

JPL Planetary SmallSats

SmallSat Reliability TIM February 14, 2017 John D. Baker

Copyright 2017 California Institute of Technology. Government sponsorship acknowledged.

Why Small Planetary Spacecraft?

Perform targeted science while demonstrating new instruments and small spacecraft capabilities.

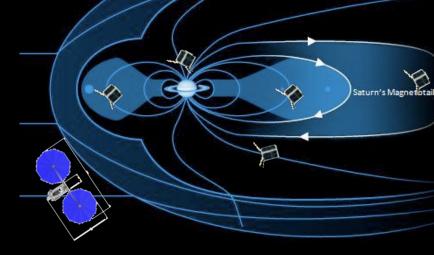
Go new places

Increase the frequency of Science missions

Validate instrument and S/C technologies

Science Pull for Planetary CubeSats

Science enablers


- Distributed measurements for dynamic processes
- Impactor/observer architecture (cooperating assets)

High-risk, high-reward observations

- Access to unique vantage points
- Risk assessment by sacrificial probe

Break new ground

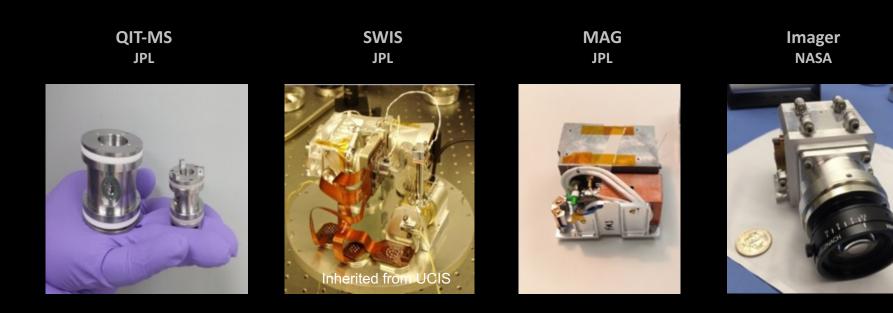
Exploration of uncharted regions

Priority Planetary Science Measurements

that can be done with cubesats

- Imaging
- Volatile detection
- D/H ratio
- Atmospheric composition
- Atmospheric density
- Organic detection
- Surface composition
- Magnetic fields

...this is only after working on this for 3 years.


Planetary Decadal Science Mapping and Instrument Availability

THEME	KEY MEASUREMENTS	OBSERVATION STRATEGY	NANO/SMALLSAT-COMPATIBLE INSTRUMENTS GLOBALLY
Origins	Isotopic, elemental, mineralogical composition	In situ (atmospheres, surface)	APXS, <u>mini-TLS</u> , <u>IR spec</u> , Raman, LIBS, <u>Submm spec</u> , <u>UV Spec</u> , Gamma ray spec, Dust spec, <u>Mass Spec</u>
		Returned sample (small bodies)	Sample Return Capsule (possibly Acquisition as well)
Planetary Habitats	Volatile, organics composition, endogenic activity, heat budget, env	In situ, distributed network, subsurface (e.g., penetrators)	Mass Spec, micro-XRF, Geophysics Inst., imaging, IR spec, mini-seismometer
Processes	Atmospheric structure, dust, fields, geology	Close proximity, in situ, distributed networks	Cameras, IR spec, Mag, Transponders, Langmuir probes, <u>Mass Spec, mini-TLS</u> , dust counter, plasma
Human Exploration (SKGs)	Dust, fields, radiation, Dynamical properties, Mechanical properties, ISRU (composition)	Close proximity, in situ, extreme environments	Dust Counter, imaging, APXS, Geophysics Inst., accelerometers Subsurface probing, neutron spec, IR spec, radar sounder, <u>mini-seismometer</u>

Green = exists Orange = in development (underline=@JPL) Red = does not

J. Castillo-Rogez

New Miniaturized Science Grade Instruments

Quadrupole Ion Trap Mass Spectrometer

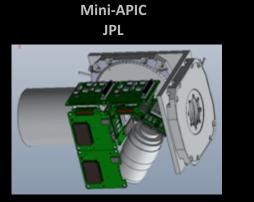
2.5 kg, 2U, isotopic accuracy <1%, leverages foldable edge-connected electronics Snow and Water Imaging Spectroscopy

High-throughput, lowpolarization, high-uniformity spectrometer, 350-1700 nm spectral range

Advanced Vector Helium Magnetometer

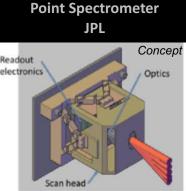
Comparable performance to Cassini magentometer (*Now being used by Europa*)

High-Resolution Visible Camera

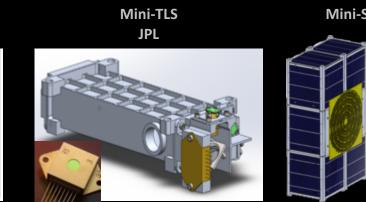

Used for science, optical navigation, and Autonomous Navigation demonstration

Tested/developed for CubeSats, extensible to larger missions

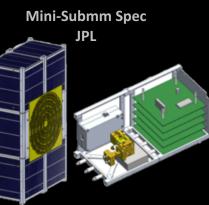
Copyright 2017 California Institute of Technology. Government sponsorship acknowledged.



Science Grade Instruments in Development


Advanced Pointing and Imaging Camera

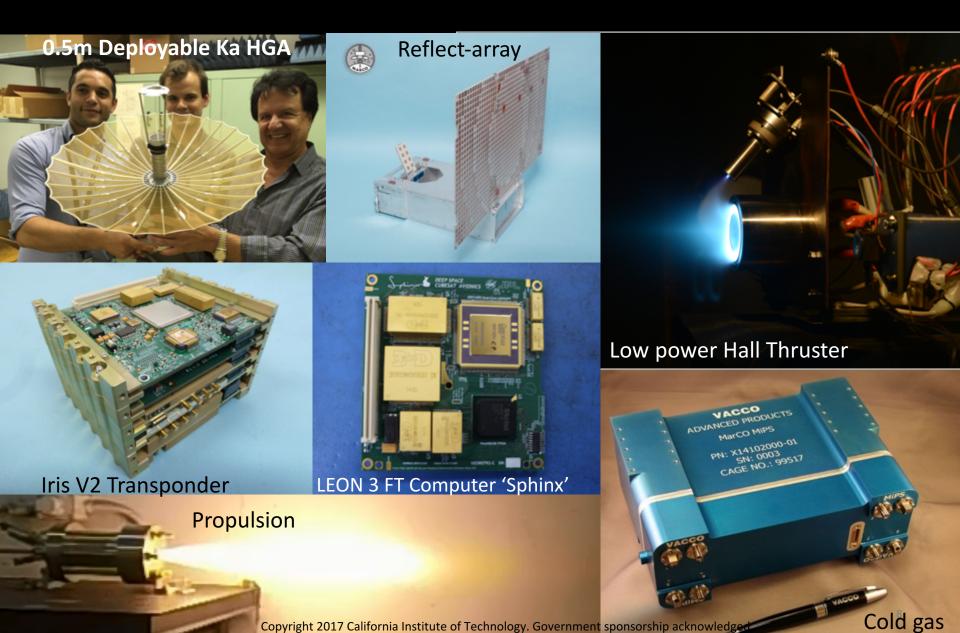
2.5 kg, 2U, Co-aligned narrow angle camera (NAC) and star camera; High res NAC with ≤50 µrad image resolution, 8° FOV; Star camera with 12° FOV and absolute pointing knowledge; 2-DOF actuation with sub-pixel-level pointing knowledge over ±60° scan range;


SWIR-MIR Point Spectrometer

2U, Point spectrometer for simultaneous identification and characterization of OH/H₂O and silicates for surface volatile detection.

Tunable Laser Spectrometer

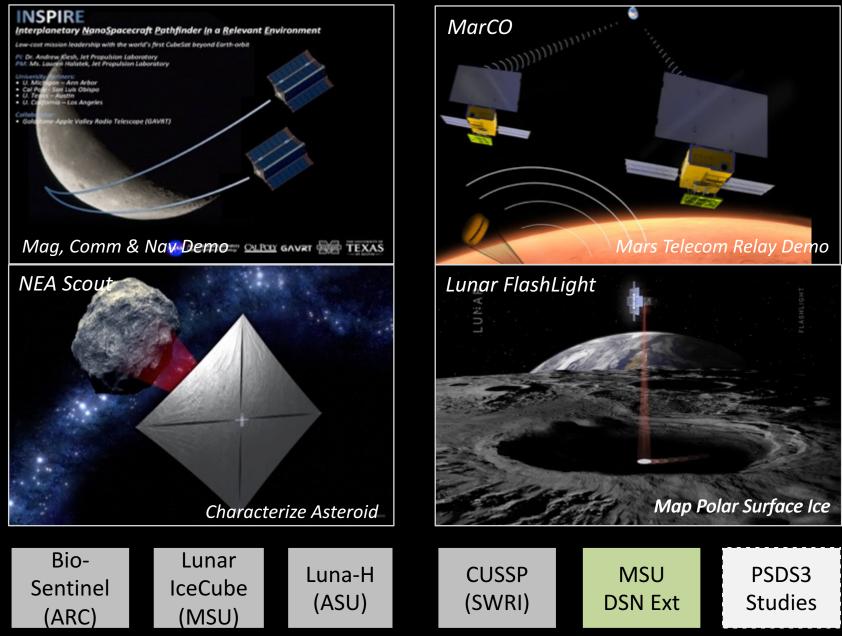
2U, miniaturized 2 channel tunable laser spectrometer for compositional analysis with 5-10x increase in sensitivity and 5x reduction in power



Submillimeter-wave Spectrometer

2U, *D/H ratio measurement on comets* and *Limb sounding to characterize planetary atmosphere* (distribution of gases, temperature profile, and gravity waves); CMOS synthesizer and wideband receiver operating from 440 GHz to 600 GHz and integrated flat antenna with compact waveguide calibrator.

Current JPL Planetary SmallSat Capabilities



Planetary SmallSat Mission Challenges

Beyond the Earths Magnetosphere

- Increased Galactic Cosmic Radiation
- Increased Solar Particles
- Thermal environments
- Longer distances
- Limited communication

In Development...

Copyright 2017 California Institute of Technology. Government sponsorship acknowledged.