High Spatial and Temporal Frequency Active Surfaces for Diffraction Controlled Telescopes

Professor Sergio Pellegrino, PI Dr. James B. Breckinridge Dr. Kathryn Jackson Graduate Aerospace Laboratories California Institute of Technology

Approach

 Optimize actuator patterns and control schemes to manipulate diffraction peaks due to aperture discontinuities and system alignment errors.

Optimized actuator

pattern

- Develop a self-sensing active layer to detect the high frequency signal induced by deformation of PZT.
- Drive the active layer at high speed to cancel vibration errors.

Research Objectives

- Develop primary mirror wavefront control scheme to reduce the effects of misalignments and pupil discontinuities on PSFs.
- Develop distributed in-situ sensing and control of primary mirror figure errors induced by spacecraft vibration and jitter sources.

Potential Impacts

- Lower cost, lightweight primary mirrors
- A key step toward enabling prime focus coronagraphs with reduced optical complexity and higher transmittance as identified in the Exoplanet Technology Plan (2016).