CONTINUE TO SAMPLE PRESERVATION

CAUTION: Be careful to avoid complete removal of the plunger.

This document does not contain any export control information (#20205009473)
• Is it Acceptable for an MCC Science Team to provide input and direction to the crew during planetary surface integrated EVA science operations with signal (comm) blockage/outages?
 • How does lunar-relevant signal blockage/outages affect EVA operations?
 • How does utilizing a crew IV compare to using a ground IV
 • What improvements are desired, warranted, or required for decision making protocols?
 • What functions/capabilities are needed (software, hardware, techniques) to enable an MCC Science Team to effectively direct EVA science operations when limited with signal (comm) blockage/outages?

• What functions/capabilities in terms of integrated informatics are needed to enable the EVA crew to effectively operate and communicate information to an MCC Science Team during planetary surface operations with signal (comm) blockage/outages?
 • What advanced informatics concepts are effective for EVA operations?
 • What improvements are desired, warranted, or required for EVA crew self-navigation?
 • What improvements are desired, warranted, or required for IV/MCC tracking of EVA crew?

• What improvements are desired, warranted, or required for decision making protocols that enable effective flexible execution methodology (flexecution) for planetary surface EVA science operations?

• Which capabilities and techniques are enabling and significantly enhancing for the lunar surface mission operations concepts tested?
EVA SCIENCE OPERATIONS
EVA & ARES will evaluate the detailed EVA interaction with an integrated Science Team striving to collect and test authentic scientific objectives and hypotheses, using marine science as a proxy for planetary surface science. These operations will be conducted utilizing a flexible execution methodology for EVA science operations in a natural environment (i.e. an environment that is not completely defined or known prior to arrival, as would be the case in a mission to the surface of the moon or Mars). To enable this interaction, several tools were developed for evaluation, including an augmented vision heads-up display and handheld electronic cue cards for EVA crew that allow them to operate more effectively, and a support system that future IV crewmembers will need in order to effectively handle the amount of information and tasking that must be contended with while actively directing an EVA during signal outages.
NEEMO 23 PROXY PLANETARY SCIENCE OBJECTIVES

In Situ Instrumentation Deployment
• Coral In Situ Metabolism (CISME) experiment deployment techniques and time constraints are analogous to high priority geologic instruments (XRF, XRD, LIBS, etc.)
• N23 Science Operations objectives focus on feasibility of EVA deployment of in situ tools real-time and efficacy of 1 vs 2 person operations
• Define areas through crew feedback that can be streamlined in support of future space applications involving non-destructive sample analysis

Geological Sampling
• Determine the feasibility for novel sampling science operations techniques including (1) scouting, (2) “sterile” sample collection, and (3) real-time sample preservation by the NEEMO crew.
• Assess multiple sampling techniques including pneumatic coring and chiseling to efficiently collect high volume (~30) of individual samples while simultaneously minimizing contamination risk.
• Assess workload of crew sampling with 1 vs 2 crewmembers
Opportunistic Sampling
- Sponge spawning and fertilization only if observed on EVA
- Specialized crew training and subsequent EVA 'flexecution'

Targeted Geologic and Biomolecular Small-Volume Sampling - The “Stinger”
- Demonstrate the feasibility of collection of a diversity of targets using a new small volume sampler—the “Stinger"
- Enables collection of high-resolution samples without damaging fragile structures
- Collect and preserve samples *in situ*
MINIMUM REQUIREMENTS FOR SUCCESS

COMPLETION STATUS
MOR Minimum Requirements for Success

#1: Diver Augmented Vision Display (DAVD) [EVA AVHUD]

<table>
<thead>
<tr>
<th>Completed</th>
<th>Partially Completed</th>
<th>Not Completed</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 engineering saturation dive evals</td>
<td>2 engineering topside dive evals (before start of ESAT)</td>
<td>2 saturation mission evals</td>
</tr>
</tbody>
</table>

#2: Conducting science-driven exploration

<table>
<thead>
<tr>
<th>Completed</th>
<th>Partially Completed</th>
<th>Not Completed</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 evals – 2 by each astronaut crewmember</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

#3: EVA Navigation and Crew Tracking [Navy Sonar]

<table>
<thead>
<tr>
<th>Completed</th>
<th>Partially Completed</th>
<th>Not Completed</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 engineering saturation dive evals</td>
<td>2 saturation mission evals</td>
<td></td>
</tr>
</tbody>
</table>

#4: EVA Support System & IV workstation

<table>
<thead>
<tr>
<th>Completed</th>
<th>Partially Completed</th>
<th>Not Completed</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 evals (w/OpenMCT) – 2 by each astronaut crewmember</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MOR Minimum Requirements for Success

#5: Integrating Science Team with EVA during a lunar mission

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Completed</th>
<th>Partially Completed</th>
<th>Not Completed</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 EVAs with near real-time comm and signal blockage/outages for science exploration</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

#6: METS (including WET and SECS)

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Completed</th>
<th>Partially Completed</th>
<th>Not Completed</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 evals – 1 by each crewmember</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

#7: CISME

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Completed</th>
<th>Partially Completed</th>
<th>Not Completed</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 evals – 1 by each astronaut and the EVA science PI over at least 2 EVAs</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

#8: Core sample acquisition system focused on curation

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Completed</th>
<th>Partially Completed</th>
<th>Not Completed</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 evals – 1 by each crewmember</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
#9: Nursery construction

<table>
<thead>
<tr>
<th>Completed</th>
<th>Partially Completed</th>
<th>Not Completed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Done</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

#10: Flexecution during EVA

<table>
<thead>
<tr>
<th>Completed</th>
<th>Partially Completed</th>
<th>Not Completed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 EVAs with near real-time comm and signal blockage/outages for science exploration (overlaps #4)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

#11: EVA digital cue cards

<table>
<thead>
<tr>
<th>Completed</th>
<th>Partially Completed</th>
<th>Not Completed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 evals – 1 by each crewmember</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

#12: Suit mounted tool harness

<table>
<thead>
<tr>
<th>Completed</th>
<th>Partially Completed</th>
<th>Not Completed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 eval</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
REVIEW OF NEEMO AS AN ANALOG FOR EVA

INTEGRATED OPERATIONAL TESTING: WHO, WHAT, WHERE, WHY, & HOW
To achieve mission readiness through integration and testing of technologies, systems, operations, and science in relevant environments:

- Close technology, exploration, and science gaps
- Identify and develop the best systems, innovations, and operational approaches
- Drive out results not found in standalone testing, including things that do and do not work in a mission environment
- Inform strategic architectural and concept of operations development efforts
- Facilitate EVA concepts of operations development

OUTCOME: These efforts will ultimately lead to mission readiness and success, reduce the risk, increase the scientific return, and improve the affordability of NASA programs and missions.
TOOLS

EVA Systems
- EVA tools and equipment
- Large equipment transport
- Small tool transport on suit
- Informatics
- Crew rescue
- EVA Support System & IV Workstation
- Science instruments and sample acquisition tools

Instrumentation
- Sample identification / high-grading
- ISRU verification

Sample Collection/Curation
- Collection
- Contamination Mitigation
- Preservation/Storage

TECHNIQUES

Exploration Operations
- Procedure development/refinement
- Signal latency (time delay) & blockage
- Bandwidth limitations

EVA Operations
- EVA concepts of operations
- EVAs in undefined environments
- Advanced capabilities & informatics

Science Operations
- Flexecution methodology
- Decision making protocols
- Transverse planning

Robotic Operations
- Autonomous
- Crew controlled
- Human-Robotic interface & integration

TECHNOLOGIES

Emerging Technologies
- Virtual/Hybrid reality opportunities
- Relevant cutting-edge systems and capabilities for Exploration and EVA
- Rapid testing environment for development of emerging technologies

Innovations Incubator
- Relevant environments and operational constraints are a breeding ground for innovation

Partnerships
- Opportunities for external partners to demonstrate current capabilities
- Direct collaboration leading to proposal and other funding avenues
- Strengthens international partnerships

TRAINING

Cross-Disciplinary Training
- Learning each others language, requirements, and drivers in EISD
- Ex. Geo-Science Field Training for managers and engineers

Astronaut Crew Training
- Additional expeditionary and leadership opportunities
- Enhances both operational and science training objectives

Operational Training
- Provides ops training prior to payload flights for payload PIs and teams
- Enables development of engineers and scientists not normally exposed to operations

WHAT: DEVELOPMENT & INTEGRATION THEMES AND FOCUS OF NEEMO 23 EVA

EVA-EXP-0071

This document does not contain any export control information (820205004731)
WHAT: CAPABILITY DEVELOPMENT VIA INTEGRATED OPERATIONS

SCIENCE

OPERATIONS

ENGINEERING

Integrated EVA Science Operations

Aquarius Reef Base
Florida International University
Harbor Branch Florida Atlantic University
ihmc
Astromaterials Research & Exploration Science (ARES)
Mission Planning, Develop & Integration
Extravehicular Activity Office
Crew & Thermal Systems - Tools
Naval Sea Systems Command
esa

This document does not contain any export control information (#20205009473)
WHERE: NASA EXTREME ENVIRONMENT MISSION OPERATIONS (NEEMO)

• NASA undersea high-fidelity spaceflight mission analog – focusing on exploration science and EVA techniques & tools, as well as maturing near term (ISS) flight hardware and ops concepts – that sends groups of astronauts, engineers and scientists to live, work and explore in a challenging environment

• Allows for evaluations of EVA end-to-end concepts of operations with crew that are in-situ in a true extreme environment and provides for flight-like interactions between the crew and an MCC & Science Team

• Series of 22 space exploration simulations conducted since 2001
WHERE: NEEMO FACILITIES

- Aquarius Reef Base, the world's only undersea research station
- Located 5.4 miles (9 kilometers) off Key Largo in the Florida Keys National Marine Sanctuary
- 62 feet (19 meters) below the surface next to a deep coral reef named Conch Reef
- Operated by Florida International University

Facilities include:
- The Aquarius Habitat
- Life Support Buoy (LSB)
- Small boat fleet
- Shore base (incl. hyperbaric chamber, dive support equipment, etc.)
WHO: NEEMO 23 PARTNERS/COLLABORATORS

• NASA
 • JSC:
 • XM: Mission leadership and integration
 • XI: Science Team leadership, science objectives, mission management
 • XX: EVA Leadership, EVA objectives, mission management
 • EA (EC, ER): PI for multiple evaluation objectives, building EVA equipment
 • CB: Crewmember and Capcom
 • SD: PI for mission objectives
 • PAO: Public Affairs activities
 • ARC: Mission planners and timeline tool
 • KSC: Communications, data management, and logistics support
 • JPL: Research objectives
 • GSFC: Science Team leadership and expertise
 • MSFC: Capcom support

• ESA: Crewmember, Capcoms, research objectives

• Academia
 • Florida Atlantic University (FAU) Harbor Branch Oceanographic Institute: Research and mission objectives
 • University of South Florida (USF): Research objectives
 • California State University San Bernardino: Research objectives
 • Iowa State University: Research and mission objectives
 • University of North Dakota: Research objectives
 • Lone Star College: Flight hardware demo
 • Florida International University (FIU): Aquarius owner and operator, science support

• DoD
 • Naval Sea Systems Command (NAVSEA) & Office of Naval Research (ONR): Diver Augmented Vision Display and navigation
 • Naval Surface Warfare Center Panama City (NSWC PC): Diver Augmented Vision Display

• Institutions
 • Florida Institute for Human & Machine Cognition (IHMC): Research and mission objectives
 • Charles Stark Draper Laboratory: Research and mission objectives
 • Coral Restoration Foundation: Research objectives

• Industry
 • Honeybee: Core drilling solution
 • AllTraq: Mission objectives
 • Shark Marine: Providing a robotic and camera system
 • Aexa Aerospace: Providing HoloLens units and expertise
 • Project Voxa: Mochii Scanning Electron Microscope

This document does not contain any export control information (#20205009473)
OVERVIEW OF A NEEMO EVA

SOME HIGH LEVEL STEPS AND IMAGERY AS WE EXAMINE A DAY IN THE LIFE OF AN AQUANAUT...
THE “SPACECRAFT”: AQUARIUS UNDERWATER HABITAT

Aquarius Underwater Habitat

Splashdown Photo

Wet Port Entrance

Model courtesy of Jim Maida and the GRAF Lab
The "Spacesuit": KM 37SS Helmet w/ Wetsuit & Harness

37SS: Narrower FOV, Helmet movable

xEMU: Wider FOV, Helmet fixed

Dive helmet & system provide good analog to a spacesuit for concepts of operations evaluations

Both have different but comparable challenges for operations

Will utilize EMU TMG

Wetsuit: Very flexible

xEMU: Pressurized, bulky

TBD mEMU concept (courtesy of The Martian)
EVA CHECKLIST

EVA PLANNING
- Review Tasks/Objectives
 - Roles/Responsibilities
 - Required Equipment
 - METS Load Plan
 - Space Plan
 - Robotics Plan
- Review Traverse
 - Routes/Navigation
 - Durations
- Brief In-Water Hab Tech
 - Routes
 - Umbilical Planning
- Image Planning
- Contingency Planning

PREPARE EQUIPMENT
- iDive Tablet
 - Charged
 - Card-Card Downloaded
 - Proper Mode Settings
 - CO2 Cartridge Changed (if required)
 - Sealed/Bubble Check
- Cameras
 - Charged: Data Space
 - Handle/Capped off
 - Sealed/Bubble Check
 - In fresh Water Bucket
- Depth Gauge/Watch
- Cutting Device

GEAR UP / HATTING
- Hatting*
 - Adjust paddling and Valsala
 - Neck Down
 - Don vest
 - Attach straps (2 chest, 2 crotch)
 - Don helmet—tender mates fittings
 - Verify hat is breathing
 - Comm check (Watch Desk, Periwinkle Driver)
- Reach Checks
 - Valves (Steady Flow, Purge, Dial-a-Breath)
 - EGS pressure gauge
 - Cutting device
 - Camera
 - Other EVA specific equipment
- System Checks*
 - Read EGS pressure
 - EGS functional check
 - Pneumo check
- Surface Checks*
 - Steady Flow
 - Purge
 - Dial-a-Breath

STAGING AREA
- Attach iDive to METS
- CISME activation/calibration
- Config METS per plan
- Check drill functions
- Don thigh module
- Don forearms module
- Verify umbilical routing w/ Hab Tech
- Don PLSS frame (for ICM task only)
- Put CISMEs on METS

EGRESS / STAGE OUT
- Comm check w/ IV
- Comm check w/ MCC (low latency only)
- Weigh-out (hab tech adds weights)
- Report water conditions to IV (vib, current)
- Retrieve Navigator from topside and activate
- Verify helmet cam w/ IV
- Verify depth gauge

ENTER THE WATER

IN-WATER CHECKS
- Surface checks*
 - Steady Flow
 - Purge
 - Dial-a-Breath
- EVA specific equipment
 *working with ARB Staff

This document does not contain any export control information (00202009473)
The Rules of NEEMO EVA

1st rule of NEEMO EVA: You do not lay down in your ‘pressurized spacesuit’
2nd rule of NEEMO EVA: You do NOT lay down in your ‘pressurized spacesuit’
3rd rule of NEEMO EVA: If MCC says “stop” or the Watch Desk calls it, the EVA is over
4th rule: Only two crewmembers on an EVA
5th rule: One EVA at a time
6th rule: No rovers, no robotic arms
7th rule: Science tasks will go on as long as they have to
8th and final rule: If this is your first NEEMO mission, you have to go EVA

EVA-1 EVA CREW OPERATIONS
C. EVA crew should maintain a body position appropriate for a pressurized surface exploration EVA suit.
 i. Laying down is not permitted, except for the incapacitated crewmember (ICM) in an ICM rescue evaluation.
 ii. Kneeling on one knee is permitted, but kneeling on two knees is should to be avoided.
 iii. Movements should be kept to reasonable limitations of a pressurized spacesuit, which are far more restrictive than a wetsuit.
D. Tasks should be completed by the EVA crewmember without assistance from support divers to the extent possible.

The goal of NEEMO is to see what does and doesn’t work in a mission-like environment.

One of the primary things to remember is that you’re evaluating tools and techniques as if on a planetary surface while wearing a pressurized spacesuit.
ENGINEERING SATURATION RUN (ESAT)
Overview
- Part of the full suite of hardware and mission concept testing required to prepare for the mission
 - Extended access to habitat for pre-configuration needs
 - Hyperbaric effects on equipment
 - Extended subsea testing time
 - Procedure and timeline development
 - Mission network in place
- Initial EVA and Science SME evaluations
- 5-day test with 4 NASA crewmembers living in the habitat (in saturation)
 - All experienced aquanauts (Todd, Reagan, Coan, Graff)
- Topside dive and MCC-type support as well
- May 23-27, 2019

ESAT Crew
- Bill Todd
 - Project Management
 - NEEMO 1 Aquanaut
- Marc Reagan
 - Mission Director
 - NEEMO 2 Aquanaut
- David Coan
 - EVA Lead
 - NEEMO 20 Aquanaut
- Trevor Graff
 - Integration Lead
 - NEEMO 22 Aquanaut
EVA Objective (per MOR) - Engineering Run Task

<table>
<thead>
<tr>
<th>DAVID (EVA HUD)</th>
<th>Engineering Run Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test dive NASA KM37 with DAVID integrated</td>
<td>Conduct initial test dive of NASA KM37 with integrated DAVID</td>
</tr>
<tr>
<td>Functionally test DAVID control box</td>
<td>Test DAVID system components in hyperbaric environment (hab)</td>
</tr>
<tr>
<td>DAVID topside control box</td>
<td>MS-1000 laptop and electronic controllers</td>
</tr>
<tr>
<td>CODA Echoscope laptops and electronic controllers</td>
<td>Operationally test DAVID HUD system</td>
</tr>
<tr>
<td>Test dive NASA KM37 with DAVID from the habitat</td>
<td>Evaluate usability of HUD and mission data</td>
</tr>
<tr>
<td>Demonstrate real-time images from Sector Scan</td>
<td>Demonstrate real-time images from Echoscope C-500</td>
</tr>
<tr>
<td>Demonstrate images and drawing pop-ups on HUD display</td>
<td>Demonstrate test messaging with diver</td>
</tr>
<tr>
<td>Demonstrate on-screen navigation direction</td>
<td>Evaluate HUD layout, amount of data, colors, and dynamic data</td>
</tr>
<tr>
<td>Evaluate use of 3D model displayed to diver</td>
<td>Tracking / Sonar</td>
</tr>
<tr>
<td>Deploy sector sonar and test system</td>
<td>Deploy sonar</td>
</tr>
<tr>
<td>Set up the Kongsberg MS-1000 and the CODA Echoscope C-500 (surface) outside the habitat</td>
<td>Identify the most suitable operational location</td>
</tr>
<tr>
<td>Identify the most suitable operational location</td>
<td>Establish connections to send the images up to surface and command center</td>
</tr>
<tr>
<td>Verify ability to transmit sonar data to the hab and MCC</td>
<td>Establish connections to control the sonar systems from the surface and send data to hab</td>
</tr>
<tr>
<td>Verify operability of core drill with gloves</td>
<td>Evaluate use for EVA navigation</td>
</tr>
<tr>
<td>Verify operability of Stinger with gloves</td>
<td>Try out various locations in order to scan the exploration zones</td>
</tr>
<tr>
<td>Verify operability of CISME with gloves</td>
<td>Deploy and test TrackLink</td>
</tr>
<tr>
<td>Check operation of new Nemo hammer drill</td>
<td>Verify placement and functionality of tracking transponders</td>
</tr>
<tr>
<td>Verify placement and functionality of tracking transponders</td>
<td>IV Workstation (w/DAVID)</td>
</tr>
<tr>
<td>Evaluate EVA support system & IV workstation</td>
<td>Set up system hardware and configure workstation</td>
</tr>
<tr>
<td>Note any changes needed to table overlay</td>
<td>Test server link to MCC and run example timeline</td>
</tr>
<tr>
<td>Test server link to MCC and run example timeline</td>
<td>Import Analog data into workstation</td>
</tr>
<tr>
<td>Setup initial displays and evaluate functionality</td>
<td>Verify Playbook ops with EVA timeline tracking features</td>
</tr>
<tr>
<td>Import Analog data into workstation</td>
<td>Determine how to integrate sonar operation</td>
</tr>
<tr>
<td>Verify Playbook ops with EVA timeline tracking features</td>
<td>End-to-end run through of tasks (nursery and drilling)</td>
</tr>
<tr>
<td>Determine how to integrate sonar operation</td>
<td>Science EVA Tasks</td>
</tr>
<tr>
<td>End-to-end run through of tasks (nursery and drilling)</td>
<td>Develop hub-mounted coral nursery procedures</td>
</tr>
<tr>
<td>Determine all equipment and steps for end-to-end process</td>
<td>Scout area for science targets (FAU sampling)</td>
</tr>
<tr>
<td>Scout area for science targets</td>
<td>Map zones for areas of available species</td>
</tr>
<tr>
<td>Collect precursor imagery for map</td>
<td>Check traverse paths to zones</td>
</tr>
<tr>
<td>Check traverse paths to zones</td>
<td>Test science acquisition tool (Slinger)</td>
</tr>
<tr>
<td>Test Stinger sampling device</td>
<td>Capture imagery/notes for procedure</td>
</tr>
</tbody>
</table>

EVA Objective (per MOR) - Engineering Run Task

<table>
<thead>
<tr>
<th>EVA Tools & Equipment</th>
<th>Engineering Run Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deploy EVA staging area</td>
<td>Deploy EVA staging area</td>
</tr>
<tr>
<td>Check any interference or issue with tools modules</td>
<td>Verify operability of core drill with gloves</td>
</tr>
<tr>
<td>Verify operability of Stinger with gloves</td>
<td>Verify operability of CISME with gloves</td>
</tr>
<tr>
<td>Check interference with EVA glove (EMU TMG)</td>
<td>Evaluate Sabre (ISU)</td>
</tr>
<tr>
<td>Evaluate upgraded SECS/forearm module</td>
<td>Check interference with EVA glove (EMU TMG)</td>
</tr>
<tr>
<td>Check interference with EVA glove (EMU TMG)</td>
<td>Inventory EVA Office equipment</td>
</tr>
<tr>
<td>Inventory all equipment purchased by EVA in the dive locker</td>
<td>General EVA Ops</td>
</tr>
<tr>
<td>Test general night ops</td>
<td>Evaluate night EVA operations</td>
</tr>
<tr>
<td>Evaluate if CISME can be done at night</td>
<td>Determine practical topside support diving capability</td>
</tr>
<tr>
<td>Test dive new diver harnesses</td>
<td>Test dive new diver harnesses</td>
</tr>
<tr>
<td>Map hazards and update EVA map</td>
<td>Scout hazards</td>
</tr>
<tr>
<td>Map hazards and update EVA map</td>
<td>Verify traverse paths and umbilical routing</td>
</tr>
<tr>
<td>Finalize location for LESA</td>
<td>Finalize location for LESA</td>
</tr>
<tr>
<td>Look at proposed area for LESA and stowing the Comex suit</td>
<td>Shoreside EVA</td>
</tr>
<tr>
<td>Demonstrate PaleBlue’s VR Diver</td>
<td>Demonstrate PaleBlue’s VR Diver</td>
</tr>
</tbody>
</table>
ENGINEERING WEEK OBJECTIVES

- Interior
 - IV workstation config and testing (new system)
 - Connectivity w/ DAVD & pushing data
 - Tracking
 - Sonar
 - Comm system config and testing (new system)
 - MCC-to-EV direct link comm (allows Ground IV concept)
 - Experiment Prerequisites and Pre-config
 - Tracking system setup and calibration w/ their engineering team (Alltraq)
 - HoloLens AR – acquire 3D map, apply April stickers, calibrate system, validate procedure (JPL)
 - 3D scanned maps of Aquarius interior (Alltraq & WKS (Draper))
 - Experiment hardware functionality checks
 - DAVD Control Box
 - WKS
 - RTPM laptop
 - Neurocog laptop
 - SEM
 - Firewall/Connectivity checks
 - WKS
 - SEM
 - Med Scenario Telementoring

- Exterior
 - DAVD
 - Checkout KM37 w/ DAVD integrated
 - Test dive KM37 w/ DAVD from habitat
 - Evaluate usability of mission data layouts, sonar, tracking, texting
 - Tracking
 - Verify placement and mounting of sonar head
 - Verify placement and functionality of tracking transponders
 - Solve interference problems between the systems
 - Scouting
 - For science sites
 - Update EVA map
 - Method for marking keepout areas
 - Identify location for LESA ops
 - Nursery
 - Evaluate hab mounted nursery build hardware requirements
 - End-to-end run thru of tasks
 - Pre-config work
 - Build science staging area
 - Verify operability of science tools and instruments using EMU TMG gloves
 - Evaluate new dive harnesses
 - Evaluate new hammer drill
 - Evaluate extended umbilicals, and new traverse paths
 - Solve joggle mount
<table>
<thead>
<tr>
<th>EVA Objective (per MOR)</th>
<th>Engineering Run Task</th>
<th>Priority</th>
<th>Topside or Saturation</th>
<th>Equip needed</th>
<th>Min/Prime SME Evaluators/Divers</th>
<th>Requirements / Enablers</th>
<th>Products needed</th>
<th>Surface Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAVID (EVA HUD)</td>
<td>DAVID EVA Objective (per MOR)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test dive NASA KM37 with DAVID integrated</td>
<td>Conduct initial test dive of NASA KM37 with integrated DAVID</td>
<td>1</td>
<td>Topside</td>
<td>NASA KM37</td>
<td>XX/EVA (Coan)</td>
<td>Completed before saturation</td>
<td>NAVSEA/NSWC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DAVID</td>
<td></td>
<td></td>
<td>XI/ARES (Graff)</td>
<td>KM37 with integrated DAVID</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Data cable secured to/in umbilical</td>
<td>Control box deployed near comm box</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NAVSEA/NDWC personnel available on site</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Functionally test DAVID control box</td>
<td>Test DAVID system components in hyperbaric environment (hab)</td>
<td>1</td>
<td>Saturation</td>
<td>XX/EVA (Coan)</td>
<td>Saturation with SMEs</td>
<td>NAVSEA/NSWC</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DAVID topside control box</td>
<td></td>
<td></td>
<td>XI/ARES (Graff)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MS-2000 laptop and electronic controllers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CODA Echoscope laptops and electronic controllers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operationally test DAVID HUD system</td>
<td>Test dive NASA KM37 to DAVID from the habitat</td>
<td>1</td>
<td>Saturation</td>
<td>NASA KM37</td>
<td>XX/EVA (Coan)</td>
<td>Saturation with SMEs</td>
<td>EVA cue cards</td>
<td>NAVSEA/NSWC</td>
</tr>
<tr>
<td></td>
<td>DAVID system</td>
<td></td>
<td></td>
<td>XI/ARES (Graff)</td>
<td>KM37 with integrated DAVID</td>
<td>NAVSEA/NSWC</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Data cable secured to/in umbilical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Control box deployed near comm box</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NAVSEA/NDWC personnel available on site</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tracking / Sonar</td>
<td>Deploy sector sonar and test system</td>
<td>1</td>
<td>Topside</td>
<td>Kongsberg MS1000</td>
<td>XX/EVA (Coan)</td>
<td>Navy divers to deploy and move sonar</td>
<td>NAVSEA/NSWC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Set up the Kongsberg MS-1000 and the CODA Echoscope C-500 (surface) outside the habitat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NAVSEA/NDWC personnel on support boat</td>
<td>NAVSEA (McMurtrie)</td>
</tr>
<tr>
<td></td>
<td>Identify the most suitable operational location</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NAVSEA/NDWC personnel on support boat</td>
<td>NAVSEA (McMurtrie)</td>
</tr>
<tr>
<td></td>
<td>Verify ability to transmit sonar data to the hab and MCC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NAVSEA/NDWC personnel on support boat</td>
<td>NAVSEA (McMurtrie)</td>
</tr>
<tr>
<td></td>
<td>Establish connections to send the images up to surface and command center</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NAVSEA/NDWC personnel on support boat</td>
<td>NAVSEA (McMurtrie)</td>
</tr>
<tr>
<td></td>
<td>Establish connections to control the sonar systems from the surface and send data to hab</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NAVSEA/NDWC personnel on support boat</td>
<td>NAVSEA (McMurtrie)</td>
</tr>
<tr>
<td></td>
<td>Evaluate use for EVA navigation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NAVSEA/NDWC personnel on support boat</td>
<td>NAVSEA (McMurtrie)</td>
</tr>
<tr>
<td></td>
<td>Try out various locations in order to scan the exploration zones</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NAVSEA/NDWC personnel on support boat</td>
<td>NAVSEA (McMurtrie)</td>
</tr>
<tr>
<td></td>
<td>Deploy and test TrackLink</td>
<td>2</td>
<td>Topside</td>
<td>Shark Marine</td>
<td>XX/EMPO (Todd)</td>
<td>IV operator (any)</td>
<td>NAVSEA/NDWC</td>
<td></td>
</tr>
<tr>
<td>IV Workstation (w/DAVID)</td>
<td>Evaluate EVA support system & IV workstation</td>
<td>1</td>
<td>Saturation</td>
<td>Monitors</td>
<td>XX/EVA (Coan)</td>
<td>Saturation with SMEs</td>
<td>NAVSEA/NDWC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Paste any changes needed to table overlay</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NAVSEA/NDWC personnel on support boat</td>
<td>NAVSEA (McMurtrie)</td>
</tr>
<tr>
<td></td>
<td>Test server link to MCC and run example timeline</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NAVSEA/NDWC personnel on support boat</td>
<td>NAVSEA (McMurtrie)</td>
</tr>
<tr>
<td></td>
<td>Setup initial displays and evaluate functionality</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NAVSEA/NDWC personnel on support boat</td>
<td>NAVSEA (McMurtrie)</td>
</tr>
<tr>
<td></td>
<td>Import final data into workstation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NAVSEA/NDWC personnel on support boat</td>
<td>NAVSEA (McMurtrie)</td>
</tr>
<tr>
<td></td>
<td>Verify Payload ops with EVA timeline tracking features</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NAVSEA/NDWC personnel on support boat</td>
<td>NAVSEA (McMurtrie)</td>
</tr>
<tr>
<td></td>
<td>Determine how to integrate sonar operation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NAVSEA/NDWC personnel on support boat</td>
<td>NAVSEA (McMurtrie)</td>
</tr>
<tr>
<td></td>
<td>End-to-end run through of tasks (nursery and drilling)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NAVSEA/NDWC personnel on support boat</td>
<td>NAVSEA (McMurtrie)</td>
</tr>
<tr>
<td>EVA Objective (per MOR)</td>
<td>Engineering Run Task</td>
<td>Priority</td>
<td>Topside or Saturation</td>
<td>Equip needed</td>
<td>Min/Prime SME Evaluators/Divers</td>
<td>Requirements / Enablers</td>
<td>Products needed</td>
<td>Surface Support</td>
</tr>
<tr>
<td>-------------------------</td>
<td>----------------------</td>
<td>----------</td>
<td>----------------------</td>
<td>--------------</td>
<td>---------------------------------</td>
<td>-----------------------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Science EVA Tasks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Develop hub-mounted coral nursery procedures</td>
<td>Determine all equipment and steps for end-to-end process</td>
<td>1</td>
<td>Saturation</td>
<td>Mounting hardware</td>
<td>EC7/Tools (Naids)</td>
<td>Topside dive support (EC7/Naids)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Coral tree pole</td>
<td>X/ARES (Graff)</td>
<td>Shoreside support (EC7/Walker)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ladder</td>
<td>X/EMAT (Coan)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scout area for science targets</td>
<td>Scout area for science targets (FAU sampling)</td>
<td>1</td>
<td>Both</td>
<td>Cameras</td>
<td>X/ARES (Graff)</td>
<td>FAU</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Map zones for areas of available species</td>
<td>X/ARES (Young)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Collect precursor imagery for map</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Check traverse paths to zones</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test science acquisition tool (Stinger)</td>
<td>Test Stinger sampling device</td>
<td>2</td>
<td>Topside</td>
<td>Stinger</td>
<td>X/ARES (Graff)</td>
<td>FAU</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Capture imagery/video for procedure</td>
<td>X/ARES (Young)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>EC7/Tools (Naids)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EVA Tools & Equipment</td>
<td>Deploy EVA staging area</td>
<td>2</td>
<td>Topside</td>
<td>Staging area</td>
<td>EC7/Tools (Naids)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deploy EVA staging area</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eval utilizing EMU/TMG gloves for EVA crew</td>
<td>Check any interference or issue with tools modules</td>
<td>2</td>
<td>Saturation</td>
<td>EMU/TMG</td>
<td>EC7/Tools (Naids)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Verify operability of core drill with gloves</td>
<td>3mm dive gloves</td>
<td>Any Aquanaut</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Verify operability of Stinger with gloves</td>
<td>Forearm modules</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Verify operability of CISME with gloves</td>
<td>Drill</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Core bit</td>
<td>Stinger</td>
<td>3mm dive gloves</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Core bit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Check operation of new Nemo hammer drill</td>
<td>Check operation of new Nemo hammer drill</td>
<td>3</td>
<td>Topside</td>
<td>Nemo hammer drill</td>
<td>EC7/Tools (Naids)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evaluate SABRE (ISU)</td>
<td>Evaluate the ISU tools harness</td>
<td>3</td>
<td>Saturation</td>
<td>Tool Harness</td>
<td>Any Aquanaut</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Check interference with EMU glove (EMU/TMG)</td>
<td>EMU/TMG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3mm dive gloves</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evaluate Suit-mounted Equipment Carrying System</td>
<td>Evaluate upgraded SECS/forearm module</td>
<td>3</td>
<td>Saturation</td>
<td>SECS/forearm module</td>
<td>Any Aquanaut</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Check interference with EMU glove (EMU/TMG)</td>
<td>EMU/TMG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3mm dive gloves</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evaluate zip tie cutter</td>
<td>Evaluate zip tie cutter</td>
<td>1</td>
<td>Saturation</td>
<td>Zip tie cutter</td>
<td>Any Aquanaut</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Add Velcro to white wetsuits</td>
<td>Add velcro strips to NASA wetsuits for use with SABRE</td>
<td>2</td>
<td>Topside</td>
<td>Aqua Seal</td>
<td>Velcro</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inventory EVA Office equipment</td>
<td>Inventory all equipment purchased by EVA in the dive locker</td>
<td>3</td>
<td>Topside</td>
<td></td>
<td></td>
<td>EC7/Tools (Walker)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EVA Objective (per MOR)</td>
<td>Engineering Run Task</td>
<td>Priority</td>
<td>Topside or Saturation</td>
<td>Equip needed</td>
<td>Min/Prime SME Evaluators/Divers</td>
<td>Requirements / Enablers</td>
<td>Products needed</td>
<td>Surface Support</td>
</tr>
<tr>
<td>------------------------</td>
<td>----------------------</td>
<td>----------</td>
<td>-----------------------</td>
<td>--------------</td>
<td>-------------------------------</td>
<td>-----------------------</td>
<td>-----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>General EVA Ops</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evaluate night EVA</td>
<td>Test general night</td>
<td>1</td>
<td>Saturation</td>
<td>Lights</td>
<td>XX/EVA (Coan)</td>
<td></td>
<td>XX/EVA (Coan)</td>
<td></td>
</tr>
<tr>
<td>operations</td>
<td>ops</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Evaluate if CISME can be done at night</td>
<td></td>
<td></td>
<td>CISME</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Determine practical topside support diving capability</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test dive new diver</td>
<td>Test dive new diver</td>
<td>3</td>
<td>Saturation</td>
<td>R-vest harnesses</td>
<td>All Aquanauts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>harnesses</td>
<td>harnesses</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sonar hazards</td>
<td>Map hazards and update EVA map</td>
<td>3</td>
<td>Both</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Verify traverse</td>
<td>3</td>
<td>Saturation</td>
<td></td>
<td>Any Aquanaut Waystation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>paths and umbilical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>routing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Finalize location for</td>
<td>Look at proposed area</td>
<td>3</td>
<td>Either</td>
<td></td>
<td>Any Aquanaut</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LESA</td>
<td>LESA and stowing the Comex suit</td>
<td></td>
<td></td>
<td></td>
<td>CIS/Tools (Nevis)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shoreside EVA</td>
<td>Demonstrate PaleBlue's VR Diver</td>
<td>3</td>
<td>Topside</td>
<td></td>
<td>All Aquanauts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Demonstrate PaleBlue’s VR Diver</td>
<td></td>
<td></td>
<td></td>
<td>Space at ARB</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Time at the end of ESAT

This document does not contain any export control information (#20205009473)
Support Dive Operations & Dive Safety
HAB TECH SATURATION DIVE SUPPORT
The NEEMO Dive Safety Board (DSB) provides subject matter experts to review any diving operations conducted by or for JSC, including Relevant Environments for Analysis and Development (READy) projects.

The majority of the DSB members shall be active divers and shall perform the following functions:

- Approves and monitors diving and snorkeling activities
- Reviews and revises the NEEMO Diving and Swimming Safety Manual
- Assures compliance with the NEEMO Diving Safety Program Manual
- Certifies divers for specific underwater activities

NEEMO Dive Safety Board Members:

- **Bill Todd** – NEEMO Project Lead, Experienced Aquanaut
- **Jason Poffenberger** – Active Support Diver
- **Joe Schmid** – Medical Doctor, Experienced Aquanaut
- **David Coan** – NEEMO EVA Lead, Experienced Aquanaut, Active Support Diver
OTHER EVA-RELATED INFORMATION
#16: PaleBlue virtual reality training

<table>
<thead>
<tr>
<th>Completed</th>
<th>Partially Completed</th>
<th>Not Completed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Demonstrate PaleBlue’s VR capability for potential use at NEEMO and for EVA</td>
</tr>
</tbody>
</table>
EVA Timeline for NEEMO 23 Mission

(As of 5/1/19)

<table>
<thead>
<tr>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
<th>Saturday</th>
<th>Sunday</th>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
</tr>
</thead>
<tbody>
<tr>
<td>MD 1</td>
<td>MD 2</td>
<td>MD 3</td>
<td>MD 4</td>
<td>MD 5</td>
<td>MD 6</td>
<td>MD 7</td>
<td>MD 8</td>
<td>MD 9</td>
<td>MD 10</td>
</tr>
<tr>
<td>ARB Watch Desk</td>
<td>MCC/ST</td>
<td>FE-1</td>
<td>MCC/ST</td>
<td>FE-1</td>
<td>MCC/ST</td>
<td>FE-1</td>
<td>MCC/ST</td>
<td>FE-1</td>
<td>MCC/ST</td>
</tr>
</tbody>
</table>

Monday
- **Egress**: 0.1 hr
 - Tool Harness (0.15 hr)
 - Ingress (0.1 hr)
- **Cleanup**: 0.15 hr

Tuesday
- **Egress**: 0.1 hr
 - Tool Harness (0.15 hr)
 - Ingress (0.1 hr)
- **Cleanup**: 0.15 hr

Wednesday
- **Egress**: 0.1 hr
 - Tool Harness (0.15 hr)
 - Ingress (0.1 hr)
- **Cleanup**: 0.15 hr

Thursday
- **Egress**: 0.1 hr
 - Tool Harness (0.15 hr)
 - Ingress (0.1 hr)
- **Cleanup**: 0.15 hr

Friday
- **Egress**: 0.1 hr
 - Tool Harness (0.15 hr)
 - Ingress (0.1 hr)
- **Cleanup**: 0.15 hr

Saturday
- **Egress**: 0.1 hr
 - Tool Harness (0.15 hr)
 - Ingress (0.1 hr)
- **Cleanup**: 0.15 hr

Sunday
- **Egress & Setup**: 0.25 hr
 - CISME (2) (staging area)
 - DAVID (1.5 hr)
- **Cleanup & Ingress**: 0.25 hr

Monday
- **Egress & Setup**: 0.25 hr
 - CISME (2) (reef)
- **Cleanup & Ingress**: 0.25 hr

Tuesday
- **Egress & Setup**: 0.25 hr
 - Stinger (1.5 hr)
- **Cleanup & Ingress**: 0.25 hr

Wednesday
- **Egress & Setup**: 0.25 hr
 - Coral Nursery N23 (1.5 hr)
- **Cleanup & Ingress**: 0.25 hr

Thursday
- **Egress & Setup**: 0.25 hr
 - DAVID / CISME (1.5 hr)
- **Cleanup & Ingress**: 0.25 hr

Friday
- **Egress & Setup**: 0.25 hr
 - DAVID / CISME (1.5 hr)
- **Cleanup & Ingress**: 0.25 hr

Saturday
- **Egress & Setup**: 0.25 hr
 - DAVID / CISME (1.5 hr)
- **Cleanup & Ingress**: 0.25 hr

Sunday
- **Egress & Setup**: 0.25 hr
 - DAVID / CISME (1.5 hr)
- **Cleanup & Ingress**: 0.25 hr

https://neemo23.nasaplaybook.com/?plan=mission

This document does not contain any export control information (#20205009473)
Inclusion and priority of all objectives, tasks, techniques, technologies, and equipment evaluated during NEEMO EVAs (excursions from the Aquarius habitat) will be based on relevancy to human space exploration and EVA, ability to be executed within the NEEMO environment and framework, integration with groups across the architecture, and funding.

RELEVANT
- Pursues solutions that may enable human space exploration
- Relevant to development of the Exploration EVA System and operations concepts (i.e., objectives mapped to specific needs and capability, knowledge, and technology gaps; along with EVA-EXP-0042)
- Provides an understanding of system and architectural interactions between Operations, Engineering, and Science
- Incorporates acknowledged stakeholders expertise to evaluate concepts being worked on across the agency
- Expands scientific knowledge and involves scientists invested in the proxy science outcome
- Provides NASA with key technology concepts, with potential benefit ISS as well as Exploration

EXECUTABLE
- Executable with the incorporation of signal latency (comm/time delay) and/or blockage
- Able to be conducted in partial gravity in an un-engineered natural (planetary) surface [with potential for microgravity ops]
- Allows for both MCC and Science Team components
- Proxy science with high correlation to planetary science
- Inclusion of appropriate purpose-built prototype hardware for evaluation and maturation
- Any single objective must fit into a complete mission timeline without overtaking or disrupting the host of other objectives
- Trainable to non-familiar crew in a short duration
- Requires less than 4 hours of EVA time during any given mission day

INTEGRATED
- Integrated with groups across Exploration architecture
- Enhances relationships with international partners, academia, industry, other government agencies, and other NASA orgs
- Highlights work in Exploration in a visible and tangible way

FUNDED
- Must come with clear funding that allows for completion of the objective
Key Personnel

• **Mission Management Team (MMT)** – The NEEMO project is led by a Project Manager, Mission Director, EVA Lead, and Science Lead. Together they make up the MMT.

• **NEEMO Mission Director (MD)** – Responsible for safe and successful execution of the spaceflight analog mission, and all ops and training products, including the timeline and communications with the crew during the mission. The MD has final authority for strategic and tactical decisions during both IVA and EVA operations, and is responsible for the Mission Control Center (MCC) and Science Team (ST) operations, much like a Flight Director. The MD integrates interior objectives, and works with the EVA Lead to integrate exterior objectives into the timeline.

• **NEEMO EVA Lead** – Responsible for all mission objectives and tasks conducted during EVA excursion operations, including integrating an executable EVA timeline with traceability back to EVA gaps and objectives. The Lead is responsible for relevancy of objectives, crew EVA training, EVA tool and equipment development, and daily EVA products during mission execution. The EVA Lead ensures that the crew and topside dive team have the required equipment and support to complete tasks during the EVA excursions, and is responsible for ensuring all EVA excursion equipment is functional and safe for use. The EVA Lead has oversight of the EVA Tools Lead, who has direct accountability for the EVA equipment.

• **NEEMO Science Lead** – Responsible for integration of execution of EVA Science objectives, with traceability back to research goals, exploration objectives, and strategic knowledge gaps. Lead of the Science team during mission planning and execution, and oversight of daily Science products.

Primary Planning Meetings

• **Mission Support Meeting (MSM)** – this is led by the Project Lead, and involves the entire team of participants for the upcoming mission. It’s used primarily to communicate high level milestones and deadlines, share high level objectives, and status work of general interest to all participants. They happen every 2 weeks starting at about M-4 months.

• **MMT** – this is led by the Project Manager, and includes the Mission Director, EVA Lead, and Science Lead. It is where high level mission decisions, including schedule milestones and mission priorities are made. They happen every 2 weeks year round, but increase frequency to weekly starting at about M-5 months.

• **EVA Ops** – this is led by the EVA lead, and involves the broader EVA community, to include reps from science, EVA tools, exterior objective stakeholders, the Project Lead and the Mission Director. It is where the EVA objectives and mission design are matured. This includes integration of various objectives, development of the mission timeline, oversight of equipment development, saturation excursion dive needs, and planning for the topside dive team support. They happen weekly starting at about M-5 months.

• **EVA Tools** – this is led by the EVA Tools lead, and involves the same participants as the EVA Ops meeting. The intent is to set detailed requirements for new tool development, and ensure they are being designed and built to meet mission EVA objectives. They happen weekly starting at about M-4 months.

Project Coordination

• **EVA Ops & Topside Dive Team Activities** – Dive activities that support the day’s EVA are led/managed by the EVA Lead. These include ensuring all required NASA equipment is onboard, that the dive team has the necessary equipment and tanks to conduct their dives, that the dive team understands their assignments and tasks, and that the dive rotation covers the required parts of the EVA.
HISTORY OF NEEMO CREW
<table>
<thead>
<tr>
<th>Mission</th>
<th>Duration</th>
<th>Start Date</th>
<th>End Date</th>
<th>Crew Members</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEEMO 1</td>
<td>6 Days</td>
<td>Oct. 21-27, 2001</td>
<td>DT/B. Todd, CB/M. Lopez-Alegria, M. Gernhardt*, CSA/D. Williams*</td>
<td></td>
</tr>
<tr>
<td>NEEMO 2</td>
<td>9 Days</td>
<td>May 13-20, 2002</td>
<td>CB/M. Fincke, D. Tani, S. Williams, DT/M. Reagan</td>
<td></td>
</tr>
<tr>
<td>NEEMO 3</td>
<td>9 Days</td>
<td>July 15-21, 2002</td>
<td>CBU/J. Williams, D. Olivas*, G. Chamitoff, SLSD/J. Dory</td>
<td></td>
</tr>
<tr>
<td>NEEMO 4</td>
<td>5 Days</td>
<td>Sept. 23-27, 2002</td>
<td>CB/S. Kelly*, R. Walheim, DAB/P. Hill, SLSD/J. Meir</td>
<td></td>
</tr>
<tr>
<td>NEEMO 5</td>
<td>14 Days</td>
<td>June 16-29, 2003</td>
<td>CB/P. Whitson, C. Anderson, G. Reisman, SLSD/E. Hwang</td>
<td></td>
</tr>
<tr>
<td>NEEMO 6</td>
<td>10 Days</td>
<td>July 12-21, 2004</td>
<td>CB/J. Herrington, D. Wheelock, N. Patrick*, EB/T. Ruttle</td>
<td></td>
</tr>
<tr>
<td>NEEMO 7</td>
<td>11 Days</td>
<td>Oct. 11-21, 2004</td>
<td>CSA/B. Thirsk, C. Coleman, M. Barratt, CMAS/C. McKinley</td>
<td></td>
</tr>
<tr>
<td>NEEMO 9</td>
<td>18 days</td>
<td>April 3-20, 2006</td>
<td>CSA/D. Williams*, CB/N. Stott, R. Garan, TATRC/T. Broderick*</td>
<td></td>
</tr>
<tr>
<td>NEEMO 10</td>
<td>7 days</td>
<td>July 22-28, 2006</td>
<td>JAXA/K. Wakata, CB/D. Feustel, K. Nyberg, NOAA/K. Kohanowich</td>
<td></td>
</tr>
<tr>
<td>NEEMO 11</td>
<td>7 days</td>
<td>Sept. 16-22, 2006</td>
<td>CB/S. Magnus, T. Kopra, B. Behnken, T. J. Creamer</td>
<td></td>
</tr>
<tr>
<td>NEEMO 12</td>
<td>12 days</td>
<td>May 7-18, 2007</td>
<td>CB/H. Piper, J. Hernandez, SDJ/Schmidt, TATRC/T. Broderick*</td>
<td></td>
</tr>
<tr>
<td>NEEMO 13</td>
<td>10 days</td>
<td>Aug. 6-15, 2007</td>
<td>CB/N. Patrick*, R. Arnold, JAXA/S. Furukawa, Cx/C. Gerty</td>
<td></td>
</tr>
<tr>
<td>NEEMO 14</td>
<td>12 days</td>
<td>May 10-23, 2010</td>
<td>CSA/C. Hadfield, CB/T. Marshburn, EAMD/A. Abercromby, S. Chappell</td>
<td></td>
</tr>
<tr>
<td>NEEMO 15</td>
<td>7 days</td>
<td>Oct. 20-26, 2011</td>
<td>CB/S. Walker, JAXA/T. Onishi, CSA/D. Saint-Jacques, NAC/S. Squyres*</td>
<td></td>
</tr>
<tr>
<td>NEEMO 16</td>
<td>12 days</td>
<td>Jun 11-22, 2012</td>
<td>CB/D. Metcalf-Lindenburger, JAXA/K. Yui, ESA/T. Peake, NAC/S. Squyres*</td>
<td></td>
</tr>
<tr>
<td>NEEMO 17</td>
<td>7 days</td>
<td>Sept. 9-13, 2013</td>
<td>CB/J. Acaba, K. Rubins, JAXA/S. Noguchi, AEA/A. Mogensen*</td>
<td></td>
</tr>
<tr>
<td>NEEMO 18</td>
<td>9 days</td>
<td>July 21-29, 2014</td>
<td>JAXA/A. Hoshide, CB/M. Vande Hei, Jeanette Epps, ESA/Thomas Pesquet</td>
<td></td>
</tr>
<tr>
<td>NEEMO 19</td>
<td>7 days</td>
<td>Sept. 7-13, 2014</td>
<td>CB/R. Bresnik, ESA/A. Mogensen*, CSA/J. Hansen, ESA/H. Stevenin</td>
<td></td>
</tr>
<tr>
<td>NEEMO 20</td>
<td>14 days</td>
<td>Jul 20 – Aug 2, 2015</td>
<td>ESA/L. Parmitano, CB/S. Aunon, JAXA/N. Kanai, NASA/EVA/D. Coan</td>
<td></td>
</tr>
<tr>
<td>NEEMO 21</td>
<td>16 days (split)</td>
<td>Jul 21-Aug 5, 2016</td>
<td>CB/R. Wiseman, M. McArthur, ESA/M. Maurer, IHMC/D. Krenzlis, NMT/Marc O. Griola, NPS/N. du Toit</td>
<td></td>
</tr>
<tr>
<td>NEEMO 23</td>
<td>9 days</td>
<td>Jun 13-21, 2019</td>
<td>ESA/S. Cristoforetti, CB/J. Watkins, FAU/S. Pomponi, USF/C. D’Agostino</td>
<td></td>
</tr>
</tbody>
</table>
Astronaut-Aquanauts

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Mission Details</th>
<th>Start Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Carpenter</td>
<td>SEALAB II, 8/29/65</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Gerhardt</td>
<td>NEEMO 18, 10/22/01</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Lopez-Alegria</td>
<td>NEEMO 1</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>D. Williams</td>
<td>NEEMO 18 & 9, 10/22/01</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Tani</td>
<td>NEEMO 2, 5/14/02</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>J. Williams</td>
<td>NEEMO 3, 7/16/02</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>S. Kelly</td>
<td>NEEMO 48 & 9, 9/24/02</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>Walheim</td>
<td>NEEMO 4, 9/24/02</td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>Whitson</td>
<td>NEEMO 5, 6/17/03</td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>Fincke</td>
<td>NEEMO 2, 4/18/04</td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>Herrington</td>
<td>NEEMO 6, 7/13/04</td>
<td></td>
</tr>
<tr>
<td>12.</td>
<td>Thirsk</td>
<td>NEEMO 7, 10/12/04</td>
<td></td>
</tr>
<tr>
<td>13.</td>
<td>Coleman</td>
<td>NEEMO 7, 10/12/04</td>
<td></td>
</tr>
<tr>
<td>14.</td>
<td>Wakata</td>
<td>NEEMO 10, 7/23/06</td>
<td></td>
</tr>
<tr>
<td>15.</td>
<td>Magnus</td>
<td>NEEMO 11, 9/17/06</td>
<td></td>
</tr>
<tr>
<td>16.</td>
<td>Patrick</td>
<td>NEEMO 6 & 13, 12/9/06</td>
<td></td>
</tr>
<tr>
<td>17.</td>
<td>S. Williams</td>
<td>NEEMO 2, 12/9/06</td>
<td></td>
</tr>
<tr>
<td>18.</td>
<td>Stefanyshin-Piper</td>
<td>NEEMO 12, 5/8/07</td>
<td></td>
</tr>
<tr>
<td>19.</td>
<td>Anderson</td>
<td>NEEMO 5, 6/8/07</td>
<td></td>
</tr>
<tr>
<td>20.</td>
<td>Olivas</td>
<td>NEEMO 38 & 8, 6/8/07</td>
<td></td>
</tr>
<tr>
<td>21.</td>
<td>Wheelock</td>
<td>NEEMO 6, 10/23/07</td>
<td></td>
</tr>
<tr>
<td>22.</td>
<td>Behnken</td>
<td>NEEMO 11, 3/11/08</td>
<td></td>
</tr>
<tr>
<td>23.</td>
<td>Reisman</td>
<td>NEEMO 5, 3/11/08</td>
<td></td>
</tr>
<tr>
<td>24.</td>
<td>Chamitoff</td>
<td>NEEMO 3, 5/31/08</td>
<td></td>
</tr>
<tr>
<td>25.</td>
<td>Garan</td>
<td>NEEMO 9, 5/31/08</td>
<td></td>
</tr>
<tr>
<td>26.</td>
<td>Nyberg</td>
<td>NEEMO 10, 5/31/08</td>
<td></td>
</tr>
<tr>
<td>27.</td>
<td>Arnold</td>
<td>NEEMO 13, 3/15/09</td>
<td></td>
</tr>
<tr>
<td>28.</td>
<td>Barratt</td>
<td>NEEMO 7, 3/26/09</td>
<td></td>
</tr>
<tr>
<td>29.</td>
<td>Feustel</td>
<td>NEEMO 10, 5/11/09</td>
<td></td>
</tr>
<tr>
<td>30.</td>
<td>Kopra</td>
<td>NEEMO 11, 7/15/09</td>
<td></td>
</tr>
<tr>
<td>31.</td>
<td>Hernandez</td>
<td>NEEMO 12, 8/28/09</td>
<td></td>
</tr>
<tr>
<td>32.</td>
<td>Stott</td>
<td>NEEMO 9, 8/28/09</td>
<td></td>
</tr>
<tr>
<td>33.</td>
<td>Creamer</td>
<td>NEEMO 11, 12/20/09</td>
<td></td>
</tr>
<tr>
<td>34.</td>
<td>Hadfield</td>
<td>NEEMO 14, 5/10/10</td>
<td></td>
</tr>
<tr>
<td>35.</td>
<td>Marshburn</td>
<td>NEEMO, 5/10/10</td>
<td></td>
</tr>
<tr>
<td>36.</td>
<td>Furukawa</td>
<td>NEEMO 13, 6/7/11</td>
<td></td>
</tr>
<tr>
<td>37.</td>
<td>Walker</td>
<td>NEEMO 15, 10/21/11</td>
<td></td>
</tr>
<tr>
<td>38.</td>
<td>Metcalf-Lindenburger</td>
<td>NEEMO 16, 6/12/12</td>
<td></td>
</tr>
<tr>
<td>39.</td>
<td>Acaba</td>
<td>NEEMO 17, 9/10/13</td>
<td></td>
</tr>
</tbody>
</table>

Engineer-Scientist Aquanauts

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Mission Details</th>
<th>Start Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>W. Todd</td>
<td>NEEMO 1, SEATEST I, III, IV; 10/01</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>M. Reagan</td>
<td>NEEMO 2, SEATEST III, IV; 5/02</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>J. Dory</td>
<td>NEEMO 3; 7/02</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>P. Hill</td>
<td>NEEMO 4; 7/02</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>J. Meir</td>
<td>NEEMO 4; 7/02</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>E. Hwang</td>
<td>NEEMO 5; 6/03</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>T. Ruttleley</td>
<td>NEEMO 6; 7/04</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>C. Mckinley</td>
<td>NEEMO 7; 10/04</td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>M. Shultz</td>
<td>NEEMO 8, 4/05</td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>T. Broderick</td>
<td>NEEMO 9 & 12; 4/06</td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>K. Kohanowich</td>
<td>NEEMO 10; 7/06</td>
<td></td>
</tr>
<tr>
<td>12.</td>
<td>J. Schmidt</td>
<td>NEEMO 12; 5/07</td>
<td></td>
</tr>
<tr>
<td>13.</td>
<td>C. Gerty</td>
<td>NEEMO 13; 4/04</td>
<td></td>
</tr>
<tr>
<td>14.</td>
<td>A. Abercromby</td>
<td>NEEMO 14; 6/10</td>
<td></td>
</tr>
<tr>
<td>15.</td>
<td>S. Chappell</td>
<td>NEEMO 14; 6/10</td>
<td></td>
</tr>
<tr>
<td>16.</td>
<td>S. Squires</td>
<td>NEEMO 15 & 16; 10/11</td>
<td></td>
</tr>
<tr>
<td>17.</td>
<td>H. Stevenin</td>
<td>NEEMO 19; 7/14</td>
<td></td>
</tr>
<tr>
<td>18.</td>
<td>D. Coan</td>
<td>NEEMO 20, SEATEST IV; 7/20/15</td>
<td></td>
</tr>
<tr>
<td>19.</td>
<td>M. O'groifa</td>
<td>NEEMO 21; 7/16</td>
<td></td>
</tr>
<tr>
<td>20.</td>
<td>D. Kernagis</td>
<td>NEEMO 22; 6/17</td>
<td></td>
</tr>
<tr>
<td>21.</td>
<td>D. D'Agostino</td>
<td>NEEMO 22; 6/17</td>
<td></td>
</tr>
<tr>
<td>22.</td>
<td>T. Graff</td>
<td>NEEMO 22; 6/18/17</td>
<td></td>
</tr>
<tr>
<td>23.</td>
<td>S. Pomponi</td>
<td>NEEMO 23, 6/13/19</td>
<td></td>
</tr>
<tr>
<td>24.</td>
<td>C. D'Agostino</td>
<td>NEEMO 23, 6/13/19</td>
<td></td>
</tr>
<tr>
<td>25.</td>
<td>M. Behnken</td>
<td>NEEMO 21, 7/22/16</td>
<td></td>
</tr>
<tr>
<td>26.</td>
<td>Wiseman</td>
<td>NEEMO 21, 7/22/16</td>
<td></td>
</tr>
<tr>
<td>27.</td>
<td>Pesquet</td>
<td>NEEMO 18, 11/17/16</td>
<td></td>
</tr>
<tr>
<td>28.</td>
<td>Lindgren</td>
<td>NEEMO 22, 6/19/17</td>
<td></td>
</tr>
<tr>
<td>29.</td>
<td>Duque</td>
<td>NEEMO 22, 6/19/17</td>
<td></td>
</tr>
<tr>
<td>30.</td>
<td>Vande Hei</td>
<td>NEEMO 18, 9/12/17</td>
<td></td>
</tr>
<tr>
<td>31.</td>
<td>Cristoforetti</td>
<td>NEEMO 23, 6/13/19</td>
<td></td>
</tr>
</tbody>
</table>