

NOAA Perspective on U Class Satellites

Dan Mamula

Research to Operations and Project Planning Division (ROPPD) Office of Projects, Planning, and Analysis (OPPA) NOAA's Satellite and Information Service (NESDIS)

February 14, 2016

Outline

- Key data and current studies
- Gap mitigation
- Reliability needs
- Summary

Key Polar Satellite Data

Microwave and infrared atmospheric sounders on polar orbiting satellites have a large positive impact on reducing numerical weather prediction forecast error

ATMS

CrIS

Imagery from polar orbiting satellites provides enhanced coverage in high-latitudes where geosynchronous satellite coverage is diminished

Current NESDIS U Class Studies

- MIT / LL U Class Design Studies
 - Provide design, analysis, and other support to inform future development and use of microwave radiometers hosted on small satellites.
 - Study provides risk reduction to the FY2017 President's Budget Request for the Earth Observing Nanosatellite-Microwave (EON-MW) mission under the Polar Follow-on Program.
- JPL Sensor Studies
 - MidWave IR Sounder design and capabilities assessment versus a fully capable CriS – assessment of ability to meet NOAA sounder requirements.

EON-MW

- EON-MW will use miniaturized microwave sounder technology demonstration developed by MIT Lincoln Laboratory (MIT/LL)
- EON-MW uses innovative, proven CubeSat technology to greatly reduce cost of construction and launch compared to traditional space systems
- EON-MW is next evolutionary step to MIT/LL's CubeSat microwave sounder series

MicroMAS-1

3U cubesat with 118-GHz radiometer

8 channels for temperature measurements

July 2014 launch, March 2015 release; validation of spacecraft systems; eventual transmitter failure

MicroMAS-2

3U cubesat scanning radiometer with channels near 90, 118, 183, and 206 GHz

12 channels for moisture and temperature profiling and precipitation imaging

Two launches, first in 2017

MiRaTA

3U cubesat with 60, 183, and 206 GHz radiometers and GPS radio occultation

10 channels for temperature, moisture, and cloud ice measurements

Launch on JPSS-1

EON-MW

12U satellite with 22 channels to replicate ATMS

High-performance, radiation tolerant design; 2-3 year mission life

Included in 2017 NOAA budget

30 month build and test

22x22x34 cm; 20 kg; 50 W

EON-MW: Investment in New Technology

- Demonstrating a low cost, small satellite alternative could lead to more sustainable and robust sources of microwave sounding data
- Upon successful demonstration EON-MW can be transitioned to industry for production of a microwave sounding gap-filler or lowcost ATMS replacement
- Implementation of EON-MW will be critical to furthering the design of a flexible and cost-efficient observing capability
 - Provides for the government, national laboratories, academia and the commercial sector work together to develop and demonstrate a critical capability that has the potential to reduce the out-year costs of sounding instruments

EON-IR

NOAA is working with JPL to develop designs for EON-IR concept

- CubeSat-based mid-wave IR sounder (4.8 5.1 microns)
- Mitigate against the loss of CrIS on S-NPP and JPSS
- Leverages NASA/JPL CIRAS demonstration mission with design modified to meet NOAA's observational and operational requirements
 - Scanning sensor head
 - High reliability components
 - Meet power and thermal requirements for operational duty cycle
- Current Work
 - Detailed design study to reduce risk on parts reliability, scanning mechanism, and thermal/mechanical interference
 - Study to determine impact of mid-wave IR only sounding

Data Impact Studies

Scope:

- Determine the quantitative value of MicroMAS and CIRAS in the reduction of forecast error in global and regional NWP models:
 - Impact of MicroMAS-2 in the absence of PM microwave sounder data
 - Impact of CIRAS in the absence of PM IR sounder data

Recent Work:

- Created simulated MicroMAS-2 and CIRAS data CubeSat Sounders for studying impact
- Created orbit simulator for MicroMAS-2 and CIRAS

Next Steps:

• Impact study on local severe storm forecast

Strategy for Gap Mitigation

- Flying identical satellites in a constellation can improve reliability
- Data from domestic and international research missions can be used to reduce error in numerical weather prediction models
 - NASA's upcoming CYGNSS GNSS reflection mission and TROPICS microwave sounder constellation mission show promise for transition from research to operations

Small Satellites and Gap Mitigation

Small satellites are especially suitable for gap mitigation

Why U Class Satellites?

- Current satellites are expensive
 - No ability for spares
 - Long development cycle
 - Failure means lack of data availability
- U Class satellites could be the future for some observations
 - Lower cost alternatives
 - Use commercially available parts
 - Less weight means low launch costs
 - Can afford to have a spare for Gap Mitigation
 - Much shorter development time
 - Commercial launch availability
 - Loss of a single spacecraft does not result in the loss of all instruments
- U Class constellations can provide more key observations
 - Improved performance of Numerical Weather Prediction (NWP) models

- NOAA provides operational weather data
 - Initial SmallSat usage for gap mitigation
 - 2-3 yr mission life appears to be adequate
 - Affordability and lead time
 - Potential SmallSat usage as operational constellation
- NOAA 15, 18, and 19 satellites still in operation
 - Well beyond 2 yr engineering design life
- What reliability efforts are necessary for SmallSats?
- Create new models for SmallSat reliability?
- Which radiation tolerant parts are necessary for LEO missions?

Summary

- NOAA is interested in SmallSats as potential Gap Mitigation and for playing a role in future space architectures
- NOAA looking to leverage the investments of NASA, DoD and other partners to begin developing SmallSat capabilities
- NOAA envisions that SmallSats may play a role as an element in NOAA's observation system

Contact Information

Dan Mamula

dan.mamula@noaa.gov

301-713-7159