

NASA Extreme Environment Mission Operations

Enabling human space exploration through the integration of mission planning, operations, EVA, and science

NEEMO 22 EVA Overview & Debrief EVA-EXP-0054

EVA Exploration Office | XX4 David Coan | NEEMO Mission Management Team, EVA Lead December 5, 2017

- NEEMO Analog Overview
 - Integrated Operational Testing: Who, What, Where, Why, How
- NEEMO 22 Mission Overview
- NEEMO 22 Integrated EVA
- NEEMO 22 IVA
- Backup

NEEMO ANALOG OVERVIEW

Integrated Operational Testing: Who, What, Where, Why, & How

High-fidelity integrated multi-disciplinary operational development missions that closely mimic the space environment of interest, and allow for end-to-end operations, thus developing and testing concepts that enable Exploration missions

WHY

To achieve mission readiness through integration and testing of technologies, systems, operations, and science in relevant environments

- Close technology, exploration, and science gaps
- Identify and develop the best systems, innovations, and operational approaches
- Drive out results not found in standalone testing, including things that do and do not work in a mission environment
- Inform strategic architectural and concept of operations development efforts
- Facilitate EVA concepts of operations development

OUTCOME: These efforts will ultimately led to mission readiness and success, reduce the risk, increase the scientific return, and improve the affordability of NASA programs and missions.

NEEMO

EVA Goals

- Advance the future of the EVA System and operations
- Understand EVA capability, knowledge, and technology gaps and concepts of operations for a wide range of Exploration destinations being considered by NASA
- Assess the system and architectural interactions between Operations, Engineering, and Science
- Determine and document closures to gaps in EVA capabilities and knowledge for Exploration missions
- Develop and document concepts of operations for EVA at the Exploration destinations
- Realize the needs of EVA equipment and enable the development of concepts for design maturation on the road-to-flight

This document does not contain any export control information (#20205009470)

WHO: NASA, ACADEMIA, INDUSTRY, MILITARY @ NEEMO

WHAT: DEVELOPMENT & INTEGRATION THEMES

TOOLS

EVA Systems

- EVA tools and equipment
- Large equipment transport
- Small tool transport on suit
- Informatics
- Crew rescue
- EVA Support System & IV Workstation
- Science instruments and sample acquisition tools

Instrumentation

- Sample identification / high-grading
- ISRU verification

Sample Collection/Curation

- Collection
- **Contamination Mitigation**
- Preservation/Storage

Exploration Operations

• Procedure development/refinement

TECHNIQUES

- Signal latency (time delay) & blockage
- Bandwidth limitations

EVA Operations

- EVA concepts of operations
- EVAs in undefined environments
- Advanced capabilities

Science Operations

- Flexecution methodology
- Decision making protocols
- Transverse planning

Robotic Operations

- Crew controlled

TECHNOLOGIES

Emerging Technologies

- Virtual/Hybrid reality opportunities
- Relevant cutting-edge systems and capabilities for Exploration and EVA
- Rapid testing environment for development of emerging technologies

Innovations Incubator

• Relevant environments and operational constraints are a breeding ground for innovation

Partnerships

- Opportunities for external partners to demonstrate current capabilities
- Direct collaboration leading to proposal and other funding avenues
- Strengthens international partnerships

Cross-Disciplinary Training

- Learning each others language, requirements, and drivers in EISD
- Ex. Geo-Science Field Training for managers and engineers

Astronaut Crew Training

- Additional expeditionary and leadership opportunities
- Enhances both operational and science training objectives

Operational Training

- Provides ops training prior to payload flights for payload PIs and teams
- Enables development of engineers and scientists not normally exposed to operations

- Autonomous
- - Human-Robotic interface & integration

EVA-EXP-0054

WHAT: INTEGRATED EVA OPERATIONS

NASA

- Premiere analog that allows for evaluations of EVA end-to-end concepts of operations with crew that are in-situ in a true extreme environment and provides for flight-like interactions between the crew and an MCC/Science Team, including over comm latencies
- NASA analog mission that sends groups of astronauts, engineers and scientists to live, work and explore in a challenging environment
- Series of 22 space exploration simulations conducted since 2001

- Aquarius Reef Base, the world's only undersea research station
- Located 5.4 miles (9 kilometers) off Key Largo in the Florida Keys National Marine Sanctuary
- 62 feet (19 meters) below the surface next to a deep coral reef named Conch Reef
- Operated by Florida International University

NEEMO

THE "SPACECRAFT": AQUARIUS UNDERWATER HABITAT

THE "SPACESUIT": KM 37SS HELMET W/ WETSUIT & HARNESS FOR SURFACE SUPPLIED DIVING SYSTEM (SSDS)

Dive helmet & system provide good analog to a spacesuit for concepts of operations evaluations

Both have different but comparable challenges for operations

37SS: Narrower FOV, Helmet movable xEMU: Wider FOV, Helmet fixed

Wetsuit & harness: Flexible, but restrictive xEMU: Pressurized, bulky

 xEMU concept
 xEMU concept

HOW: A DAY IN THE LIFE OF NEEMO EVA OPERATIONS NASA

EVA prep and egress

Identifying Samples

NEEMO 22 Mission Overview

> <u>Overview</u>

- Successful 10 day mission living and working from Aquarius Reef Base
- Completed a combination of Exploration EVA and ISS related objectives
- Numerous participating organizations across NASA, JSC, ESA, JAXA, Research Institutions, Universities, and Industry Partners

Key Dates

- Engineering Week: May 8-16
- JSC Crew Training Week: May 22-25
- Test Readiness Review: May 30
- ARB Crew Training Week: June 12-16
- NEEMO 22 Mission: June 18-27

Crew Members

- Kjell Lindgren
- Trevor Graff
- JACOBS
- Pedro Duque 📀 esa
- Dom D'Agostino
 ihmc USF

• <u>NASA</u>

- <u>JSC</u>
 - <u>XM</u>: Mission management, mission director, integration
 - XI: Mission management, Science objectives, Science Team leadership, crewmember
 - XX: Mission management, EVA leadership, EVA objectives (ops concepts, tools development, informatics)
 - EA (EC, ER): PI for multiple evaluation objectives, building EVA tools
 - <u>CB</u>: Crewmember
 - <u>SK</u>: PI for mission objectives
 - **<u>PAO</u>**: Public Affairs activities
 - ARC: Mission planners and timeline tool
 - KSC: Communications, data management, and logistics support
- ESA: Crewmember, research objectives
- JAXA: Ops Support
- <u>Academia</u>
 - Johns Hopkins University: Research objectives
 - <u>University of South Florida</u>: Research objectives
 - Florida International University (FIU): Aquarius owner and operator, marine science support
 - Georgia Institute of Technology: EVA Cognitive Work Analysis graduate study
 - <u>University of North Carolina at Wilmington</u>: Science instrumentation
 - <u>University of Houston Clear Lake</u>: Research objectives
- Institutions
 - Florida Institute for Human & Machine Cognition: Research objectives, crewmember
 - <u>Coral Restoration Foundation</u>: Research and mission objectives
- Industry
 - Honeybee: Core drilling solution
 - <u>AllTrag</u>: Mission objectives
 - <u>Shark Marine</u>: Providing a navigation system
 - Aexa Aerospace: Providing HoloLens units and expertise

Astromaterials Research & Exploration Science (ARES)

EVA Strategic Planning & Mission Planning, Architecture Develop & Integration

Crew & Thermal Systems - Tools

UNIVERSITY OF SOUTH FLORIDA

AllTr

EVA-EXP-0054

Category	Gap/Risk	Experiment	Sponsor	Beneficiary
	Exercise Countermeasures 🛛 🗸	VETSS	SK/ER	ISS, Orion
	Autonomous Procedures	Ultrasound w/ Remote Guidance	ER	ISS> Exploration
Tool & Technology		Life Supt system procedure	ER	ISS> Exploration
Maturation for Ops	Inventory Management 🛛 🗸 🗸	AllTraq	AllTraq	ISS> Exploration
	Mobile Crew Planning Tool 🛛 🗸 🗸	Playbook	ARC	ISS> Exploration
	in situ DNA sequencing 🛛 🗸 🗸	mini DNA Sequencer	SK	ISS> Exploration
	✓	Crew Self Scheduling	XX/ARC	ISS> Exploration
	✓	Integrated Science Team	XI/XX	Exploration
	✓	Sample Acquisition	XI/XX	Exploration
		Sample Stowage	XI/XX	Exploration
Ops Concept Maturation	Exploration Surface Ops with Comm	Small Tool Transport on EVA suit	XX/XI	Exploration
	Delay	Large Tool/hardware transport	XX/XI	Exploration
	✓	IV Support System	XX	Exploration
		IV Workstation Support Tools	XX/XI	Exploration
	· · · · · · · · · · · · · · · · · · ·	LESA	ESA	Exploration
	Hyperbaric body changes 🛛 🗸 🗸	Body Composition Study	IHMC/USF	N/A
	Hyperbaric sleep effects 🛛 🗸 🗸	Autonomic Function	IHMC/USF	N/A
Pure Science	Hyperbaric microbiome changes 🛛 🗸	Microbiome Study	IHMC/USF	N/A
Pure Science	Dietary influence on psychology 🛛 🗸	Psych Study	USF	ISS> Exploration
	Sensorimotor degradation 🛛 🗸 🗸	RAPSAP	Johns Hopkins	ISS> Exploration
	Reef mortality 🛛 🗸 🗸	Coral Science	FIU, CRF	N/A
Crew Preparation	Expeditionary Training 🛛 🗸 🗸	CDR upgrade	CB (+IPs)	ISS> Exploration
		PAO events	PAO	ISS> Exploration
Outreach Opportunities	N/A	Educational Outreach	ΡΑΟ	ISS> Exploration

PRE-MISSION N22 EVA TIMELINE (FROM 5/23/17)

	SUNDAY	MONDAY	TUESDAY	WEDNESDAY	THURSDAY	FRIDAY	SATURDAY	SUNDAY	MONDAY	TUESDAY
	18	19	20	21	22	23	24	25	26	27
					NEEMO	22 MISSON				
		Comm Latency: 0 mins Comm Latency: 10 mins					Comm Latency: 0 mins			
	MD 1	MD 2	MD 3	MD 4	MD 5	MD 6	MD 7	MD 8	MD 9	MD 10
		Topside fast boat: Coral to shore	Topside fast boat: Coral to staging area	TOPSIDE: InCap Support	Onshore: Navy DAVD; D	Onshore: Navy DAVD; DC, MR, AH, JC	Signal gap (~30 min LOS)	Topside fast boat: Coral to shore	Topside fast boat: Coral	
		TOPSIDE: InCap Support	TOPSIDE: InCap Support	TOPSIDE: Robotics Support	Signal gap (~30 min LOS)	TOPSIDE: Robotics	TOPSIDE: Robotics Support	TOPSIDE: Science Diving	TOPSIDE: Cleanup Activit	
		Torsibe, incap support	TOTSIDE, Incap Support	Jupport	TOPSIDE: Robotics Supp	Support	Jupport	Torside, science during	TOPSIDE: Science Diving	
									EVA Prep Aquarius / Wet Deck	
1	Team Mtn / Safety Brief; A	EVA Prep	EVA Prep	EVA Prep	EVA Prep	EVA Prep	EVA Prep	EVA Prep		
9 ^{AM}	Team Photo ARB Dock Side	Aquarius / Wet Deck	Aquarius / Wet Deck	Aquarius / Wet Deck	Aquarius / Wet Deck	Aquarius / Wet Deck	Aquarius / Wet Deck	Aquarius / Wet Deck	Egress & Equip Prep (3 crew) [IHMC Tests] EV1:K EV2:S IV1:D	
	Crew Transport George F Bond	Egress & Equip Prep (3 crew) [IHMC Tests] EV1:K EV2:S IV1:T	Egress & Equip Prep (3 crew) [IHMC Tests] EV1:T EV2:D IV1:K	Egress & Equip Prep (4 crew) [IHMC Tests] EV1:K EV2:T IV1:D IV2:S	Egress & Equip Prep (4 crew) [IHMC Tests] EV1:S EV2:D IV1:T IV2:K	Egress & Equip Prep (3 crew) [IHMC Tests] EV1:D EV2:T IV1:S	Egress & Equip Prep (4 crew) [IHMC Tests] EV1:K EV2:D IV1:S IV:T	Egress & Equip Prep (4 crew) [IHMC Tests] EV1:S EV2:T IV1:K IV2:D	Nursery Construction 50' (Atlas) Nurseny; tree change over	
0		Traverse	Incap Crew Rescue 2nd crew member	Incap Crew Rescue 3rd crew member	Incap Crew Rescue 4th crew member	Traverse	Traverse	Traverse		
		Deploy USLB Transponder				Exploration EVA: Reef Science Sampling	Exploration EVA: Reef Science Sampling	Deploy USBL Transponder		
	SPLASHDOWN	Nursery Sample Arm Retrieval 90' (Mercury)				Zone	Zone	Nursery Sample Arm Retrieval 50' (Atlas) Nursery	Ingress	
11	Gear Stow Aquarius		Traverse	Traverse	Deploy USLB Transponder		LOS (~30 min)		EVA Prep Aquarius / Wet Deck	
	Aquanus	Nursery Construction 90' (Mercury) Nursery; tree		Traverse				Aqualius / Wet Deck		
	Safety Brief Aquarius		change over	Zone	Exploration EVA: Reef Science Sampling	Traverse	Traverse		Egress & Equip Prep (3 crew) [IHMC Tests]	
	, iquarius	Traverse			Zone	Exploration EVA: Reef Science Sampling	Exploration EVA: Reef Science Sampling	Exploration EVA: Reef Science Sampling	EV1:K EV2:S IV1:D	
2 ^{PM}		Incap Crew Rescue 1st crew member			LOS (~30 min)	Zone	Zone	Zone	Nursery Construction 50' (Atlas) Nurseny; tree change over	Blowdown
	Meal			Retrieve USBL Transponde			Retrieve USBL Transponde			SPLASHUP
	Aquarius		Traverse	Traverse	Traverse	Traverse	Traverse	Traverse		
1	Gear Unpack Aquarius	Cleanup/IHMC Tests/Ingress	Cleanup/IHMC Tests/Ingress	Cleanup/IHMC Tests/Ingress	Cleanup/IHMC Tests/Ingress	Cleanup/IHMC Tests/Ingress	Cleanup/IHMC Tests/Ingress	Cleanup/IHMC Tests/Ingress	Cleanup/Ingress	Crew Transport
ĺ	EVA Prep Aquarius / Wet Deck	EVA Post-Ingress Aquarius / Wet Deck	EVA Post-Ingress Aquarius / Wet Deck	EVA Post-Ingress Aquarius / Wet Deck	EVA Post-Ingress Aquarius / Wet Deck	EVA Post-Ingress Aquarius / Wet Deck	EVA Post-Ingress Aquarius / Wet Deck	EVA Post-Ingress Aquarius / Wet Deck	@ Storage depth	
	Aquanus / Wet Detk				Aquanus / Wet Deck			Aquanus / Wet Deck	EVA Post-Ingress Aquarius / Wet Deck	
2										
	Fam Dive 1 (T/K) Vic Aquarius, Staging Area, RP									
3										
	EVA Post-Ingress Aquarius / Wet Deck							70)		
λ-EΧ	(P-0054 🔹	V	This o	locument does no	t contain any expo	ort control informa	ation (#202050094	70) 💌		7

NEEMO 22 Integrated EVA

The primary goal for EVA was to inform the *Exploration EVA System Concept of Operations* document by exploring the combination of **Operations** and **Engineering** with **Science** for Exploration destinations in a mission-like environment

		EVA Objectives	SMT EVA Knowledge/Capability Gaps
Primary EVA Objectives	EVA Tools	 Integrated Geoscience Sampling System *Core sample acquisition (Honeybee Robotics) Large tool/hardware transport & stowage *EVA Modular Equipment Transportation System Small tool transport on EVA suit 	 Tools for Science Sampling on a Surface EVA Subsurface samples (core) Tool Carrier Device Tool Attachment/Harness for Surface EVA
	Informatics	 IV Support System & Workstation EVA/Science task tracking *Marvin & Playbook EVA Digital Cue Cards EVA Navigation *Shark Marine EVA Augmented Vision Heads-Up Display *Navy Diver Augmented Vision Display demo 	 IV Support System for EVA Operations EVA Graphical Display EVA Short Range Navigation Mixed / Augmented Reality Capability EVA Suit Heads-Up Display
	Concepts of Operations	 Integrated EVA Operations with Science Tasks Integrating Informatics IV support System & Workstation Flexecution Traverse Planning 	 Integrated EVA Flight Control Methodology Tools for Interacting with EVA Over a Comm Latency Flexible Execution Methodology for EVA Science Operations in Undefined Environments
Secondary Objectives	Robotic-EVA Ops	 Situational Awareness for IVA & MCC Robotic Payload Transport for EVA *Shark Marine 	EVA-Robotic (Man-Machine) Work System

DEVELOPMENT OF SCIENCE-DRIVEN EVA OPERATIONS

SCIENCE

NEEMO 22 EVA SCIENCE OVERVIEW

- Modified and conducted continued science investigation on two long-term coral nurseries near ARB
 - 50' nursery
 - 90' nursery (deepest in the world)

- Continued research and sampling conducted \geq during NEEMO 20 and 21
- \succ Crew successfully navigated to, located, documented and re-sampled colonies
- Science team developed the overall sampling strategy and traverse plans

REEF EXPLORATION SCIENCE

FLORIDA INTERNATIONAL UNIVERSI

- Explored and expanded into new sites; coral science was correlated to nurseries as a natural baseline
- > Described, documented, and sampled additional samples for long term research

SCIENCE

CORAL RESTORATION FOUNDATION

Education

Promote awareness of coral reef health and survival, along with the environmental and social benefits of reef ecosystems.

Action

Engage communities and facilitating partnerships in research, restoration, and understanding of coastal resources.

Results

Grow and restore threatened coral species, and enhance reproductive output to stimulate a natural recovery.

- Nonprofit conservation organization dedicated to creating offshore nurseries & restoration programs for threatened coral species.
- Their mission is to develop effective coral nursery and restoration techniques and to train & empower others to do the same in their area.

EVALUATION OF RELEVANT SCIENCE WITH NASA AND EXTERNAL PARTNERS

SCIENCE

MARINE EXPLORATION SCIENCE

INCV

- Laboratory of Integrative Marine Genomics and Symbiosis (IMaGeS)
- Focuses on the study of the symbiotic interactions between microbial organisms and cnidarian hosts, in particular reef-building corals, from different perspectives, including cell biology, eco-physiology & ecology.

Multiyear Science Investigation

Endangered Coral Species

Growing Partnerships and Advanced Instrumentation

Genetically characterize the coral symbiotic community

Provide time & depth components

Provide a natural baseline for coral restoration efforts

Ultimately inform ongoing coral restoration efforts & understanding of the changing reef environment

Peer Reviewed Results

EVA-EXP-0054

PLANETARY SCIENCE RELEVANCE

Astromaterials Research & **Exploration Science (ARES)**

- > NEEMO EVA science activities included deployment of handheld instrumentation, context descriptions, imaging, and sampling
- > The marine science activities and associated research objectives serve as an appropriate proxy for planetary surface exploration activities
- Integration, coordination, and education from diverse disciplines and organizations

Curation

Research

Exploration

Astromaterials

Remote Sensing In-situ Instrumentation High-grading Samples Context Descriptions > Documentation

Sampling Procedures Sampling Techniques

Storage & Transport

Collection Tools Contamination

Science Operations

- Traverse Planning
- Operational Flexibility
- Human-Robot Ops
- Crew Science Training

*** OPERATIONS**

NEEMO 22 EVA OPS CON OVERVIEW

INTEGRATED EVA & SCIENCE OPERATIONS

- Evaluated Exploration EVA operations that predominately include science tasks
- Examined con ops that enable interaction between the MCC & the crew over a long comm latency and blockage including:
 - Interaction with an integrated Science Team
 - Authentic scientific objectives and hypothesis
 - Flexecution methodology

EVA-EXP-00

EVA/IV SUPPORT SYSTEM & PLANNING FOR EVA

- Evaluated a Support System that utilizes an open-source digital timeline execution and life support system management tool designed to support Intravehicular Activity during EVA
- Examined ways to minimize number of computers and monitors required for operations, hence reducing space and launch mass needed
- Looked at using a projector for crew planning and briefing

EVA DIGITAL CUE CARDS

- Evaluated digital cue cards for EVA crew that allowed crew to operate more effectively and offload IV tasks
- Additional crew autonomy requires further access to information in their hands
- Tested concept for a potential "one-device" for cue cards/procedures, images/video, instrument control, etc.

UTILIZATION OF SCIENTIFIC INSTRUMENTS

Assessed the effects of incorporating scientific instruments into EVA ops

NAVIGATION & TRAVERSE PLANNING

Evaluated procedures for navigating both to previouslysampled regions and new exploration zones

WITH LUNAR AND MARS COMMUNICATION LATENCY & BLOCKAGE CON OPS

- Analyze integrated EVA science operations to determine what functions/capabilities are needed to enable a Mission Control Center (MCC) integrated Science Team to effectively operate and actively direct EVA operations with science tasks over a signal (comm & data) latency and blockage
- Determine what functions/capabilities and techniques are needed to enable the EVA crew to effectively operate more autonomously and communicate information to MCC over a signal latency and blockage
- Evaluate flexible execution methodology and decision making protocols for science tasks during EVA operations

Implementation

- An onshore MCC Flight Control Team (FCT) that includes a Mission Director, EVA Officer, CAPCOM, and other system/subject matter experts
- An onshore Science Team that includes a Science Lead, subject matter experts, and Science Communicator (SCICOM)
- Mission (flight) rules volume and mission priorities, heightened mission tempo and pressure with additional flight control rigor, spacesuit telemetry, FCT GO/NO GO calls, and IVA task/experiment timeline

MCC Science Team

<u>Key Take-Aways</u>

- EVA crew demonstrated the capability to operate more autonomously while simultaneously communicating with and incorporating input from an Earth-based MCC and ST
- With science instruments that take time to acquire data, it is possible to plan the EVA such that the crew can successfully receive input from the ST to execute science sampling operations during an EVA over a signal latency
- An EVA support system for an IV crewmember that is directing real-time ops will be critical for management of the large volume of data
- Additional complexity of airlock and spacesuit EVA operations will impact the way operations and science tasks will be planned and directed
- A flight control operations paradigm and decision making protocols will need to be developed in order to integrate science tasks and subject matter experts within the context of an EVA while executing in dynamically changing situations in a natural environment – including how decisions are made between a Mission Director, EVA Officer, and SCICOM/Science Lead This document does not contain any export control information (#20205009470)

- Evaluate what kind of tools (support system) the IV crewmember will need in order to effectively handle the large amount of information and tasking that must contended with while actively directing an EVA
- Assess hardware needs for a workstation, including ways to minimize what's required for operations to reduce space and launch mass
- Look at potential ways to incorporate augmented reality into workstation

Implementation

- Utilized Marvin timeline execution and life support system management tool
- Utilized Playbook Tactical EVA Execution Feature

Key Take-Aways

- An EVA support system for an IV to direct EVA operations will be key for Exploration missions
- A system that utilizes a single computer with multiple ways to display abundant information would enable to single IV crewmember to direct EV ops while incorporating input from an MCC science team
- Augmented Reality systems (such as HoloLens) may hold some promise as a possibility, though were not as useful at this maturity level
- Recommend continued evolution of the system to drive out more detailed capability needs

Evolution of EVA Support System for IV Operator

This document does not contain any export control information (#20205009470

- Evaluate digital cue cards for EVA crew that allowed crew to operate more effectively and autonomously while offloading IV tasking
- Assess tool needs (hardware and software) for short distance navigation data to support EVA geology/science

Implementation

- Utilized an iPad in an iDive underwater housing to demonstrate the potential for a single device for cue cards/procedures, images/video, instrument control, etc.
- All EVA-accessed and required information was put into a digital cue card set that was loaded on the iPad

Key Take-Aways

- EVA digital cue cards permit increasing crew autonomy by enabling EV crew to efficiently understand exploration areas, conduct general site navigation, identify specimens for potential sampling, and guide themselves through task procedures
- Information layout will need to be modified for different display methods, such as a heads-up display or electronic cuff
- Recommend continuing to look at digital cue card capability, and refining the types of information included in the data set

EVA NAVIGATION AND EVA-ROBOTIC OPS

Objective

• Evaluate EVA navigation and IV/MCC crew tracking

Implementation

• Utilized the Shark Marine Dive Tablet (Navigator) and Dive Log system for relative navigation

Key Take-Aways

- Capability for EVA crew to navigate to a site of interest will be critical
- EVA crew will need a way to mark potential sample sites in order to return to them for sampling
- The aquanauts were not able to use the Navigator/Dive Tablet to reliably navigate, and ended up depending on digital maps
- Digital maps worked well for the relatively small test area
- For future missions, recommend changing from the current relative navigation system and exploring the use of an area scanning system (such as a sector sonar as a proxy to radar/LiDAR), and increasing the fidelity of the maps

Objective

Evaluate utilization of a robotic equipment carrier during EVA ops

Implementation

- Utilized a Shark Marine ROV with a purpose-built trailer system
- ROV included a video camera for remote use by the IV and MCC

Key Take-Aways

- The ROV was not able to be integrated into the mission due to technical and weather (sea state) issues
- Due to challenges with underwater wheeled and steerable ROV systems that are tethered, focus robotic work system evaluations at terrestrial analogs

ENGINEERING

NEEMO 22 EVA EQUIPMENT OVERVIEW

CORE SAMPLE AQUISITION

- Evaluated EVA tools and hardware for science core sample acquisition
- Leveraged breakaway core bit technology developed by Honeybee Robotics and implemented on Mars rovers to develop a drill bit for an EVA tool

EVA EQUIPMENT TRANSPORTATION

- the Modular Tested Equipment Transport System (METS), concept а for manually transporting & stowing larger tools and exploration samples on traverses
- Evaluated potential concepts for transporting small tools on an EVA suite from a rover/caddy to a worksite

LUNAR EVACUATION SYSTEM ASSEMBLY (LESA)

- Evaluated a new crew rescue concept developed by ESA at the European Astronaut Centre
- This technique is aimed to ease the lifting-up and securing of an incapacitated EVA crewmember on a Moon EVA Litter

EVA AUGMENTED VISION HEADS-UP DISPLAY

- Based on Navy's Divers Augmented Vision Display, which incorporates real-time data input and allows for augmented reality input in a heads-up display
- EVA Office and astronauts evaluated lab version topside for potential incorporation on future missions and spacesuit design

EVA CORE SAMPLE ACQUISITION SYSTEM

Objective

• Evaluate EVA hardware and operations for subsurface (core) science sampling in a surface/partial-g environment

Implementation

- Applied a breakaway core bit technology developed by Honeybee Robotics with an underwater battery powered drill to acquire core samples
- Used small tools, such as forceps, to stow samples for curation

Key Take-Aways

- Breakaway bit with powered tool worked well for taking core samples
- Concept of stowing directly into curation return tubes worked well
- Small tools, such as forceps, were useful for removing cores or picking up small pieces
- Need to consider the limited down-force that crew is able to put into a sampling operation due to lower gravity levels
- Recommend continuing partnership with Honeybee and testing bits in other environments

NEEMO 18

SEATEST 2

Core Sample Acquisition Tool Evolution

NEEMO 19

NEEMO 20

NEEMO 21

NEEMO 22

- Evaluate transport of large equipment in a mobile carrier
- Evaluate transport of small tools on an EVA spacesuit

Implementation

- The Modular Equipment Transport System (METS) is a method for transporting equipment from one location to another, grouping hardware into Modules for the appropriate planned activities
- For small tools transport on the spacesuit, crew utilized a forearm stowage device and thigh module strapped on after egress

Key Take-Aways

- METS concept of putting tools into modules has the potential to provide efficiencies during EVAs
 - A wheeled carrier works well, however future concepts may consider larger wheels or ways to get over/around obstacles
 - Requires close integration for planning to ensure all pieces of equipment are accounted for when populating/arranging the modules, including what's needed for contingencies
- Small, lightweight, generic tools could be carried on the forearm, torso, and other locations to provide easy access and should be considered for partial-g surface operations
 - Small tools carried on the suit forearm work well and enabled crew easy visibility and access to the tools
 - Carrying tools on the thigh (or other areas not easily visible) was challenging due to lack of visibility

• Evaluated a new EVA incapacitated crewmember rescue concept developed by ESA at the European Astronaut Centre

Implementation

- Utilized the new concept Lunar Evacuation Systems Assembly (LESA)
- LESA allows an incapacitated crewmember to be lifted up and secured to a Moon EVA Litter for transport back to a habitat/rover

Key Take-Aways

- Concept of hoisting an incapacitated EVA crewmember onto a litter for transport back to a habitat holds promise
- Need to look into making LESA a smaller and more portable package
- Future suit designs will need to take into account attach points for any rescue and hoist device

 Evaluate the Navy's Divers Augmented Vision Display (DAVD), which incorporates real-time data input and allows for augmented reality input in a heads-up display, for use in an EVA spacesuit

Implementation

 EVA Office and astronauts evaluated lab version topside for potential incorporation on future missions and spacesuit design

Key Take-Aways

- DAVD provides a capability to Navy divers that would be advantageous to EVA astronauts
- There is a promising collaboration between the Navy and NASA to develop an augmented heads-up display capability for an EVA spacesuit

Post-NEEMO Follow-on Testing Quick-brief

- Manned tests at the Naval Support Activity Panama City (NSA PC) Dive School and Navy Experimental Diving Unit (NEDU)
- Navy divers were able to utilize DAVD for navigation, identification of objects, and for receiving task instructions realtime
- All of the activities tested translate into operations concepts for EVA on Exploration missions
- Identified a use of the full face mask version of the DAVD for significantly enhanced ISS EVA training in the NBL

EVA GAP CLOSURE UPDATES AND RECOMMENDATIONS FROM NEEMO 22

EVA CAPABILITY GAP

Tools for Science Sampling on a Surface EVA – subsurface samples (core)

Tool Carrier Device on a Surface EVA

Tool Attachment/Harness for Surface EVA

IV Support System for EVA Operations

EVA Graphical Display

Mixed / Augmented Reality Capability

EVA Suit Heads-Up Display

EVA-EXP-0054

GAP CLOSURE UPDATES

Update with break-away core bit and the operations concepts for acquiring core samples

Update with lessons learned from the METS, utilizing a modular system, wheel size, and ability to get equipment near the worksite

Update with application of forearm modules to carry small tools Update with visibility challenges of thigh modules

Update with results from utilizing a single computer driving multiple types of displays configurable for various operations

Update with concept of merging a map and highlevel timeline overview into a single reference page with links to task details

Formalize a gap to include mixed/augmented reality capability, which goes beyond standard informatics displays

Formalize a technology gap to include an EVA suit heads-up display (needed for augmented reality)

This document does not contain any export control information (#20205009470)

RECOMMENDATIONS

Continue collaboration with Honeybee Robotics and development of core bit Evolve the system to include curation

Evolve the modular system concept Evaluate alternate concepts for traversing over rough terrain

Evolve the forearm module concept and test at future NEEMO missions Develop a more visible and simple thigh module

Iterate configuration and applications to enable more efficient operations, and evaluate at a future NEEMO mission and SHyRE

Focus on the one-stop page concept and evaluate at a future NEEMO mission

Collaborate with DAVD development and test at future NEEMO missions Incorporate capability into SHyRE testing

Collaborate with DAVD development and test at future NEEMO missions Incorporate capability into SHyRE testing

EVA GAP CLOSURE UPDATES AND RECOMMENDATIONS FROM NEEMO 22

EVA CAPABILITY GAP

Integrated EVA Flight Control Methodology

Tools for Interacting with EVA Over a Comm Latency

Flexible Execution Methodology for EVA Science Operations in Undefined Environments

EVA Navigation

EVA-Robotic Work System

GAP CLOSURE UPDATES

Update with demonstrated methods for integrating MCC and the Science Team

Update with lessons learned from utilizing a Playbook-type system Update the gap to include signal blockage

Update with decision making protocols and how decisions are made between a Mission Director, EVA Officer, and SCICOM/Science Lead

This document does not contain any export control information (#20205009470)

Gap closure unchanged

Gap closure unchanged

RECOMMENDATIONS

Increase mission tempo/pressure and flight control rigor, add spacesuit telemetry, and evaluate at future NEEMO missions

Factor in increased signal blockage and test at future analogs

Apply more rigor to integrated decisions, add spacesuit telemetry/consumables, and evaluate at future analogs

Explore utilizing an area scanning system such as a sector sonar (proxy to radar/LiDAR) and evaluate at future NEEMO missions

Focus robotic work system evaluations at terrestrial analogs

NEEMO 22 IVA

Playbook – Planning, Procedure Viewing, and Comm Tool

AR Assisted Procedures

RAPSAP

FLORIDA INSTITUTE FOR HUMAN & MACHINE COGNITION

Sleep Metabalomics Body Composition Psych

VETTS

DNA Sequencer

AllTraq

Purpose: Evaluate whether a real-time instruction and correctional feedback for crew members in the absence of real-time Astronaut Strength, Conditioning and Rehabilitation Specialist (ASCRS) support during exercise can prevent avoidable injuries, and optimize overall muscle strength outcomes.

Implementation: An instructional system was developed using a Microsoft Kinect depth-camera device, which provides marker-less 3-D whole-body motion (VETTS).

INTRA-VEHICULAR ACTIVITIES: PLAYBOOK

Purpose: The NEEMO 22 mission Playbook continued to serve dual goals of supporting the operations of the NEEMO 22 mission and conducting applied research to improve crew autonomy.

Implementation: Playbook used for mission planning, procedure storage/retrieval, and text based communication between mission control and crew. Numerous new features were added this year: acknowledgements in the mission log, ordering the mission log by receive time rather than sent time, new feature for representing groups, tactical EVA execution tool, and crew/timeline notes. Two strategies for crew-self planning were tested (Plan Fragments and Functional Activity Groups).

EVA-EXP-0054

This document does not contain any export control information (#20205009470)

DELIVERED + EARLIEST RESPONSE 11-27-41 + ACKNOWLEDG

DELIVERED • EARLIEST RESPONSE 11:26:56 • ACKNOWLEDGE

Playbook for NEEMO 22 Ground

REVOR - 15MIN WARNING, PLEASE START INGRESS NLT 1145 TO HAVE ALL THREE IN BY 1200.

Pedro and Trevor: Great IV work on both EVAs to coordinate drill samples unde

edro and Dom: Great work scrambling to find those Orb samples this EVA

jell - for RAPSAP potting. Please wrap the equipment with towel

1:30:10 MD 9 Jun 26

11:28:08 MD 9 Jun 26

11:27:37 MD 9 Jun 26

11:26:52 MD 9 Jun 26

Purpose: Evaluate augmented reality assisted procedures on the HoloLens to provide advanced guidance and assistance with tasks that emulate those performed on the ISS and on future deep space missions. These tools are designed to reduce reliance on remote support and provide greater crew autonomy.

Implementation: Using HoloPD (Holographic Procedure Display) the crew performed medical (ultrasound imaging) and habitat maintenance tasks.

EVA-EXP-0054

This document does not contain any export control information (#20205009470)

Purpose: Test an increasingly automated, simplified, and quicker method for implementing a swab-tosample process. Additionally, demonstrate how the process can be used to systematically characterize the microbiome of a habitat, thereby establishing an application of the technology.

Implementation: Conduct swab-to-sample runs by each crewmember, soliciting their feedback for improvements applicable to spaceflight. Obtain additional samples related to understanding the microbiome of the habitat.

OUTREACH

NASA

NEEMO: NASA Extreme Environment Mission Operations

Follow

NASA's Kjell Lindren and Trevor Graff (both Eagle Scouts) Skype with Boy Scouts of America in Texas. #NASA_NEEMO22 **#BoyScouts**

This document does not contain any export control information (#20205009470) That's a wrap! Another great mission in the books for NEEMO with this

BACKUP

> NEEMO provides an operational mission to Integrate Exploration and Science objectives across EISD

- Enabled by the unique skill blend found in EISD
- High "bang for the buck"

SUMMARY

- Science component of missions now fully integrated (driven by authentic science)
- Well suited to meet a number of EVA exploration needs
- Plays a role in enabling and maturing ISS Objectives
- Enables lasting cross-pollination
 - Across EISD

EVA-EXP-0054

- Across Engineering/Ops/Science/Crew Office
- Visible and tangible way to highlight the work in EISD (e.g. national media, social media, events like SpaceCom)

Apollo Surface Operations

- Exploration traverses were planned in advance using imagery gathered from precursor satellites
- Crews had significant training in geology and science tasks
- An Earth-based science team (ST) supported EVAs (Precursor plans, Feedback during EVA, and changes between EVAs)

2004

2004

2005

2005

MSL - Curiosity

2014

2015

2015

Science

-

2016

(100

NEEMO

2003

2003

1999

1998

2007

2006

2008

Science

2009

Research and Technology Studies

2000

- Utilizes terrain appropriate for geo-science tasks; Suit and robotic tested-bed

2002

2002

Other NASA Analog Programs

- Each exploring various aspects of exploration
- Funded though grant programs
- Science focused

2012

MARS SCIEN

2010

2010

2011

2011

· LABORATORY ·

2012

2013

Leveraging experience and lessons learned from

WHO: THE UNIQUE CAPABILITY, EXPERIENCE, AND SKILL SETS OF EISD

Unique blend of capability and skill sets within ...

Leverage extensive knowledge and experience from ...

WHERE: ENVIRONMENTS FOR TESTS

AQUATIC

EXAMPLES

Neutral Buoyancy Laboratory (NBL)

Aquarius Reef Base (NEEMO)

ESA's Neutral Buoyancy Facility

KAMPLES

Geo-Science Field Exercises & Sites

Field Training Areas

Extreme Environments (ex. Antarctica)

Active Response Gravity Offload System (ARGOS)

RATORY

EXAMPLES

Virtual Reality & Hybrid Reality Laboratories

International Space Station

EVA-EXP-0054

NITE MO

There are many different types of operational field test activities. EVA is looking for the following qualities when determining which rise to the level of fidelity and return to warrant involvement:

- Responsive to EVA Office input on mission and objective design (i.e., objectives mapped to specific <u>needs</u> and <u>capability</u>, <u>knowledge</u>, and <u>technology gaps</u>)
- Provides an understanding of system and architectural interactions between Operations, Engineering, and Science
- Participation of experienced operators (crew and MCC)
- Participation of acknowledged stakeholders with expertise to evaluate concepts being worked on across the agency (e.g., science community (XI))
- MCC and Science Team components
- Incorporation of signal latency (time delay) and blockage
- Incorporation of partial gravity
- Availability of large area of un-engineered natural (planetary) surface
- Proxy science with high correlation to planetary science
- Participation of scientists invested in the proxy science outcome
- Inclusion of appropriate purpose-built prototype hardware for evaluation and maturation
- Full "mission" environment to drive out things that wouldn't be found in standalone testing
- Potential to benefit ISS as well as Exploration
- Enhances relationships with international partners, academia, industry, other government agencies, and other NASA orgs
- Highlights work in Exploration in a visible and tangible way (e.g. national media, social media, events like SpaceCom)
- Intersection of the 4Ts

MODULAR EQUIPMENT TRANSPORT SYSTEM (METS)

The Modular Equipment Transport System (METS) is a method for transporting equipment from one location to another, using an understanding of the planned EVA tasks to group hardware into Modules.

Pre-sampling Module

Sample Depot

Tool Box Module

Small Tool Module

Small Tool Module

NEEMO 22 EVA TEAM

EISD – OUR PEOPLE MAKE IT HAPPEN!

eisd

WHO: NEEMO AQUANAUTS

- 1. Carpenter (SEALAB II, 8/29/65)
- 2. Gernhardt (NEEMO 1&8, 10/22/01)
- 3. Lopez-Alegria
- 4. D. Williams (NEEMO 1&9, 10/22/01)
- 5. Tani (NEEMO 2, 5/14/02)
- 6. J. Williams (NEEMO 3, 7/16/02)
- 7. S. Kelly (NEEMO 4&8, 9/24/02)
- 8. Walheim (NEEMO 4, 9/24/02)
- 9. Whitson (NEEMO 5, 6/17/03)
- 10. Fincke (NEEMO 2, 4/18/04)
- 11. Herrington (NEEMO 6, 7/13/04)
- 12. Thirsk (NEEMO 7, 10/12/04)
- 13. Coleman (NEEMO 7, 10/12/04)
- 14. Wakata (NEEMO 10, 7/23/06)
- 15. Magnus (NEEMO 11, 9/17/06)
- 16. Patrick (NEEMO 6&13, 12/9/06)
- 17. S. Williams (NEEMO 2, 12/9/06)
- 18. Stefanyshin-Piper (NEEMO 12, 5/8/07)
- 19. Anderson (NEEMO 5, 6/8/07) EVA-EXP-0054
- 20. Olivas (NEEMO 3&8, 6/8/07) 21. Wheelock (NEEMO 6, 10/23/07) 22. Behnken (NEEMO 11, 3/11/08) 23. Reisman (NEEMO 5, 3/11/08) 24. Chamitoff (NEEMO 3, 5/31/08) 25. Garan (NEEMO 9, 5/31/08) 26. Nyberg (NEEMO 10, 5/31/08) 27. Arnold (NEEMO 13, 3/15/09) 28. Barratt (NEEMO 7, 3/26/09) 29. Feustel (NEEMO 10, 5/11/09) 30. Kopra (NEEMO 11, 7/15/09) 31. Hernandez (NEEMO 12, 8/28/09) 32. Stott (NEEMO 9, 8/28/09) 33. Creamer (NEEMO 11, 12/20/09) 34. Hadfield (NEEMO 14, 5/10/10) 35. Marshburn (NEEMO, 5/10/10) 36. Furukawa (NEEMO 13, 6/7/11) 37. Walker (NEEMO 15, 10/21/11) Metcalf-Lindenburger 38. (NEEMO 16, 6/12/12) 39. Acaba (NEEMO 17, 9/10/13)

40.	Noguchi
11	(NEEMO 17, 9/10/13)
41.	Hoshide (NEEMO 18, 7/22/14)
42.	Bresnik
	(NEEMO 19, 9/8/14)
43.	Parmitano
	(NEEMO 20, 7/21/15)
44.	Yui
45.	(NEEMO 16, 7/22/15) Mogensen
13.	(NEEMO 17&19, 9/2/15)
46.	Peake
A –	(NEEMO 16, 12/15/15)
47.	Onishi
48.	(NEEMO 15, 7/7/16) Rubins
-0.	(NEEMO 17, 7/7/16)
49.	M. Behnken
- 0	(NEEMO 21, 7/22/16)
50.	Wiseman
51.	(NEEMO 21, 7/22/16) Pesquet
JT.	(NEEMO 18, 11/17/16)
52.	Lindgren
	(NEEMO 22, 6/19/17)
53.	
54.	(NEEMO 22, 6/19/17) Vande Hei
54.	(NEEMO 18, 9/12/17)

[an Crientist Agus pouts				
Engineer-Scientist Aquanauts					
1.	W. Todd				
	(NEEMO 1, SEATEST I, III, IV; 10/01)				
2.	M. Reagan				
	(NEEMO 2, SEATEST III, IV; 5/02)				
3.	J. Dory				
	(NEEMO 3; 7/02)				
4.	P. Hill				
	(NEEMO 4; 7/02)				
5.	J. Meir				
	(NEEMO 4; 7/02)				
6.	E. Hwang				
	(NEEMO 5; 6/03)				
7.	T. Ruttley				
	(NEEMO 6; 7/04)				
8.	C. Mckinley				
	(NEEMO 7; 10/04)				
9.	M. Shultz				
	(NEEMO 8, 4/05)				
10.	T. Broderick				
	(NEEMO 9&12; 4/06)				
11.	K. Kohanowich				
	(NEEMO 10; 7/06)				
12.	J. Schmidt				
	(NEEMO 12; 5/07)				

13. C. Gerty

(NEEMO 12; /04)

(NEEMO 14; 6/10)

14. A. Abercromby

15. S. Chappell

- (NEEMO 14; 6/10) 16. S. Squires (NEEMO 15&16; 10/11)
- 17. H. Stevenin (NEEMO 15; 7/14)
- 18. D. Coan (NEEMO 20, SEATEST IV; 7/20/15)

JEEMO

- 19. M. O'groifa (NEEMO 21; 7/16)
- 20. D. Kernagis (NEEMO 21; 7/16)
- 21. D. D'Agnostino (NEEMO 22; 6/17)
- 22. T. Graff (NEEMO 22; 6/18/17)

NEEMO MISSIONS & CREWMEMBERS

NEEMO 1 - 6 Days, Oct. 21-27, 2001	DT/B. Todd, CB/M. Lopez-Alegria, M. Gernhardt*, CSA/D. Williams*	72 Crewmembers:
NEEMO 2 - 9 Days, May 13-20, 2002	CB/M. Fincke, D. Tani, S. Williams, DT/M. Reagan	54 Astronauts (16 IP Astronauts)
NEEMO 3 - 9 Days, July 15-21, 2002	CB/J. Williams, D. Olivas*, G. Chamitoff, SLSD/J. Dory	18 Scientists, Instructors, MDs or Engi
NEEMO 4 - 5 Days, Sept. 23-27, 2002	CB/S. Kelly*, R. Walheim, DA8/P. Hill, SLSD/J. Meir	
NEEMO 5 - 14 Days, June 16-29, 2003	CB/P. Whitson, C. Anderson, G. Reisman, SLSD/E. Hwang	
NEEMO 6 - 10 Days, July 12-21, 2004	CB/J. Herrington, D. Wheelock, N. Patrick*, EB/T. Ruttley	
NEEMO 7 - 11 Days, Oct. 11-21, 2004	CSA/B. Thirsk, C. Coleman, M. Barratt, CMAS/C. Mckinley, M.D.	
NEEMO 8 - 3 Days, April 20-22, 2005	CB/M. Gernhardt*, S. Kelly*, D. Olivas*, M. Schultz	
NEEMO 9 – 18 days, April 3-20, 2006	CSA/D. Williams*, CB/N. Stott, R. Garan, TATRC/T. Broderick*, M.D.	
NEEMO 10 – 7 days, July 22-28, 2006	JAXA/K. Wakata, CB/D. Feustel, K. Nyberg, NOAA/K. Kohanowich	
NEEMO 11 – 7 days, Sep. 16-22, 2006	CB/S. Magnus, T. Kopra, B. Behnken, T.J. Creamer	
NEEMO 12 – 12 days, May 7-18, 2007	CB/H. Piper, J. Hernandez, SD/J. Schmidt, TATRC/T. Broderick*, M.D.	
NEEMO 13 – 10 days, Aug. 6-15, 2007	CB/N. Patrick*, R. Arnold, JAXA/S. Furukawa, Cx/C. Gerty	
NEEMO 14 – 12 days, May 10-23,2010	CSA/C. Hadfield, CB/T. Marshburn, EAMD/A. Abercromby, S. Chappell	
NEEMO 15 – 7 days, Oct. 20-26, 2011	CB/S. Walker, JAXA/T. Onishi, CSA/D. Saint-Jacques, NAC/ S. Squyres*	
NEEMO 16 – 12 days, Jun 11-22, 2012	CB/D. Metcalf- Lindenburger, JAXA/K. Yui, ESA/T. Peake, NAC/S. Squyres*	
NEEMO 17 – 7 days, Sept. 9-13, 2013	CB/J. Acaba, K. Rubins, JAXA/S. Noguchi, ESA/A. Mogensen*	<u>Key</u> * Repeater
NEEMO 18 – 9 days, July 21-29, 2014	JAXA/A. Hoshide, CB/M. Vande Hei, Jeanette Epps, ESA/Thomas Pesquet	Blue – CDR upgrade
NEEMO 19 – 7 days, Sept. 7-13, 2014	CB/R. Bresnik, ESA/A. Mogensen*, CSA/J. Hansen, ESA/ H. Stevenin	Green – IP RED – Rookie
NEEMO 20 – 14 days, Jul 20 – Aug 2, 2015	ESA/L. Parmitano, CB/S. Aunon, JAXA/N. Kanai, XX/D. Coan	Gray – non-Astro Engineer or Scientist
NEEMO 21 – 16 days (split), Jul 21-Aug 5, 2016	CB/R. Wiseman, M. McArthur, ESA/M. Maurer, IHMC/D. Kernagis, NMT/Marc O Griofa, NPS/N. du Toit	1
NEEMO 22 – 10 days, Jun 18-27, 2017	CB/K. Lindgren, ESA/P. Duque, NASA/T. Graff, IHMC/D. D'Agnostino	1
EVA-EXP-0054	This document does not contain any export control information (#20205009470)	4

onauts) or Engineers

54