

6U Instruments for Weather

Jason Hyon Jet Propulsion Laboratory California Institute of Technology February 14, 2017

© 2017 California Institute of Technology. Government sponsorship acknowledged.

Complexity of Understanding Weather Science – Need for multiple measurements

- Constellations or GEO to monitor storm evolution
- Higher spatial resolutions to capture <u>mesoscale structure</u>
- Capture microphysical processes key to precipitation growth
- Advancing technology to characterize the atmospheric boundary-layer
- Improved atmospheric profiling to characterize the storm environment
- Characterizing storm dynamics and extremes with Doppler radar
- Miniaturization of sensors for CubeSats, constellations and lower costs

>=3 missions in order to provide all measurements

JPL's Miniaturized Weather Instruments

RainCube & MASC First Airborne Observations of Clouds and Precipitation during the PECAN Experiment (June-July 2015)

http://www.kansascity.com/news/local/article27710704.html

© 2 ifornia Institute of Technology. Government sponsorship acknowledged

Constellation of CubeSats: Calibration

Instrument performance flow-down from science requirements.

Characteristic	Instrument Capability	From Science Requirement	
Half-Power Beamwidth (HPBW)	2.9° (118 GHz) 1.8° (183 GHz)	<4° (118 GHz) <3° (183 GHz)	
Intersatellite Precision	0.6 K	1.2 K	
Absolute Tb Accuracy	3 K	4 K	

Instrument Thermal Stability Requirements

Component	Operating Temp	Thermal Stability		
Calibration target	20°C–40°C	±3.0°C/orbit		
Receiver electronics	0°C–40°C	±1.5°C/orbit		
Back-end electronics	20°C–40°C	±5.0°C/orbit		

The science requirements are

- a precision among all CubeSats of 2 K and
- an absolute accuracy of 4 K
 The 2 K precision requirement has two major components:
- (1) instrument noise, including calibration uncertainty and antenna pattern knowledge, and
- (2) observation noise due to sampling and Earth incidence angle (EIA) errors. We allocate 1.2 K to instrument noise and 1.6 K to observation noise (for an RSS of 2 K).

Instrument error allocation for intersatellite precision requirement.

	118	183
Error Allocation	GHz	GHz
Measurement noise (NEAT, 1/f, 2 Instruments)	0.48 K	0.61 K
Residual antenna temperature error	0.1 K	0.1 K
Residual brightness temperature calibration	0.15 K	0.15 K
RSS total error allocation	0.51 K	0.64 K
Flowed down from Science Requirement	1.2 K	1.2 K

Mission Trade

	Ocean focus – Cubesat	Ocean focus	Coasts focus - Cubesat	Coasts focus	Land focus	Landsat- like
Spatial Res	1 km	1 km	200 m	200 m	60 m	30 m
Global Revisit	1 day	1 day	9:30 AM + 3:30 PM Daily	9:30 AM + 3:30 PM Daily	10 day	16 day
Global Coverage each revisit	100%	100%	8%	40%	100%	100%
# of Satellites	30	4	18	4	4	12
FOV [deg]	40	40 x2	12 (36 FOR)	30	9	1.5
# of Launches	3	1	2	1	1	3
Altitude [km]	561	561	561	561	626	619
Instrument dimensions	0.01x0.02x 0.01 m	(0.01x0.02x 0.01 m) x2	0.01x0.02x 0.01 m	0.3x0.2x 0.2 m	0.6x0.45x 0.45 m	0.3x0.2x 0.2 m
# of x-track detector elements	400	600 x2	600	1600	1600	600
F stop	F 1.8	F 1.8	F 1.8	f 1.8	f 1.8	f 3
Spacecraft class	Cubesat	SSTL 150 class	Cubesat	SSTL 150 class	SSTL 300 class	SSTL 300 class

Recommendation

- Define science missions only CubeSat can solve with the lower cost
 - Temporal sampling and heterogeneous instruments
- Miniaturized science instruments that are fully self calibrated
- Establishment of a reliable ground network
- Class C spacecraft
- Industry driven propulsion, communication, avionics, power