

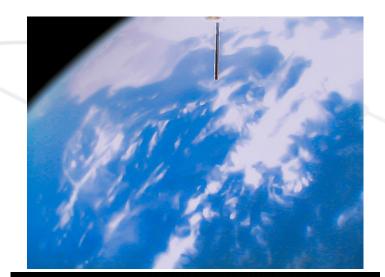
The Radiation and Reliability Program for the LANL-Designed 1.5U CubeSat System

Tom Fairbanks Fairbanks@lanl.gov

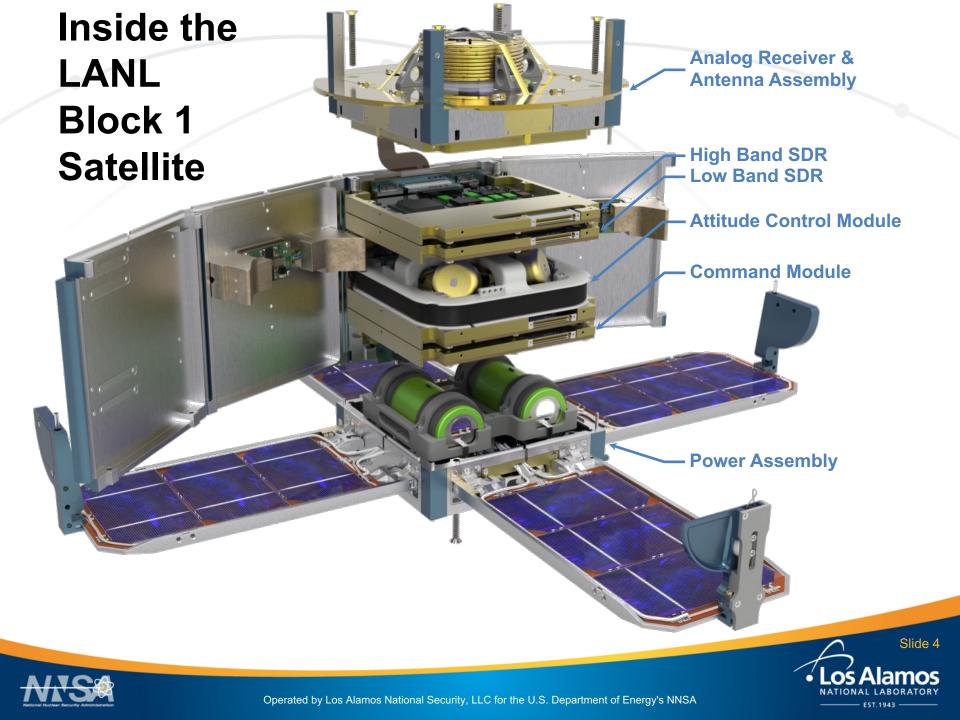
February 15, 2017

LA-UR-17-20936

Overview


- Overview of the LANL 1.5U Block 1 CubeSat
- System Reliability Architecture
- Radiation Testing
- Environmental Testing

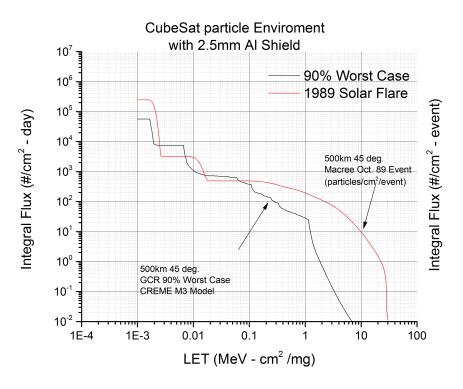
LANL Block 1

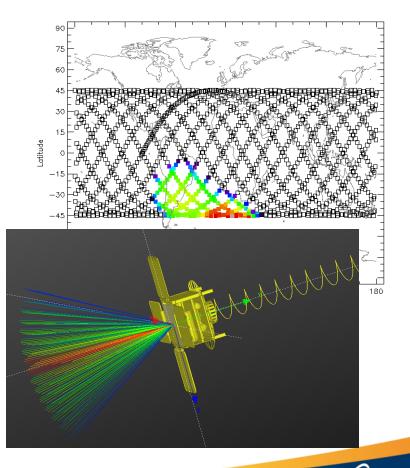

- 8 1.5U Satellites Launched
 - November 19, 2013
 - 500km altitude, 40.5° inclination
 - < 2 years from design to delivery</p>
 - ~ 2 years on orbit

Is there anything we can do to increase reliability in the radiation environment (RHA)?

- Numerous CMOS COTS Parts
- Short Time Frame

Plan


- Risk Assessment
- Reliable System Architecture
- Strategic Parts Testing
 - Prescreen Parts in neutron
 - Test Critical Parts in Heavy Ion



Radiation Environment and Testing

- Use Inexpensive available COTS electronics
- Simulate the radiation environment
 - Small TID risk (Some parts tested for TID anyway)
 - Some risk from particle environment
- Test to reduce risk

10000

1000

100

Slide 6

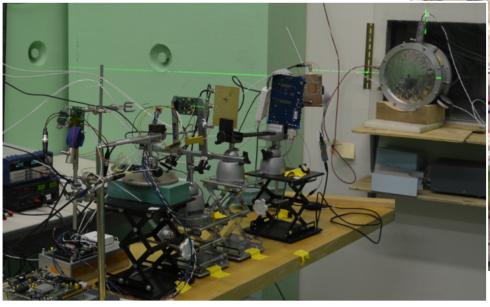
-8 MIN integral Flux > 0.10 MeV (cm⁻² s⁻¹)

System Reliability Architecture

- MicroSemi ProASIC 3 FPGA (Good Radiation features) Monitors current draws / battery voltage / etc.
 - Boot pointers and watch dogs reside here.
 - Can power cycle sub-circuits
 - Command module can power cycle entire boards
- Common Digital Template
- Three Independent Code Loads (256 Kbytes) in Microprocessors each board has 3 code banks
 - Bank 0 loaded pre-launch, cannot be over-written by ground command
 - Bank A loadable on-orbit, normal flight code
 - Bank B loadable on-orbit, normal flight code
- "Short Dog" Watch Dog timer (~1.5 min)
 - Reboots code to each of 4 identical microprocessors
- "Long Dog" Watch Dog time (1-3 days)
 - Resets everything to launch state (Bank 0)
 - Dog must be "fed" with ground command.

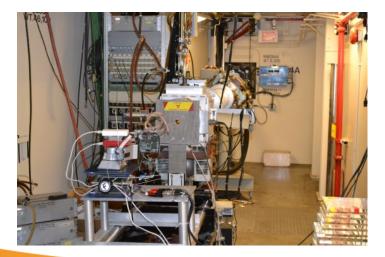
How do we Choose Parts?

- Can I turn it on and off?
- Critical parts screened for destructive radiation effects
- Ensure that parts that cannot be power cycled can not latch-up.
- Commonality across circuit boards



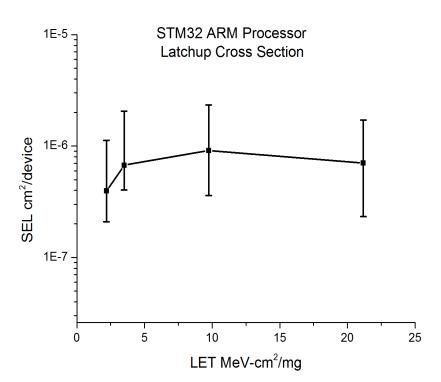
Preliminary SEE Testing

- 5 >600 MeV neutron spectrum
- 1E6 n/cm²/s (now 3E6 n/cm²/s)
- De-lidding not required
- Covers a significant portion of our radiation environment



Heavy Ion and Proton Testing at LBNL

- 11 parts determined to system critical
 - Parts that could not be power cycled
 - Single points of failure
 - Tested in Heavy Ion
 - One part off-ramped after this test


Proton Testing performed to test scrubber

Approach Allows Access to More Parts

- Microprocessor Tested in Heavy Ion, n, p+
- Non-destructive Latchup observed with all ions tested as well as n and p+
- 188 day Constellation SEL rate
- Our approach to reliability enables us to use this part with confidence.

Environmental Testing

- Remember it is a satellite
- Qualified to GEVs
- Qualification and acceptance levels
 - Random Vibration
 - Thermal Cycling
 - TVAC Cycling
 - Workmanship vibe

3 Axis Random Vibration Testing

Thermal Vacuum Testing

Summary

- Our Approach to Radiation Testing and Reliability Enables:
 - Ability to tailor risk to each mission
 - Access to more parts (COTS)
- The LANL-designed 1.5U CubeSat system was successful.
- Technology and approach tested on CubeSats but applicable to all satellites (10kg, 25kg, 100 kg, etc. as required for mission)
- Radiation Results published (NSREC Data Workshop 2013, Fairbanks et. al.)

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Back up Slides

ProASIC 3 FPGA

- Flash based FPGA
- Configuration memory inherently hard against SEU
 - Flash memory is generally only susceptible to SEUs during write
- SRAM, IO, clock networks can be TMR'd through VHDL flags for synplicity
- Can be reprogrammed on orbit until TID=16krad(Si)
- LANL is funded to further study TID effects for use on other programs. Low dose rate testing to begin June 1.

Feature	Test Limit	Onset LET	Saturation Cross- Section
Configuration Flash Cells	96 MeV- cm²/mg Heavy Ions	No errors observed	No errors observed
D-Type Flip-Flops	96 MeV- cm²/mg Heavy lons	6 MeV-cm ² /mg	2E ^{.7} cm ² per flip-flop
SRAM Memory	96 MeV- cm²/mg Heavy lons	1 MeV-cm ² /mg	4E ⁻⁸ cm ² per memory bit
FlashROM Memory	96 MeV- cm²/mg Heavy lons	No errors observed	No errors observed
D-Type Flip-Flops	63.5 MeV Protons		5E ⁻¹⁴ cm ² per flip-flop
SRAM Memory	63.5 MeV Protons		1E ⁻¹³ cm ² per memory bit

15

Contact

Erica Sullivan

- Program manager for Agile Space / CubeSats
- 505-667-9219
- <u>eab@lanl.gov</u>

