NBL xEVA Lunar DAVD Test Series 1 (2020)

Dive Helmet Test for DAVD Informatics and EVA Geology Tools

EVA-EXP-0079

04 August 2020

David Coan NASA EVA Operations & Engineering Specialist

NASA

Goals, Objectives, and Equipment

Goals of the NBL Lunar Dive Helmet Test for DAVD & Geology Tools

The primary goal of this set of runs was to conduct engineering <u>checkout/acceptance test dives</u> with the <u>Diver</u> <u>Augmented Vision Display (DAVD)</u> and the <u>Coda Octopus Echoscope C-500 3D sonar</u> for use during <u>Exploration</u> <u>Extravehicular Activity (xEVA)</u> development testing and astronaut training, along with evaluating the current Artemis <u>Geology Tools</u>

<u>NASA</u>

- Conduct acceptance testing and evaluate DAVD as a capability testing platform for developing an EVA Informatics Heads-Up Display (HUD)
- Conduct acceptance testing of the CODA Echoscope C-500 3D sonar as a capability testing platform for developing EVA navigation on the lunar surface (e.g., with a LIDAR system)
- Test the current geology sampling tools and tool management equipment (Artemis Geology Tools)
- Utilize runs for Exploration EVA concept of operations testing for Artemis lunar missions
- Test dive the new weigh-out wetsuit and mockup PLSS

<u>Navy</u>

- Test DAVD Gen 1 system in production with CODA for Navy fleet divers
- Evaluate advances in system for the Gen 2

These dives will evaluated xEVA capabilities and test sampling procedures, and didn't assess any timeline

Analog Testing Development & Integration Themes (4-T's) Addressed

TOOLS

EVA Tools & Systems

- Handheld Tools for Building & Repair
- Handheld Tools for Science
- Power Tools
- Tool Transport & Stowage Systems
- Mobility & Compatibility Requirements
- Crew Rescue Systems

Instrumentation

- In-Situ Analytical Instruments
- Instrument Packages & Payloads

Sample Collection

- Sample Acquisition & Handling
- Contamination Mitigation
- Transportation & Stowage

TECHNIQUES

Exploration Operations

- Procedure Development
- Communication Methods & Protocols
- Data Visualization & Management
- Timeline Tracking & Scheduling

EVA Operations

- **EVA Concepts of Operations**
- Advanced EVA Capabilities

Science Operations

- Traverse Planning
- Science Decision Making Protocols
- Sample Acquisition & Documentation

Robotic Operations

- Autonomous vs Crew Controlled
- Human-Robotic Interfaces

Emerging Technologies

- Informatics & Intelligent Systems
- Virtual/Hybrid Reality Environments
- Medical & Human Performance
- EVA Support Systems & IV Workstation
- Advanced Spacesuit Developments

Technology Collaborations

- Commercial Connections
- University & Institute Collaborations
- Other Government Agencies Links
- International Partnerships

Innovations Incubator

- Rapid Testing & Development
- Idea Generation & Gap Recognition

TRAINING

Cross-Disciplinary Training

- Involvement of Multiple Disciplines
- Sharing Between Diverse Skill Sets
- Extensive Expertise & Experiences

Training Opportunities

- Exploration Training
- Science Training
- EVA & Space Suit Training
- Tool & System Training
- Student Opportunities

Astronaut Crew Training

- Expeditionary Opportunities
- Leadership Opportunities
- Mission Realistic Environments

Primary Goals/Objectives for Acceptance Testing in NBL

Following a "crawl, walk, run" approach, the primary goals/objectives for the test runs/dives involved <u>acceptance testing</u> of the equipment, and initial evaluation of potential ops and capabilities, including the following:

- Acceptance testing of the DAVD system in the NBL (simulating xEVA HUD)
- Acceptance testing of the Echoscope C-500 in the NBL (simulating potential area scanning system)
- Acceptance testing and initial evaluation with diver wearing the EVA tool management system
- Evaluation of the current geology sampling tools
- Initial operational use of new Surface Supplied Diving (SSD) and KM37/97 dive helmets in NBL by test subjects
- Initial test with the newly expanded lunar testing area in the NBL
- Acceptance testing and evaluation of the new weighout wetsuit and mockup PLSS in the NBL
- Initial look at utilizing NBL runs for Exploration EVA concept of operations testing for Artemis lunar missions
- Test dives for the Navy before they deploy DAVD to the USN fleet divers

Additional xEVA Test Objectives Linked to EVA Gaps

- 1. <u>Evaluate the Diver Augmented Vision Device (DAVD) as an xEVA</u> <u>Informatics testing platform</u>
- 2. Evaluate utilizing a dive helmet as an analog to a spacesuit for testing xEVA concepts of operations and equipment in the NBL
- 3. Evaluate EVA geology sampling tools for a lunar surface mission
- 4. <u>Evaluate and determine tool & sample management and</u> <u>transportation</u>

The test plan and details for the objectives are tracked on the <u>NBL xEVA Lunar Test Series 1</u> wiki page

Evaluate the Diver Augmented Vision Device (DAVD) as an xEVA Informatics testing platform Test Objective:61 Evaluate the Diver Augmented Vision Device (DAVD) Contents [hide] as an xEVA Informatics testing platform 1 Operational Relevance Moon-to-Mars Domain: EVA 2 Related Test Events Category: Exploration Informatics Subsystem, Facilities 3 Overview Assessment Sponsors XX : EVA Office Operational Relevance [edit source] Stakeholders XX : EVA Office Provides information on a potential platform for future xInformatics testing. Related EVA Gaps: • EVA Gap: xInformatics Capability for xEVA Suit Related Test Events [edit source] Related articles: Exploration EVA System Concept The following Category: Test events included this objective: of Operations NBL xEVA Lunar Test 1 Data parameters Data products ۵ ٠ ۰ NBL xEVA Lunar Test Series 1 NBL xEVA Lunar Test Series 3 Test Data Parameter: Video List: Test Data Parameter: Target test NBL Talk:Test Event:16#Test Objective:61 2020/07/16 NBL KM37 + environments: Unstructured Feedback NEEMO KM97 Test Video/Photos: \\JS-NBL-Video\NBL-Video\2020\2020-07\2020-07-Test Data Parameter: Hardware 16-LUNAR-1-6G-SCUBA Photography Required Diver Augmented Vision Device Test Data Parameter: Video (DAVD) List: Test Data Parameter: PACES Talk:Test Event:17#Test Objective:61 2020/07/17 NBL KM37 + Unstructured Feedback KM97 Test Video/Photos: \\JS-NBL-Video\NBL-Video\2020\2020-07\2020-07-All test objectives Test Data Parameter: 17-LUNAR-1-6G-SCUBA Photography

EVA Test Objective – Evaluate SSD/Dive Helmet for xEVA Con Ops Tests

Evaluate utilizing a dive helmet as an analog to a spacesuit for testing xEVA concepts of operations and equipment in the NBL

Test Objective:53						
Contents [hide] 1 Operational Relevance 2 Related Test Events			spacesuit for test	ing a dive helmet as an analog to a ting xEVA concepts of operations and equipment in the NBL		
3 Overview			Mo	oon-to-Mars Domain: EVA		
4 Data Parameters			Cate	gory: Facilities Assessment		
			Sponsors	• XX : EVA Office		
Operational Releva	ance [edit source]		Stakeholders	XX : EVA Office XI : ARES		
equipment.	·	ow for quick and early evaluation of xEVA concepts of operations and	Related EVA Gaps:	EVA Gap: xInformatics Capability for xEVA Suit		
developing the Exploration E	ets with SME (with hard hat and spa EVA System Concept of Operations of or determination of whether the N		 EVA Gap: Tool Transport on Surface EVAs EVA Gap: Defined Sample Types (Tool Design) 			
 Eval new weigh-out (wet 	Exploration EVA System Concept of suit with weight plates) for lunar test ed Vision Device (DAVD) and eval for		 EVA Gap: Sample Containment EVA Gap: Tools for Science Sampling on Surface EVAs 			
Eval of Artemis Geology	Tools		Related articles:	Exploration EVA System Concept of		
Use of NBL for NEEMO	EVA training			Operations		
Related Test Event	S [edit source]			Diver Augmented Vision Device (DAVD)		
The following Category:Test	events included this objective:			Artemis NBL Tests - Spring 2020 Artemis NBL Tests - Spring 2020 Test Print		
+	Data parameters 🔶	Data products 🗢		• NBL xEVA Lunar Test 1		
2020/07/16 NBL KM37 +	Test Data Parameter: Video Test Data Parameter: Unstructured Feedback	List: • Talk:Test_Event:16#Test_Objective:53	Target test environments:	• NBL		
KM97 Test	Test Data Parameter:	Video/Photos: \\JS-NBL-Video\NBL-Video\2020\2020-07\2020-07-		<u>Hardware</u>		
	Photography	16-LUNAR-1-6G-SCUBA	Required	KM97 dive helmet		
	Test Data Parameter: Video	List:		KM37 dive helmet Diver Augmented Vision Device		

Evaluate EVA ge	ology sampling t	ools for a lunar surface mission		
Test Objective:29 Contents [hide]			Evaluate EVA	geology sampling tools for a lunar
1 Operational Relevance			Mo	oon-to-Mars Domain: EVA
2 Related Test Events 3 Overview				Category: Tools
4 Data Parameters			Sponsors	• XX : EVA Office
			Stakeholders	• XX : EVA Office
Operational Relevance	[]h]			EC7 : EVA Tools Engineering
				• XI : ARES
		tional techniques will impact changes in the design of each tool. This		ER : Rovers
objective provides test data for the	design of the geology sampling to	pols for incorporation into the xEVA Tools CDR.		CX3 : FOD EVA
Related Test Events [e	dit course l		Related EVA Gaps:	EVA Gap: Tool Transport on
			oups.	Surface EVAs EVA Gap: Defined Sample Types
The following Category:Test events	s included this objective:			(Tool Design)
\$	Data parameters 🔶	Data products 🔶		EVA Gap: Sample Containment
	Test Data Parameter: Video	List:		 EVA Gap: Tools for Science Sampling on Surface EVAs
0000/07/00 100 Death Verd Obid	Test Data Parameter:	Unstructured Feedback:	Related articles:	
2020/07/08 JSC Rock Yard Shirt sleeve Test	Unstructured Feedback	Talk:Test_Event:15#Test_Objective:29	Related articles:	 Exploration EVA System Concept o Operations
SIEEVE TEST	Test Data Parameter:	Images: 2020/07/08 JSC Rock Yard Shirt sleeve Test		NEEMO 24 EVA
	Photography	Video		NEEMO 24 EVA Top Priority
2020/07/09 Advanced Spacesuit	Test Data Parameter:	List:		Artemis NBL Tests - Spring 2020
Lab Z-2.0 Test	Unstructured Feedback	Unstructured Feedback: Talk:Test_Event:7#Test_Objective:29		Artemis NBL Tests - Spring 2020
		• Videoư		Top Priority NBL xEVA Lunar Test 1
	Test Data Parameter: Video	List:		NBL Artemis PACES Test Series 1
2020/07/16 NBL KM37 + KM97	Test Data Parameter:	Talk:Test_Event:16#Test_Objective:29	Target test	ARGOS
Test	Unstructured Feedback	Video/Photos: \\JS-NBL-Video\NBL-Video\2020\2020-07\2020-	environments:	• NBL
	Test Data Parameter: Photography	07-16-LUNAR-1-6G-SCUBA		NEEMO
	Test Data Parameter: Video		Target activity	 Ambulatory Traverse (Lunar
	Test Data Parameter:	List:	modules:	Surface)
2020/07/17 NBL KM37 + KM97	Unstructured Feedback	Talk:Test_Event:17#Test_Objective:29		Geology Sampling (Lunar Surface)

EVA Test Objective – Evaluate EVA Tool & Sample Management

Evaluate and determine tool & sample management and transportation Test Objective:28 Evaluate and determine tool & sample management Contents [hide] and transportation 1 Operational Relevance Moon-to-Mars Domain: EVA 2 Related Test Events Category: Tools 3 Overview Sponsors 4 Data Parameters XX : EVA Office Stakeholders XX : EVA Office CX3 : FOD EVA Operational Relevance [edit source] EC5 : EVA Suit Engineering Provides data for determining which tools should be mounted to suit and what sort of tool transport system is needed for lunar surface EC7 : EVA Tools Engineering missions. XI: ARES FR · Rovers Where do samples go between EVAs? Related EVA Gaps: • EVA Gap: Defined Sample Types What samples go back to Earth (if not all)? Trade between samples and equipment? (Tool Design) EVA Gap: Tool Transport on Related Test Events [edit source] Surface EVAs The following Category:Test events included this objective: Related articles: Exploration EVA System Concept of Operations ŧ Data parameters ŧ Data products ۵ NEEMO 24 EVA Test Data Parameter: Video NEEMO 24 EVA Top Priority List: Test Data Parameter: Artemis NBL Tests - Spring 2020 2020/07/08 JSC Rock Yard Unstructured Feedback: Talk:Test_Event:15#Test_Objective:28 Artemis NBL Tests - Spring 2020 Unstructured Feedback Shirt sleeve Test Images: 2020/07/08 JSC Rock Yard Shirt sleeve Test Top Priority Test Data Parameter: NBL xEVA Lunar Test 1 Photography Target test Test Data Parameter: Video ARGOS List: environments: NBL Test Data Parameter: Talk:Test_Event:16#Test_Objective:28 2020/07/16 NBL KM37 + NEEMO Unstructured Feedback Video/Photos: \\JS-NBL-Video\NBL-Video\2020\2020-07\2020-KM97 Test JSC Rock Yard Test Data Parameter: 07-16-LUNAR-1-6G-SCUBA PACES Photography Test Data Parameter: Video All test objectives List: Test Data Parameter: Talk:Test Event:17#Test Objective:28 2020/07/17 NBL KM37 + Unstructured Feedback KM97 Test Video/Photos: \\JS-NBL-Video\NBL-Video\2020\2020-07\2020-Test Data Parameter: 07-17-1 UNAR-1-6G-SCURA

DAVD

- High-resolution see-through head-up display (HUD) embedded directly inside a diving helmet
- Allows a topside dive supervisor to relay visual mission data to the HUD via an Ethernet cable
- Divers can see augmented reality (AR) scenes, real-time images, videos, technical drawing, text style messaging, and step-by-step instructional sets
- Divers can also utilize real-time sonar imagery for navigation

Echoscope C-500

- Real-time 3D imaging sonar platform
- Analog for a LIDAR system on a lander

NBL Surface Supplied Diving (SSD) with DAVD

The "Spacesuit": SSD KM37/97 Helmet with Weighout Suit & Tools

SSD w/ KM37

KM37: Narrower FOV, Helmet movable

xEMU: Wider FOV, Helmet fixed

SSD w/ KM97 plus weighout suit & mPLSS

Dive helmet & system provide good analog to a spacesuit for concepts of operations evaluations

Both have different but comparable challenges for operations

EMU TMG with dive gloves simulates a pressurized glove

> Wetsuit: Very flexible xEMU: Pressurized, bulky

> > xEMU concept

EVA-EXP-0079

EVA Science Sample Acquisition Tools and Tool Management System

Lunar Surface Geology Tools

- Contingency Sampler
- Geology Hammer
- Tongs
- Scoops
- Rake
- Extension Handles
- Slide Hammer
- Drive Tube Kit
- Point and Shoot Camera
- Sample Bag Dispensers
- Sample Bags
- Waist Pack
- Leg Holster for Hammer
- Leg Holster for Scoop and Chisel
- Utility Belt with Swing Arms

EVA Science Sample Acquisition Tools

17

Regolith Sample Acquisition

- **Bulk**: representative loose surface material [Scoop]
- **Core**: cylindrical sample of regolith at depth [Drive Tube / Drill]

Rock Sample Acquisition

- Float: rocks that are loosely adhered to the surface [Tongs / Rake]
- Chip: piece of rock forcibly removed from a larger rock [Hammer / Chisel]
- **Core**: cylindrical samples of a rock [Core Drill and Bit]

Suit-Mounted Tool Management System Configuration

Test Configuration & Dive Plan

Test Team POCs

- Test Lead/Sponsor: David Coan
- NBL Flight Lead: Tim Morgan
- TC & Ops Lead: Daren Welsh
- Navy Lead: Paul McMurtrie
 - Coda Octopus: Blair Cunningham
 - DAVD Navy Project Manager: Allie Williams
- IV: Bridget Scheib
- Informatics: Matthew Miller and Skye Ray
- Science: Trevor Graff
- EVA Geology Tools: Adam Naids & Mary Walker
- Dive Integration: Mike Geyer & Jim Fuderer

Test Subjects/Divers

- Vic Basher (NAVSEA 00C)
- Steve Bowen (CB/USN/Astronaut)
- David Coan (XX/EVA)
- Joshua Dumke (NAVSEA 00C/MDV)
- Drew Feustel (CB/Astronaut)
- Trevor Graff (XI/ARES)
- Art Levine (CX12/NBL)
- Adam Naids (EC7/EVA Tools)
- Don Pettit (CB/Astronaut)
- Scott Wray (CX3/FOD EVA)

NBL Pool Config for xEVA Lunar Area

xEVA Engineering Task Board (Central Station)

- Reconfigurable task board utilized primarily for ISS EVA training
- NZGL electrical connectors configured on board for use as an engineering task
- DAVD displays utilized to guide the crew through tasks on the board

Dive Duty Stations

Diver Hatting

SSD Panel Operator 1 THE THE M

Navy/Coda Octopus

EVA Simulation Duty Stations

Dive Rotation Timeline for 16 July 2020

Time										
	1st team - 1st dive	Surface interval/lunch	1st team - 2nd dive							
NBL Support	2:00 bottom time	1:50	3:00 bottom time							
	1st DAVD test subject	Lunch	2nd DAVD test subject							
White/EV1 (KM37 w/DAVD)	2:00 bottom time	Clean helmet	2:15 bottom time							
	1st KM97 test subject		2nd KM97 test subject	3rd KM97 test subject						
Red/EV2 (KM97)	2:00 bottom time	Lunch	1:00 bottom time	1:00 bottom time						

Dive Rotation Timeline for 17 July 2020

Time																									
	1st team - 1st dive									Surface interval/lunch					nch	1st team - 2nd dive									
NBL Support	3:00	3:00 bottom time 1:50 2:00 bottom time																							
		DAV	D tes	test subject					DAV	D tes	t sut	oject							3rd DAVD test subject						
White/EV1 (KM37 w/DAVD)	1:1	5 bott	tom t	ime		Clean	helmet	1:15 hour bottom time					Lunch						2:00 bottom time						
	1st KM97 test subject				2nd	KM9	7 tes	t sub	ject	ŧ						3rd 2nd KM97 test subject						ject			
Red/EV2 (KM97)	1:30 3:00 bottom time						1:15 bottom time				Lunch						2:00 bottom time								

Dive Ops & Test Evaluations

Including cue cards utilized with DAVD

White/EV1 (KM37 w/DAVD)	Red/EV2 (KM97 w/Tools)
Suit up and topside checks (hat that diver)	Suit up and topside checks (hat that diver)
Splash and install weights	Splash and install weights
Weigh-out check and evaluation DAVD: cue cards with process and model of platform	Configure tools
Translate to lander/airlock and ingress DAVD: Map of pool config and text directions	Translate to lander/airlock
Egress lander	Egress lander
Route cable from Power Station to Central Station DAVD: Map and text directions	Translate to lunar area with METS
Configure Central Station DAVD: Cue cards directing how to reconfig board	Contingency sample and stow
Scoop sample procedure with extension handle DAVD: Cue cards with graphics	Scoop sample procedure with extension handle
Hammer sample with chisel (from boulder) and sample bags DAVD: Cue cards with graphics and text directions	Hammer sample with chisel (from boulder) and sample bags
Navigate across lunar area with C-500 data DAVD: Real-time feed of sonar	Core sample with drive tube and slide hammer
Traverse to lander and ingress	
Remove tools and weights	Remove tools and weights
Egress water	Egress water

Surface EVA Engineering Tasks

Construct Surface Infrastructure

- Route cable from Power Station to Central Station
- Mate and configure cable
- Configure jumper

Retrieve power cable \rightarrow Connect cable to Power Station \rightarrow Route cable \rightarrow Connect cable to Central Station

Evaluating Navigation with DAVD and C-500

NASA

- Utilized Coda Echoscope 3D sonar to scan area, much like a LIDAR system for spaceflight
- Sent navigation data from the sonar to the diver via DAVD

Evaluating Printed Cue Cards and Digital Cue Cards

Reading Printed Cue Cards on Cuff Checklist

Viewing Digital Cue Cards via DAVD

Surface EVA Science Tasks with Geology Tools

Rock Sample

- Float with Tongs and Rake
- Chip with Hammer and Chisel

Regolith Sample

- Bulk with Scoop
- Core with Drive Tube

Evaluating EVA Tool Management on Suit

Suit-Mounted Geology Tools

- Geology Hammer
- Scoops
- Point and Shoot Camera
- Sample Bag Dispensers
- Sample Bags
- Waist Pack
- Leg Holster for Hammer
- Leg Holster for Scoop and Chisel
- Utility Belt with Swing Arms

Evaluating EVA Tool Management with METS (Wheeled Carrier)

Geology Tools in METS

- Geology Hammer
- Tongs
- Scoops
- Rake
- Extension Handles
- Slide Hammer
- Drive Tube Kit
- Sample Bag Dispensers
- Sample Bags

This document does not contain any export control information (#20205008312)

Evaluating Rock Float Sampling (using Tongs)

of 5

This document does not contain any export control information (#20205008312)

Evaluating Rock Chip Sampling (with Hammer and Chisel)

Evaluating Collecting Chip Samples with Tongs & Sample Bags

Evaluating Use of Sample Markers

Key Finding & Summary

This document does not contain any export control information (#20205008312)

Evaluate the Diver Augmented Vision Device (DAVD) as an xEVA Informatics testing platform

Key Findings for DAVD

- DAVD passed acceptability testing for NBL use
- DAVD worked well for testing capabilities of an xEVA informatics HUD
 - Gen 1 is good for capability testing
 - Gen 3 will be a projection system that is even more relevant
 - NAVSEA/Coda working on voice commands and gestures for next generations
- Test subject feedback and lessons learned were recorded by the xINFO team
 - Multiple types of content were used to demonstrate the flexibility of DAVD as a system
 - JARVIS learned a lot from the DAVD software and capability (Display / UX observations from JARVIS Team)
- DAVD system is 100% O2 compatible (for decompression stops)
 - JARVIS could utilize an in-the-helmet projection system that is O2 compatible, which would protect the system better from impacts and dust
- xEMU has a helmet camera that could be tied into a similar system, and/or an optic LASER/LIDAR camera system could be utilized

Evaluate utilizing a dive helmet as an analog to a spacesuit for testing xEVA concepts of operations and equipment in the NBL

Key Findings for SSD/Dive Helmet Testing of xEVA

- "Only way we'll be able to train realistically in the near term"
- Better than scuba, need two way comm that helmets provide
 - Need to improve helmet comm
- More limited FOV in dive helmet may impact training, however helmet moves, which may balance the difference
- Take waist belt and build stand offs for swing arm to put them in more realistic FOV and even suit volume
 - One subject reported not being able to see the tool belt swing arms through the helmet visor
 - Need to make the visibility of tools using the SSD config as similar as possible to on the xEMU
- Dive time on air totaled ~4:30 per run/day
 - ~3:15 usable time (after weighout/config) per day
 - Compares to ~5:30 usable time with an EMU run
 - Time will increase with experience and use of Nitrox

Evaluate EVA geology sampling tools for a lunar surface mission

Key Findings for EVA Geology Tools

- Tools feedback was recorded by the EC7 EVA Tools team and/or given to the team during the debrief, with specific data collected on:
 - Use of point and shoot camera
 - Sample bag and dispenser
 - Hammer and chisel
 - Scoop
 - Rake
 - Tongs (straight and angled)
 - Slide hammer
 - Drive tube and cap dispenser
- Should attach tools at the bottom of the pool
- Make short training videos of how to use each tool to put on the wiki – doesn't replace hands on training, but supplements and allows people to review in advance

NASA

Evaluate and determine tool & sample management and transportation

Key Findings for EVA Tools & Sample Management

- Tool management feedback was recorded by the EC7 EVA Tools team and/or given to the team during the debrief
- Data was received for equipment mounted on suit
 - Utility belt
 - Hammer holster
 - Scoop/chisel holster
 - Contingency sampler bag
 - Waist pack
- Feedback was received on the METS and utilizing a wheeled carrier

Evaluate the NBL Weighout Wetsuit and Weighout Board

Key Findings for Weighout Wetsuit

- In general the weighout suits and mPLSS worked well for simulating 1/6 gravity level on the lunar surface
- Weighout wetsuit:
 - Some of the weights shifted with various movements, but were fairly easily repositioned
 - Thigh weight movement could be resolved by adding Velcro to the wetsuit and weight pack
 - Hip weights interfered with the version of the tool belt tested
 - There was no discomfort with the weights in the suit
 - Test subjects did get hot due to the warm temperature of the water
- Mockup PLSS (mPLSS)
 - Modifications were made real-time with feedback from test subjects and Navy divers, such as adding "burp" holes and centering the bailout bottle for better weight distribution

Evolving Partnerships – NASA and the United States Navy

DEPARTMENT OF THE NA VY NAVAL SEA SYSTEMS COMMAND 1333ISAAC HULL AVE SE WASHINGTON NAVY YARD DC 20376-0001

NAVSEA 00C 3150 Ser 3073 7 Jul 20 L AVE SE ARD DC 20376-0001 NRBPLVREFERTO NASA EVA

NASA EVA 7 Jul 20

MEMORANDUM OF AGREEMENT BETWEEN COMMANDER, NAVAL SEA SYSTEMS COMMAND (NAVSEA 00C) AND NASA EXTRAVEHICULAR ACTIVITY (EVA) OFFICE

Subj: MEMORANDUM OF AGREEMENT

Ref: (a) Future Naval Capabilities, FNC Requirements for Divers Augmented Vision Display, DAVD Program

From Deep Sea to Deep Space

Dive Helmet Test for DAVD Informatics and EVA Geology Tools

Successful acceptance testing and evaluation of the Diver Augmented Visions Display (DAVD) as a capability testing platform for developing an EVA Informatics Heads-Up Display (HUD)

Good integration of xINFO/JARVIS with DAVD HUD

Successful acceptance testing of the CODA Echoscope C-500 3D sonar as a potential capability testing platform for developing EVA navigation on the lunar surface (e.g., with a LIDAR system)

Successful look at utilizing NBL runs for <u>Exploration EVA concept of operations</u> testing for Artemis lunar missions

Successful test of the current geology sampling tools and tool management equipment (Artemis Geology Tools)

First operational use of new Surface Supplied Diving and KM37/97 dive helmets in NBL

First test with the newly expanded lunar testing area in the NBL

First evaluation of the new weighout wetsuit and mockup PLSS in the NBL

Successful series of test dives for the Navy before they deploy DAVD to the USN fleet divers

Test Run Schedule

<u>16 July 2020</u>

- 0730-0800: Diver physicals
- 0800: Equipment fam for test subjects
- 0830: Dive brief in south high-bay
- 0900: Morning dive (2 hours)
 - White/EV1 (KM37 w/DAVD, weigh-out, PLSS): **Coan**
 - Red/EV2 (KM97 w/tools): Naids
- 1100: Surface interval and lunch (1.5 hours)
- 1230: Afternoon dive (2:15 hours)
 - White/EV1 (KM37 w/DAVD, weigh-out, PLSS): Graff
 - Red/EV2a (KM97 w/tools): Wray
 - Red/EV2b (KM97 w/tools): NBL
- 1600: Dive debrief

<u>17 July 2020</u>

- 0730-0800: Diver physicals
- 0800: Equipment fam for test subjects
- 0830: Dive brief in south high-bay
- 0900: Morning dives (2:15 hours)
 - White/EV1a (KM37 w/DAVD): Bowen
 - White/EV1b (KM37 w/DAVD): Pettit
 - Red/EV2 (KM97 w/tools, weigh-out, PLSS): Basher
- 1200: Surface interval and lunch (1.5 hours)
- 1330: Afternoon dive (2 hours)
 - White/EV1 (KM37 w/DAVD): Feustel
 - Red/EV2 (KM97 w/tools, weigh-out, PLSS): **Dumke**
- 1600: Dive debrief

Dive Logs for 16 July 2020

	А	В	С	D	Ε	F	G	Η		J	К	L	М	N	0	Ρ	Q	R	S	Т	U	V	W	X Y	Ζ
3	Date TD	7/16/20	TSM		CO	X/AR	TERY			DS B/U DS		CDS-1 CDS-2								D	IVER	CUR	RZEN	ICY	
4 5 6 7										AIR DIVII	IG ONLY														
7 8 9 10		AIR DIVING	"X" INDI "O" INDI	ICATES A	PRE PRE	SSU SSU	RE RE/	ADIN	G O	UTSIDE 1	HE SPECIFIED OPE THE SPECIFIED OP NOMALIES SECTION	ERATING RANGE	IT I DIV	TENTION D S YOUR RE /ERS AND L /ER CURRE	SPON IMITE	ISIBILI D WO	ITY TO V RKING L	DIVERS	PRIO	R TO AL	LOWING	ТНЕМ ТО	DIVE. U		EST
11	Diver #	DIVERS	Time In	Time Out	1500 ₁₄	500 IS	Dive Time	R E P	I N T	R N T	Diver #	DIVERS	Time In	Time Out	2750	700	Dive Time		I N T	R N T		Assig	ınmen	ts:	
13	1	COAN	10:18	11:59	X	X	101	К			11						0								
14	2	NAIDS	10:18	12:01	X	X	103	к			12						0								
15	3	GRAFF	13:54	15:26	x	x	92	J			13						0								
16	4	WRAY	13:58	14:44	x	x	46	F			14						0								
17 18		DIVERS	Time In	Time Out	2750 _a	sı 002	Dive Time	R E P	I N T	R N T	15 16						0								
19	5	levine	14:58	15:26	x	x	28	D			17						0								
20	6						0				18						0								
21	7						0				19						0								
22	8						0				20						0								
23	9						0				21						0								
24	10						0				22						0								
25 26	NOTES	ANOMALIES:	Memorial	Hermann	Нуре	erbari	ic Charr	nber:	(Dire	ect Line -	713-704-2912) (Swi	tch Board - 713-704-4000) Ask for	the duty h	yper	baric	technic	hian.							

Dive Logs for 17 July 2020

	В	С	D	E	F	G	H		J	K	L	М	N	0	P	Q	R	S	Т	U	V	W	X Y	Z
1																								
2	7/17/20	TSM		CO	X/AR	TERY			DS	ALEXANDER	CDS-1													
3				1101					B/U DS		CDS-2									DIVER		KREN	ICY.	
4																								
5									AIR DIV															
6																								
8			RESSUR					<u>а и</u>					<u>Tention Di</u> S your re				/ERIFY		ER CURR	ENCY FO	R ALL UNS	SCHEDU	ED GUE	ST
Ŭ	AIR DIVING "O" INDICATES A PRESSURE READING OU									THIN THE SPECIFIED OPERATING RANGE IT IS YOUR RESPONSIBILITY TO VERIFY DIVER CURRENCY FOR ALL UNSCHEDULED GUES TSIDE THE SPECIFIED OPERATING RANGE DIVERS AND LIMITED WORKING DIVERS PRIOR TO ALLOWING THEM TO DIVE. USE THE DIVER CURRENCY BUTTON ABOVE TO ACCESS THE DIVER CURRENCY LOG.														
9										ANOMALIES SECTI		DIV	ER CURRE	NCY	BOTTO	UN ABO	VETO	ACCI	ESS THE	DIVERCU	RRENCY	LUG.		
10																								
11				P	SI								I	PS	SI									
	DIVERS					Dive	R E	I N	R N	Diver #	DIVERS					Di	R E	I N	R					
10	DIVERS			1500	500	re Time	P	T	T	Diver #	DIVERS			2750	700	Dive Time	P	T	T					
12		Time In	Time Out	v	v							Time In	Time Out								Assi	gnment	3:	
13	BOWEN	9:41	10:58	X		77	I G			11						0	-							
14 15	PETTIT BASHER	11:29 9:48	12:30 11:00	X	X X	61	H	:29	72	12						0	-							
16	FEUSTEL	14:22	15:28	x	x	72 66	н	.29	72	14						0	-							
	PEOSTEL	14.22	15.20		si		R		R															
17	DIVERS			-	r	Dive 1	E	N	N	15						0	_							
18		Time In	Time Out	2750	700	Time	Р	Т	Т	16						0								
19	BASHER	11:29	12:30	X	X	61	М			17						0								
20	DUNKE	13:56	15:29	X	x	93	J			18						0								
21						0				19						0								
22						0				20						0								
23						0				21						0	_							
24						0				22						0					_	_	_	
25		Manager						/D:		740 704 00405 (0.1	L.L. D													
26 /	ANOMALIES:	Memorial	Hermann	Нуре	erbar	ic Chan	nber:	(Dire	ct Line -	713-704-2912) (Swi	tch Board - 713-704-4000) Ask for	ine duty hy	/pert	Daric	technic	nian.							

U.S. Navy Divers Augmented Vision Display (DAVD)

KM37

- Sponsored by Naval Sea Systems Command Supervisor, Diving and Salvage (NAVSEA 00C), and developed by the Naval Surface Warfare Center Panama City Division
- The DAVD system
 - Binocular heads-up display (HUD) mounted inside a Kirby Morgan 37 (KM37) dive helmet and a MK-20 Full Face Mask (MK20 FFM)
 - Prototype uses commercial lenses (Lumus) and custom 3D printed frame/mounting systems
- DAVD capabilities
 - Allows a topside dive supervisor to relay visual mission data to the HUD via an Ethernet cable
 - Divers can view text messages, video, photographs, instructions, and augmented reality images
 - Divers can also utilize real-time sector scanning sonar imagery for navigation
 - Allows for operations even in murky, zero visibility conditions
- During diver testing, DAVD operated as advertised, with Navy divers able to utilize it for navigation, identification of objects, and for receiving task instructions real-time

EVA-EXP-0079

 \geq

Application of DAVD for xEVA Informatics

NASA Exploration EVA Spacesuit and Operations

- An EVA Augmented Vision Heads-Up Display (HUD) would allow for real-time data update, augmented cue input, procedure viewing, enhanced task direction, and self-navigation capability
 - Enables Exploration mission <u>concepts of operations</u> baselined by the EVA Office, especially those on natural planetary surfaces
 - Relevant for current spacesuit (xEMU) development efforts and the xINFO system
- DAVD system abilities translate into <u>capabilities</u> needed by NASA for the Exploration EVA Suit and planetary operations

Enhanced ISS EVA Training

Utilize MK20 FFM version of DAVD to view procedures and graphics sent by Test Conductor

Potential Spacesuit (xEMU) Development

DAVD Mounted Lenses

DAVD Projection System

DAVD System in Suit

xEMU HUD

General Science Regions of Interest for Exploration on Lunar Surface

<u>Craters</u>

- Impact craters, pit craters
- Descend into, perform science tasks, ascend out (with appropriate equip)

Permanently Shadowed Regions

- Acquisition of ice water and volatiles samples
- Goal of 2 hours inside of shadowed regions

Volcanic Terrain

- Ingress into, perform science tasks, exit lava tube/flow
- May require equipment ancillary to the xEVA suit

Notional Design Reference EVA for xEVA Con Ops Development

	EV1	EV2
Egress & Setup	 Switch from vehicle power to suit battery power Open hatch and egress Descend to surface Configure equipment transport system and tools on suit 	 Switch from vehicle power to suit battery power Open hatch and egress Transfer any tools brought inside HLS to the surface Descend to surface
Traverse to EB	 Walk downslope towards PSR at located A' Radial traverse distance is ~1 km, slopes range up to ~16° 	 Walk downslope towards PSR at located A' Radial traverse distance is ~1 km, slopes range up to ~16°
Sampling from EB Deploy Instrument	 Conduct context observations, with imagery and verbal descriptions Acquire sample as directed by MCC Science Team 	Set up sampling tools from transport systemDeploy geophysics instrument
Traverse to Crater	 Walk downslope towards PSR at located A', begin descent into crater Radial traverse distance is ~1.5 km, slopes range up to ~12° 	 Walk downslope towards PSR at located A', begin descent into crater Radial traverse distance is ~1.5 km, slopes range up to ~12°
Sampling in Crater Deploy Station	 Conduct context observations and plan route into PSR Deploy environment monitoring station 	 Conduct context observations, with imagery and verbal descriptions Acquire sample as directed by MCC Science Team Ready tools for sampling in PSR [e.g., core drill]
Traverse into PSR	 Walk down into PSR at located A' Radial traverse distance is ~2 km, slopes range up to ~20° Starts 2-hour thermal clock 	 Walk down into PSR at located A' Radial traverse distance is ~2 km, slopes range up to ~20° Starts 2-hour thermal clock
Sampling from PSR	 Conduct context observations, with imagery and verbal descriptions Acquire sample as directed by MCC Science Team [e.g., core] 	 Conduct context observations, with imagery and verbal descriptions Acquire sample as directed by MCC Science Team [e.g., core]
Traverse to HLS	 Walk back upslope towards the HLS at located A Radial traverse distance is ~2 km, slopes range up to ~20° 	 Walk back upslope towards the HLS at located A Radial traverse distance is ~2 km, slopes range up to ~20°
Maintenance	Deploy comm antennaAlign antenna	Route and mate power cables to comm antenna
Cleanup & Ingress	 Stow tools and equipment Transfer science samples up to lander hatch Conduct dust mitigation Ascend to lander hatch and ingress Attach servicing umbilcals Close hatch and repress 	 Stow tools and equipment Conduct dust mitigation Ascend to lander hatch Transfer science samples up to lander hatch Ingress lander and attach servicing umbilcals

Note: Details on EVA Timelines can be found in the "Preparation for Lunar Training and Execution"

NOTE: All EVAs are conceptual/notional only and are strictly for development of the xEVA system con ops, and not indicative of any actual flight plan or official mission profile