Explainable and Scalable Planning with Probabilistic Temporal Logic Specifications

Principal Investigator: Ufuk Topcu

The University of Texas at Austin

Project personnel: One Ph.D. student (three years) + one postdoctoral scholar

(in years 1 and 2)

Approach

Thrust I -- Compositional and hierarchical synthesis

Thrust II -- Learning-based

synthesis for interpretable plans in practically infinite-state systems

Thrust III -- Explainable feedback through structured counterexamples

Demonstration and yearly assessment with concrete metrics: case study on human spaceflight operations with representative models, specifications, objectives, contingency scenarios

Research Objectives

Develop formal specifications and automated learning and synthesis algorithms for planning under probabilistic temporal logic constraints

- Scalability via architectural and algorithmic measures
- Planning interpretable by and feedback explainable to care members and designers

Initial TRL: 1 (preliminary theory)

Final TRL: 3-4 (proofs of concept + validation on representative data)

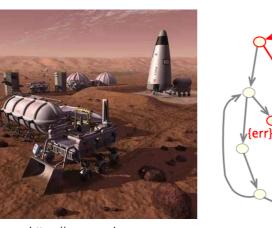


Image:https://www.exploremars.org

Theory and algorithms for automated planning with scalability and interpretability necessary for future human spaceflight operations

Potential Impact

Paradigm shift in the planning+execution (and replanning loop):

- Systematic, composable, unambiguous mission specifications
- Automated planning with rich models, constraints and uncertainties
- Naturally suitable for re-planning
- Integrated planning → system-level optimization, e.g., in performance, weights and overall cost.
- Suitable for emerging crew/designer interfaces